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Abstract

Proprioceptive paired-stimulus paradigm was used for 30 children (10–17 years) and 21 adult (25–45 years) volunteers in
magnetoencephalography (MEG). Their right index finger was moved twice with 500-ms interval every 4 ± 25 s (repeated 100
times) using a pneumatic-movement actuator. Spatial-independent component analysis (ICA) was applied to identify
stimulus-related components from MEG cortical responses. Clustering was used to identify spatiotemporally consistent
components across subjects. We found a consistent primary response in the primary somatosensory (SI) cortex with similar
gating ratios of 0.72 and 0.69 for the children and adults, respectively. Secondary responses with similar transient gating
behavior were centered bilaterally in proximity of the lateral sulcus. Delayed and prolonged responses with strong gating
were found in the frontal and parietal cortices possibly corresponding to larger processing network of somatosensory
afference. No significant correlation between age and gating ratio was found. We confirmed that cortical gating to
proprioceptive stimuli is comparable to other somatosensory and auditory domains, and between children and adults.
Gating occurred broadly beyond SI cortex. Spatial ICA revealed several consistent response patterns in various cortical
regions which would have been challenging to detect with more commonly applied equivalent current dipole or distributed
source estimates.
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Introduction
Sensory gating of repeated stimuli is a robust well-demonstrated
phenomenon, where successive sensory stimuli presented with
short intervals result in the reduction of the respective response
amplitudes at the sensory cortices (Fruhstorfer et al. 1970;
McLaughlin and Kelly 1993). Maximum responses are achieved
only at interstimulus interval (ISI) of several seconds or even
tens of seconds, depending on the response latency, cortical
area, and sensory modality. For example, the primary cortical

evoked fields are attenuated at ISIs below 8–16 s for auditory
(Hari et al. 1982; Lü et al. 1992; Forss et al. 1993), below 1 s for
visual (Uusitalo et al. 1997) and below 8 s for proprioceptive
(Smeds et al. 2017) stimuli. The exact neuronal mechanisms
of the sensory gating are not known, but it is suggested to be
important to prevent excessive afference and thus overloading
the sensory processing resources in the brain (Lundstrom et al.
2008; Wang, Webber, et al. 2010). One possibility is that the gating
in the primary sensory cortices is caused by an inhibitory effect
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from related higher level cortical processes. It has been proposed
that frontal networks may modulate task relevant gating (Knight
et al. 1999; Staines et al. 2002). In the auditory domain, it indeed
appears that the prefrontal cortices may regulate the sensory
gating (Mayer et al. 2009).

Paired-stimulus paradigm has been used to study gating in
a controlled quantifiable manner. Majority of the studies have
focused on auditory domain, presenting brief clicks or beeps,
or somatosensory domain using electrical stimulation of the
median or tibial nerve. There are several works using tactile
stimuli (Wühle et al. 2011; Spooner et al. 2019) and some using
passive movements (Angel et al. 1985), but we still lack a large
body of literature about gating in variety of stimulus modalities.
In addition, the development of gating phenomenon is still
poorly understood.

Sensory gating clearly has a functional relevance. The best
demonstrated examples are from schizophrenia patients who
demonstrate reduced auditory gating (e.g., Adler et al. 1982;
Boutros et al. 1991; Freedman et al. 1991; Budnick and Braff
1992; Adler et al. 1998; Boutros et al. 1999). Gating alterations
can be specific for a given modality and cortical area. For
example, in schizophrenia, somatosensory gating in the primary
somatosensory (SI) cortex shows reciprocal effects to the
auditory gating, whereas the secondary somatosensory (SII)
cortex shows coaxial effects with the auditory gating (Edgar
et al. 2005; Thoma et al. 2007). Somatosensory gating has been
observed to decline in aging population (Cheng and Lin 2013;
Spooner et al. 2019). Alterations have also been observed in
some motor disorders. For example, children with cerebral palsy
exhibit hyper-gating to tibial nerve stimulation (Kurz et al. 2018).

