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Intelligence is often discussed in terms of neural networks in the cerebral cortex, whose
evolution has presumably been influenced by Darwinian selection. Here we present
molecular evidence that one of the many kinesin motors, KIF14, has evolved to exhibit
a special feature in its amino acid sequence that could improve neural networks. The
improvement is quantified by comparison of NIF14 sequences for 12 species. The special
feature is level sets of synchronized hydrophobic extrema in water wave profiles based on
several hydropathic scales. The most effective scale is a new one based on fractals
indicative of approach of globular curvatures to self-organized criticality, which
summarizes evolutionary trends based on intelligent design.

Keywords: neural network, amino acid sequence, thermodynamic and phase properties, natural selection 3, sliding
window

INTRODUCTION

There are at least 14 kinesin motor families (Lawrence et al., 2004; Miki et al., 2005), and the
mechanics of the hand-over-hand kinesin step dragging cargo along tubulin have been well
studied (Yildiz et al., 2004; Carter and Cross, 2005; Block, 2007). A bioinformatic survey of 1,624
putative kinesins identified three families that are very widespread among species: KIF 1, 5, and
14 (Wickstead et al., 2010) (see their Figure 1). According to Uniprot, KIF1 provides
“anterograde axonal transport of synaptic vesicle precursors,” KIF5 is “required for slow
axonal transport of neurofilament proteins,” and “during late neurogenesis, KIF 14 regulates
the cerebellar, cerebral cortex and olfactory bulb development through regulation of apoptosis,
cell proliferation and cell division (by similarity)”. Other kinesins are less common and appear to
be less involved in the complex task of neural network assembly and maintenance. All of the
families except KIF14 walk towards the tubulin plus end (Miki et al., 2005). This means that
KIF14 can make refinements in neural network tubulin end structures created by KIF 1, 5, and
possibly other kinesins.

Many distinctive features connecting protein sequences to their functions and evolution are
related to globular-shaping water waves obtained by thermodynamic scaling. The general method
used here is only 12 years old, and is little known. It is reviewed in our earlier companion article on
dynein (Phillips, 2020).

Phylogenetics counts numbers of identical or similar amino acids at specific sites using BLAST, and it
is limited by the restriction to single sites. There is an alternative to the single site methods, which has
Darwinian selectivity as an implicit feature, as corroborated by the identification of universal, amino-acid
specific self-organized criticality in the solvent-accessible surface areas (SASA) of >5,000 protein amino
acid segments from themodern ProteinData Base (Moret andZebende, 2007; Phillips, 2009). The lengths
of the small segments L = 2N + 1 varied over a wide range from 3 to 45, but the interesting range turned
out to be M< = 9 ≤ L ≤ 35 =M>. Across this range they found linear behavior on a log-log plot (a power
law, hence self-similar) for each of the 20 amino acids centered on a given segment

logSASA(L) ~ const − Ψ(aa)logL (9≤ L≤ 35)
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Here Ψ(aa) is a hydropathicity parameter. It arises because the
longer segments fold back on themselves, occluding the SASA of the
central aa. The most surprising aspect of this self-similar folded
occlusion is that it is nearly universal on average across the
proteome. Protein folding has been the subject of hundreds of
thousands of studies of specific structures, and it is indeed
remarkable that Ψ(aa) is almost independent of the individual
protein fold. This is a dramatic demonstration of the power of
Darwinian selectivity involved in aqueous shaping of globular
proteins, as discussed in detail elsewhere (Phillips, 2016).
Moreover, the segmental character of the new scale (Moret and
Zebende, 2007; Phillips, 2009) has a Darwinian echo: for each
protein family one can identify an optimized sliding window
width W*, over which Ψ(aa) is best averaged to maximize the
resolution of evolutionary improvements; this averaged profile is
denoted by Ψ(aa,W*). Profiles of Ψ(aa,W*) display the functional
features that are being optimized by evolution, often involving
modular (segmental) exchange (Phillips, 2009).

RESULTS

Evolution has leveled sets of (more often) hydrophobic and
(less often) hydrophilic extrema in profiles of many proteins
(Phillips, 2009). Such leveling optimizes (synchronizes)
protein multi-domain hydrodynamics, in accordance with
Sethian’s level set hydrodynamic theory (Saye and Sethian,
2011; Phillips, 2016; Allan and Phillips, 2017) Protein-protein
interactions are complex, and level sets are not the rule.
However, when they do occur, they can be used to identify
more easily quantified protein dynamics, and monitor
functional evolution. In contrast to molecular dynamics
simulations, it is easy to analyze profiles even of very large
proteins of more than 1,000 amino acids (Phillips, 2016) near
equilibrium and find level sets. Here we inspect KIF 1,5 and 14

motor profiles (~350 aa) and find that there are no level sets in
the extrema of KIF1 motor profiles, while the KIF14 human
motor profile exhibits striking level sets of hydrophobic
extrema. KIF5 is an intermediate case, with little evolution
and only some level set aspects, so we focus on KIF 14 and its
substantial evolution in late species.