One of the most fundamental somatosensory senses for
smooth motor performance is the proprioception (“movement
sense”). The proprioceptors are located in muscles and joints
and are sensing limb positions, movements, and forces (for
a review, see Proske and Gandevia 2012). The proprioceptive
afference to the brain is integrated with the vestibular system
to provide the brain with information about the internal state of
the locomotor system and its spatial orientation. Behavioral pro-
prioceptive perception is often impaired in movement disorders
such as Parkinson’s (Konczak et al. 2007), dystonia (Avanzino
and Fiorio 2014), chorea (Sharp et al. 1994), and cerebral palsy
(Wingert et al. 2009). Precise computer-controlled movement
actuators can be used to stimulate the proprioceptors in order
to study the cortical proprioceptive processing using magne-
toencephalography (MEG; Alary et al. 2002; Lange et al. 2001;
Piitulainen et al. 2015; Piitulainen, Seipäjärvi, et al. 2018b) or fMRI
(Nurmi et al. 2018). In MEG, the cortical responses to passive
movements primarily reflect the processing of proprioceptive
afference with negligible effect of the tactile afference (Piitu-
lainen et al. 2013; Bourguignon et al. 2015). Therefore, the evoked
movements are feasible to examine the proprioceptive gating
when using MEG, with good reproducibility (Piitulainen, Illman,
et al. 2018a).

The majority of the direct proprioceptive inputs to the cor-
tex via thalamus are directed to the SI cortex, but some also
the primary motor (M1) cortex (Goldring and Ratcheson 1972),
and with lesser extent to various other cortical loci involved
in sensorimotor processing. In addition, proprioceptive affer-
ence activates several cortices indirectly, for example, trough
cortico-cortical pathways. When recorded with MEG, the most
prominent cortical proprioceptive response is seen in the SI
cortex and less prominently in the SII cortex (Alary et al. 2002;
Smeds et al. 2017). Beyond these somatosensory cortices, the

proprioceptive information is processed within a larger cortical
network, including premotor and posterior parietal cortices (e.g.,
Freund 2003; Schwoebel and Coslett 2005; Pellijeff et al. 2006;
Tsakiris et al. 2007). In addition, superior parietal lobule and
supramarginal gyrus have also been linked to haptic shape
recognition which demands accurate proprioceptive processing
of the hand (Miquée et al. 2008).

Separation of distinct neural MEG signal among simultane-
ously active cortical regions faces several challenges. The corti-
cal extent of somatosensory gating to median nerve stimulation
has been attempted to examine using MEG and minimum-norm
estimation (Hsiao et al. 2013). The fundamental issue in MEG
source separation is that the source time-courses of the brain
activity inevitably mix spatially in the recorded MEG signals
and are not adequately separated when using, for example,
the minimum-norm (Hämäläinen and Ilmoniemi 1994; Dale
et al. 2000; Pascual-Marqui 2002; Hauk et al. 2011) or minimum-
variance (Van Veen et al. 1997; Sekihara et al. 2001) filter-based
MEG inverse methods. Thus, the estimated time-course in each
cortical source point is a mixture of the true sources. Therefore,
the more subtle activities beyond the dominant widespread
SI and SII cortex sources have been challenging to identify,
which narrow down the physiological interpretations. Another
challenge is interindividual anatomical and functional varia-
tion when averaging the cortical activations across individuals,
especially without prior knowledge of these neuroanatomical
differences. That is, regional specificity is lost if the cortical
response location to a given stimulus varies between individ-
uals. Approaches using multiple equivalent current dipole mod-
eling (Sarvas 1987; Mosher et al. 1992) can extract spatially sep-
arate MEG signals but require prior knowledge of the response
such as the number of significant true sources and preferably
also their expected locations and primary current directions.
Complex and correlated source distributions that are expected
when using naturalistic stimuli would violate these assump-
tions of simple equivalent current dipoles.

In this work, we aimed to examine the cortical proprioceptive
gating to paired evoked-movement stimuli using an indepen-
dent component analysis (ICA) approach to determine several
stimulus-relevant source locations and time-courses from MEG
signals. ICA is a well-established data driven method for fac-
toring multiple measurements of mixed signals to statistically
independent sources (Hyvärinen and Oja 2000). ICA has been
used in M/EEG analysis for several purposes. However, typically
the approach has been to extract independent sources by max-
imizing the temporal sparsity of the components, whereas in
this work, we focused on the spatial independence. Spatial ICA
is often used in functional MRI analysis (McKeown et al. 1998;
Calhoun et al. 2001), but in MEG, it has until now only been
used to examine oscillatory cortical activity (Ramkumar et al.
2014). Several methods to generalize ICA to group level analysis
have been proposed (for a review, see Calhoun et al. 2009). In
this work, we computed first the independent components for
each individual separately, and then clustered them across the
individuals using a spatiotemporal similarity metric.

Our primary aim was to decompose the proprioceptive gating
to several distinct cortical components within and beyond SI
cortex, and thus further elucidate the neuronal mechanisms
behind the gating phenomenon, sensorimotor integration, and
proprioception. We aimed to test the feasibility of the spatial
ICA to separate evoked MEG responses to independent compo-
nents using two different study groups: healthy 1) adults and 2)
children and adolescents. Our secondary aim was to examine
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Figure 1. Left: The experimental setup. The movement actuators were on table in front of the participant, and a cardboard screen was used to cover the visual contact

to the moving finger while allowing viewing the video. Right: The displacement and speed of the pneumatic actuator during one stimulus pair measured with a laser
distance meter without a finger attached to the device. Onset of the movement is at 0 s.

whether the cortical gating of proprioceptive stimuli is matured
in theprimary sensorimotor cortex to the adult level in the 10-
to 17-year-old children and adolescents.

Materials and Methods
Participants

We measured two groups of participants, one consisting of
children and adolescents and one of adults. The “child” group
included a total of 30 healthy right-handed 10- to 17-year-old
children and adolescents who were recruited from school visits,
colleague’s family members, and acquaintances. Five partici-
pants were excluded from the final data due to data quality
issues, which resulted in total of 25 participants in the final
analysis, 12 male (48%), mean age: 13.4, SD: 2.3 years. The “adult”
group consisted of 21 healthy right-handed adults, 13 male
(62%), mean age: 30, SD: 5 years. This group was recruited from
faculty employees, friends, and acquaintances, and a pool of
volunteers who had indicated their willingness to participate in
the faculty research projects. Handedness was determined using
the Edinburgh handedness test (Oldfield 1971).

The study was approved by the ethics committee of Helsinki
University Hospital (HUS/2318/2016) and was conducted in
accordance with the Helsinki declaration. All the volunteers
and their guardians gave a written informed consent prior to
participation to the study.

Experimental Setup

A custom-made nonmagnetic pneumatic movement actuator
(Aalto NeuroImaging, Aalto University) was used to generate
passive right and left index finger flexion extension movements
of the metacarpophalangeal joint (Fig. 1). For the adults, only
the dominant right-hand stimuli were delivered. For detailed
description of the movement actuator, see Piitulainen et al.
(2015). In brief, the pneumatic muscle (DMSP-10-100 AM-CM,
Festo AG & Co) of the actuator extended ∼5 mm when the
pressure inside was quickly dropped from 4 bars to 1 bar evoking

an extension of the index finger that was taped on the vertical
pneumatic muscle. The participants were instructed to sit as
relaxed as possible while watching an uneventful video with
slowly moving landscape images. To ensure complete masking
of the noises from the movement actuator, the subjects wore
earplugs and a constant Brownian noise was played from a
panel speaker (Sound Shower, Panphonics). To minimize tactile
stimulation during the evoked movements, a layer of surgical
tape was used to cover the fingertips of the index fingers.
A cardboard screen was used to prevent the participant from
seeing the moving finger.

The paired stimulus consisted of two rapid successive exten-
sion (upward) movements of the index finger with a 500-ms
interval, and with 4000 ± 250 ms interval between the repeated
paired stimuli. The 4000 ± 250 ms ISI was chosen because the
gating effect was estimated to be reduced close to initial level
within 4 s according to Smeds et al. (2017) and to remain within
comfortable session duration. Smeds et al. (2017) used the same
movement actuator as was used in the current study. The study
setup for children included index finger stimulation for both
hands and, for adults, the stimulation of right index finger and
right ankle. In current work, we only look at responses from right
index finger stimulation which was the same for both groups.
The stimulus order between the two stimuli was randomized.
The recording lasted 14 min totaling at least 100 index finger
stimuli. For children, there was a small pause in the middle of
the measurement, but the participants remained in the same
position during the pause.