The optimal value of the sliding window width W* can be
determined in different ways, depending on the protein
family under study. Here we studied graphs of human
profiles with W ranging from 7 to 21, which showed the
optimal human value is W* = 9. In general smaller values of
W give higher resolution, while larger values of W are more
likely to treat segmental dynamics more accurately. In
addition to the MZ 2007 fractal scale, which is consistent
with self-organized criticality (Phillips, 2009), we also used
the standard 1982 hydropathicity scale (KD), which gave

FIGURE 1 | Evolution leveled hydrophobic peaks 2, 3 and 5 in chicken KIf14 motor profiles with W = 9, and further evolution added level peaks 1 and 4 in human.
The reader may also observe partial leveling from chickens to humans of the five lowest hydrophilic minima near 10, 150, 210, 230 and 290. The MZ scale is used here
(Moret and Zebende, 2007; Phillips, 2020). In other proteins the number of level peaks is usually only three (Phillips, 2009)

TABLE 1 | Deviations from the mean for each species by the five highest
hydrophobic peaks in the KIF14 motor profiles. Also shown are the number of
BLAST positives that differ from human. The small values of mean deviation for
whale, zebra fish, and wild turkey may represent the effects of extreme
environmental conditions. Such anomalies could be minimized in canine data
(dogs and humans share similar environments).

Species Mean devia. Positives

Human 1.50 0
Whale 1.78 30
Zfish 1.88 40
W Turkey 2.52 48
Elephant 2.55 10
Mouse 2.73 17
Pol. Bear 2.76 10
Rabbit 2.94 15
Fox 3.06 14
Horse 3.42 21
Chicken 3.91 45
Mole Rat 4.10 12
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weaker results (Niu et al., 2006). Note that W = 9 is the lower
limit of the fractal range spanned by the MZ areas; smaller
values of W are better treated with the first-order KD scale.
It appears that neuronal dynamics are on the second-order
side of the edge between first- and second-order
interactions.

The effects of evolution on KIF14 are illustrated in
Figure 1, which compares human and chicken profiles. The
chicken level set has three peaks which grow to five peaks in
human. Alternatively, one can find the deviation from the
mean for the five highest hydrophobic peaks. This is smallest
in humans, and it increases for earlier species. The mean
deviation of the highest five peaks for human KIF1 is 10.8, or
7 times larger than human KIF14 (practically an empty level
set). (KIF1 is the most common kinesin, and supports growth
of cells in many tissues.) Altogether this is good

circumstantial evidence that KIF14 is important to building
and refining neural networks.

Numerical results for mean deviations of the highest five
peaks of many species are shown in Table 1, together with the
number of BLAST positives that differ from human. The
reader may judge which column more accurately reflects
relative intelligence. The general principles of self-organized
criticality have been known for decades (Kyte and Doolittle,
1982), but physical examples have been limited (Mandelbrot,
1982). The emergence of fractals in protein surface areas
(Moret and Zebende, 2007) suggests many genomic
applications, as discussed in earlier articles (Phillips, 2009;
Phillips, 2016; Phillips, 2020).

The evolution of KIF18B is shown in Figure 2. Here
similarly level peaks are absent from the Human profile,
but present in the Chicken profile! So far all of the few

FIGURE 2 | The large differeences between Human KIF18B suggest that Chicken KIF 18B may perform a special function, as its hydrophobic extrema are much
more level (MZ scale).

FIGURE 3 | Compared to Figures 1, 2, Mouse KIF18B is now similar to Human KIF18B. The main difference is Peak 4, which is more level in Human (MZ scale).
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studies of KIF18B have used mammalian samples only. It
would be interesting to see if chicken KIF 18B behaved
differently. Interesting variations are seen in other species
in Figures 3–5.

Domestic dog breeds are characterized by an unrivaled
diversity of morphologic traits and breed-associated
behaviors resulting from human selective pressures. A
recent survey of whole genome sequences of 722 dogs found
16 phenotypes that explain greater than 90% of body size
variation in dogs (Albert and Barabasi, 2001). An even larger
survey of 14,000 dogs with owner - assessed traits was
connected to 131 single nucleotide polymorphisms,
primarily in brain genes (Plaissais et al., 2019). To go
beyond phenotypes and traits to assess intelligences of
different breeds, one needs specific proteins. The ultimate
mechanism for dynein and kinesin molecular motor
interaction with the extended axons of neurons could

involve as many as 1,500 mitochondrial DNA proteins
((Schwarz, 2013; MacLean et al., 2019), Wiki). Here we
have presented evidence that KIF14 is evolutionarily critical
for neural networks and deserves special attention. If KIF14
motor sequences could be extracted from the canine data base,
a correlation with canine intelligence variations could be
discovered. In less than 20 years, the number of dogs in
America has increased from 65 million to 90 million, so the
discovery of such a connection would be of great interest. One
could also study genomic differences between working and
conformational border collies, as they could be exceptionally
large for genes associated with KIF14 (see https://en.wikipedia.
org/wiki/Border_Collie#ISDS_sheepdog_trial).

Here we have emphasized small differences in healthy
neural networks as a measure of intelligence. KIF14
mutations cause brain malformation and microcephaly
(Fujikura et al., 2013; Johnston and Williams, 2016). The

FIGURE 4 | There are still diffences in KIF18B between Human and Rabbit, with the Human peaks more level (MZ scale).

FIGURE 5 | Frog KIF18B is an extreme example, with hydrophobic peak structure peaking at Peak 3 (MZ scale).
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concept of self-organized criticality has been widely discussed
for its implications for living matter (Makrythanasis et al.,
2018). Fractals are keys to modern statistical mechanics.
(Munoz, 2018), and nanoscale biological features are
increasingly studied (Stanley and Taylor, 1994). It appears
that the level of dynamical synchronization increases with the
number of level edges, for instance three in CoV03, and four
in CoV19 (Dawson and Yan, 2021; Phillips, 2021). The
numbers of KIF14 synchronized edges of three in chicken
and five in humans (Figure 1) are consistent with the
concentration of KIF14 in the prefrontal cortex.
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