Measurements

MEG recordings were conducted at the MEG Core, Aalto
NeuroImaging, Aalto University using a whole-scalp 306-
channel (204 gradiometers, 102 magnetometers) MEG system
(Vectorview™, Elekta Oy) inside a three-layer magnetically
shielded room (Imedco AG) to reduce the external interference.
Head position and movement was continuously recorded using
five head position indicator coils attached to the head (Fastrak,
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Polhemus). Prior to the MEG measurement positions of fiducial
points, the head position coils, and 200 scalp surface points were
registered. Electrooculogram signal was recorded using a pair of
electrodes placed below and above the left eye.

For a part of the subjects, the index finger acceleration was
recorded simultaneously with MEG signals using a three-axis
accelerometer (ADXL335 iMEMS Accelerometer, Analog Devices
Inc.) attached on the nail of the moved finger. Acceleration
was low-pass filtered at 330 Hz and sampled at 1 kHz, time-
locked to the MEG signals. Accelerometer measurements were
done to ensure that there were no meaningful differences in the
finger movement between participants, although the method
has been proved very consistent (Piitulainen et al. 2015). A laser
distance meter was used to quantify the distance of the evoked
movements in a separate session (Fig. 1).

High-resolution structural T1-weighted MRI volumes were
scanned for each participant (MP-RAGE, Slice thickness: 1 mm,
in-plane resolution: 1 mm × 1 mm, TR: 2530 ms, TE: 3.30 ms)
using a 3 T MAGNETOM Skyra MR scanner (Siemens Healthcare)
with a 32-channel head coil. The structural MRI data were
co-registered to common coordinates with MEG data using
facial features, scalp surface, and fiducial points. The co-
registration was done by manually, using tools in MNE-python
package (versions 0.16.0 to 0.19.0 were used during this work)
(Gramfort et al. 2013), adjusting the coordinate transforma-
tion until the points visually matched to facial and scalp
features.

MEG Preprocessing

MEG data were first denoised using oversampled temporal pro-
jection (OTP, Larson and Taulu 2017). OTP method assumes that
the data are spatially oversampled and reconstruct each sensor
data using the other sensors. This means that sensor-specific
uncorrelated noise and artifacts are effectively removed. After
OTP denoising temporal signal space separation (tSSS, Elekta
Maxfilter™, Taulu and Simola 2006) with head movement cor-
rection was used to suppress external interference and to correct
for the head movement.

FastICA (Hyvärinen and Oja 1997) was used to separate ocular
artifacts from the data. We computed 30 components, and the
artifact components were chosen by correlating with EOG refer-
ence electrode measurement. While tSSS had removed majority
of the cardiac activity from the MEG signal, some residual was
found with ICA, and those components were also removed.
Overall number of removed components for each subject was
1–4 with 3 being the most common number. All removed com-
ponents were verified manually.

MEG data were band pass filtered between 1 and 40 Hz
and downsampled to 100 Hz. The data were divided to
baseline corrected 1.7-s epochs (−0.5 to 1.2 s with respect
to the onset of the first stimulus of each paired stimulus).
Epoch was rejected if signal exceeded the thresholds of
4000 × 10−13 T/m and 4 × 10−12 T for gradiometers and mag-
netometers, respectively. Each participant’s data were time
shifted so that the cortical response onset was at zero. This was
done to equalize the differences in the peripheral conduction
of proprioceptive afference between participants who were
at various stages of growth and development. The onset was
determined as the rising edge of stimulus locked activity. To
standardize the amount of data between the participants, a
random permutation of 90 valid epochs was chosen for each
participant.

MEG Source Analysis

Freesurfer software v. 6.0 (Dale et al. 1999; Fischl et al. 1999) was
used to construct a cortical surface model for each participant
using the structural MRI scans. MNE software (Gramfort et al.
2014) was then used to create a surface-based source space with
8196 source vertices (4096 for each hemisphere) with average of
less than 5-mm distance between them. Each vertex represents
a point with three orthogonal dipoles. MNE software was used
to create the MEG forward solutions for the source spaces.

The source activity estimation was done using the well-
known dSPM method (Dale et al. 2000) which is a minimum
norm estimate normalized with prestimulus noise covariance
estimates. The MNE-python implementation of the algorithm
was used. We used both gradiometers and magnetometers for
the source estimation using measured noise covariance to spa-
tially whiten the data for combining sensor modalities. The pres-
timulus noise covariance was estimated, using shrunk cross-
validated covariance estimator, from 0.5-s baseline period before
the first stimulus control pulse in each of the paired-stimulus
events. A minimum norm approach was chosen to minimize
a priori assumptions on the nature of the source distributions.
The proprioceptive stimuli are expected to produce correlated
activity in multiple cortical regions which would have been
problematic for a minimum variance beamformer solution. The
inverse solution had a depth weighting of 0.8, and dipole ori-
entation was loosely restricted to surface normal (weighting
parameter 0.2). Source estimation was done without averag-
ing the epochs. The entire 3D vector solution was estimated
using higher prior weight for the cortical normal direction. This
resulted in 3 × 8196 = 24 588 time-courses per subject.

Component Separation

The tSSS algorithm used in the preprosessing reduces the true
rank of our 306 channel MEG measurement to be around 70. ICA
behaves badly on rank deficient data, and thus, it was necessary
to reduce the data dimensionality. This was obviously beneficial
for computational purposes as well. We used truncated singular
value decomposition (tSVD) to get 65 time-courses (right singu-
lar vectors) and their respective spatial source topographies (left
singular vectors) instead of the original 24 588 time-courses in
the 8196 source points. A total of 65 components were enough
to explain more than 98% of the variance in all participants. It
is still an open question whether the data should have been
reduced further to remove possible noise components. How-
ever, since we are looking for individual source locations, we
think that we should try to find as small spatial distributions
as possible. Dimensionality reduction would possibly reduce
the differences between separate sources. As expected, some
secondary components of the unaveraged response signal to
the proprioceptive stimulus ware relatively weak compared with
the other brain activity and noise components. Therefore, sig-
nificant data reduction would have risked losing physiologically
relevant information from the data. We tested a greater dimen-
sionality reduction, but it did not visibly improve the results. The
tSVD process can be presented as the following equation:

X = U�VT + Ue�eVT
e , (1)

where U contains 65 orthogonal spatial topographies and V
the corresponding 65 time-courses. U and V matrices represent
spatial and temporal lower rank subspaces of the data matrix.
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The spatial ICA analysis approach that we used roughly fol-
lows ideas presented by Calhoun et al. for fMRI resting state data
(Calhoun et al. 2001). Jonmohamadi et al. (2014) also did similar
analysis to find neural sources from MEG evoked responses but
using temporal ICA. The independence of components in Spatial
ICA can be understood as minimal systematic spatial overlap
between the components. We expected true cortical sources to
produce separable source distributions in the cortex as long
as there is sufficient difference in either the source location
or primary current direction. Sources with highly correlated
sensor topographies are still expected to be difficult to separate.
We used FastICA (Hyvärinen and Oja 1997) algorithm to esti-
mate the unmixing matrix for 65 independent components. The
components are given by

Ss = UW, (2)

where W is the ICA unmixing matrix. The respective average
time courses can then be found by using the mixing matrix W−1

St = W−1�Vave, (3)

where Vave is the average evoked response projected to the space
defined by U. The components were scaled such that the peak
spatial magnitude (norm of the three vector directions) of each
component is 1. Finally, the topographies Ss are transformed
to MNI152 template brain (Fonov et al. 2009) for group com-
parison purposes using MNE-python cortical morphing tools.
The temporal components St and the MNI-transformed spatial
components Ss were stored for each participant and used for
clustering.

Component Clustering

Figure 2A presents a flow visualization of the ICA-clustering
pipeline. We assumed that the components from different
participants have spatiotemporal similarities if they represent
actual physiological cortical activity related to the propriocep-
tive stimulation. Thus, we expected to find component clusters
across participants that represent physiologically relevant
stimulus responses. While dimensionality reduction before
ICA might have been problematic, we were able to, at this
phase, reject many components that clearly did not present
activity that was time locked to the stimulus. We ranked the
relevance of components of each participant according to the
averaged amplitude within the 0–1.2 s epoch normalized with
the prestimulus standard deviation. We then picked 40 most
relevant components from each participant and discarded the
rest. The number of components was a compromise between
data reduction and guaranteeing that all stimulus relevant
components were included.

The spatial similarity measure that we applied is simply the
Pearson correlation coefficient between the spatial distributions
of the components. Notably, we estimated the independent
components in 3D vector space but computed the similarities
using magnitudes in each 8196 source locations. This choice was
made because we were more interested about the approximate
location than the exact current dipole direction in the anatomi-
cally variable sulci of each participant’s cortex. The similarity of

spatial components X and Y can then be expressed as

SMs X,Y = ρX,Y. (4)

The 3D vector components are approximately orthogonal
and thus have zero spatial similarity within the participants.
However, the source magnitudes of the components are not
orthogonal. Thus, two components that have spatially over-
lapping locations will have nonzero similarity even within the
subject.

For temporal similarity, we used the absolute Pearson correla-
tion coefficient between the averaged component time courses.
Because some variations in individual timing of the evoked
response components between the participants are inevitable,
we searched for the strongest correlation with maximum lag of
10 ms between the time courses.

SMt X,Y = max
τ

∣
∣
∣ρX(t),Y(t+τ)

∣
∣
∣ , τ ∈ [−10ms, 10ms] . (5)

We looked for within group clusters that were similar both
spatially and temporally. To this end, we used weighted geo-
metric mean of the spatial and temporal similarities to com-
pute the final similarity matrix. Using the geometric mean as
compared with arithmetic mean both equalized the effect of
spatial and temporal similarity and increased distance between
components that are similar only spatially or temporarily and
not both. Similarity matrix is

SMst = exp
{
α × ln (SMs) + (1 − α) × ln (SMt)

}
, (6)

where α ∈ [0,1] determines the weighting between spatial and
temporal similarity. In this work, we used α = 0.75 because we
aimed to examine rather strictly spatially similar components.
However, any other α value could be used to reflect the pref-
erence between spatial and temporal similarity. We get the
dissimilarity matrix.

D = √
1 − SMst. (7)

The clustering method used was somewhat similar to the
one described by Esposito et al. (2005). It is a semi-supervised
agglomerative clustering algorithm that adds components one
by one to the nearest cluster, ensuring that there is only one
component included from each participant. The algorithm that
adds components to their nearest cluster provided that the
cluster does not already have a component from the same
participant, and the distance to all cluster members is below a
threshold. Clusters are combined to their nearest neighboring
clusters if they do not have components from the same partici-
pants and the distance between all the cluster members is below
the threshold. This is done until all remaining distances are over
the threshold. In the resulting clusters, all intracluster distances
are below the threshold. For further analysis, we included only
clusters that were well representative of the studied population,
that is, clusters with a component from at least two-third of the
participants.

The clustering threshold was determined from the distribu-
tion of intercomponent distances (Fig. 2B). The distribution has
a longer left tail that is assumed to represent the physiologically
relevant similarities, while the large mode of larger distances
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Figure 2. ICA, clustering and gating ratio. (A) ICA was performed on concatenated epochs and the temporal averaging was only done after the component separation.

Both spatial and temporal information were used on clustering. (B) The highest mode of the intercomponent distance histogram represents random similarities and
its long-left tail includes the correlations of interest. A Gaussian mixture model (the curves) was used to estimate the threshold for clustering by selecting the point
where the histogram becomes more probable as the clustering threshold. (C) Peak-to-peak response amplitudes were defined for both stimuli (indicated by the arrows),
and the gating ratio was then computed as ratio between them (A2/A1).

represents random correlations. We fitted a mixture model of
two Gaussians to the distribution and defined the threshold
as the point where the wide left distribution becomes more
probable. The same procedure was used separately for child and
adult data.

The time courses and spatial topographies of each cluster
were averaged to produce group level components. The criteria
for the clusters of interest to be selected for further analy-
sis were: 1) the cluster represented more than two-third of
the participants and 2) the averaged cluster encompassed a
clear stimulus related activity (difference between baseline and
stimulus). Component separation was performed to unaveraged
signal, so multiple component and component clusters had very
little time locked activity. We evaluated the clusters manually to
select the relevant clusters. Because of the sign ambiguity of the
ICA method, the time courses were flipped to the better corre-
lating direction. The ≤10-ms time shifts that were determined
in the similarity computation were applied prior to averaging to
diminish individual variation.

For comparison purposes, we compared the cluster averages
to grand average time courses determined using more con-
ventional region of interest (ROI) time-course extraction meth-
ods. We defined anatomical areas roughly corresponding to the
cluster locations and used the first singular vector (PCA) method

to extract the primary time course of the region. The ROIs
were picked from the common Destrieux cortical parcellation
(Destrieux et al. 2010). The ROIs were chosen to approximately
cover the locations of the main clusters.

Computing the Gating Ratio

We computed the MEG-response amplitude to the first and
second stimulus as the total range of signal (i.e., peak-to-peak
amplitude; see Fig. 2) similarly to Lenz et al. (2012). The same
latency as after the first response was applied to the second
response. Gating ratio was then defined as the ratio between the
second and first stimulus peak-to-peak responses. The gating
ratio was computed separately for each component-time course
within each cluster. This approach was selected because it is
feasible for short the ISIs, where the baseline activity level can
vary between the successive stimuli. We used Welch’s t-test to
compare gating values between child and adult clusters and
Pearson’s correlation tests to look for age correlation.

Results
We excluded five subjects from the child population due to noisy
MEG signals or other problems during measurement. Typical
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reason was excessive muscle activity and head movement dur-
ing MEG recording. All adult participants had acceptable data
quality. All accepted participants encompassed a minimum of
90 epochs (i.e., successful stimuli) of which exactly 90 were used
in the analysis. Accelerometer measurements indicated that
the stimulus kinematics were stable between subjects. Standard
deviation of movement timing was less than 1 ms and the peak
acceleration varied only ∼5%. The variation was most likely due
to small intersubject variation in the accelerometer placement
rather than actual differences in actuator speed. Standard devia-
tion of actuator top speed estimated from the accelerometer was
0.17 cm/s. The stimulus kinematics are presented in Figure 1.

Average latency from proprioceptive stimulus onset (i.e.,
from movement onset) to measurable stimulus locked cortical
activity was 30 ± 12 ms, that is, comparable to previously
reported neural conduction time for the median nerve stim-
ulation (Lueders et al. 1983; Dinner et al. 1987). It should be
noted that although the onset of the evoked movements is
very accurate (ms accuracy, Piitulainen et al. 2015), the actual
stimulus to the proprioceptors is less punctuate than for electric
median nerve stimulation due to the viscoelastic properties
of the soft tissues, tendon, and muscles. For all the reported
evoked cortical activities, the peripheral conduction delay was
compensated so that the cortical response onset is always at
zero time.

Consistent Response Clusters in the Children

The clustering and post hoc selection of representative clusters
resulted in 22 component clusters that included 18–24 compo-
nents out of the 25 individual participants in each cluster. No
cluster was full in the sense that it included a component from
each of the 25 participants. The 22 clusters were reasonably well
clustered with an average silhouette width of 0.85 (1 = perfect
clustering).

We examined the clusters manually and excluded 10 clusters
that showed no clear change after prestimulus baseline. The
remaining 12 cluster averages were best defined both spatially
and temporally within the somatosensory and motor cortices
but were also detected in more anterior and posterior cor-
tices. Figure 3 illustrates the response clusters for the children.
Clusters C1–C6 are showing clear transient response to the
proprioceptive stimulus. Clusters C7–C12 have more prolonged
response shapes. Spatial distributions of the cluster means are
thresholded to 60% of the peak in the visualizations, the choice
being arbitrary, but the distributions seem focal with a clear
maximum. MNE-based inverse solutions for each true source
span the entire source space; thus, the approximate location
of the peak is more relevant than the spatial extent of the
distribution.

The cluster representing the primary proprioceptive response
in the SI cortex (cluster C1, Fig. 3) shows a clear transient peak
and small negative deflection after both stimuli. Activity related
to the return of the finger (flexion) to the initial position at
200 ms after the first peak was not clearly identifiable. This was
expected as the movement stimuli were deliberately designed
to induce a sharp extension (the primary stimulus) and slower
flexion (return) to reduce confounding stimulus effects between
the repeated stimuli. Cluster C1 in the SI cortex contralateral
to the stimulus corresponded well with the grand-average
timeseries from postcentral gyrus (Supplementary Fig. 1).

Clusters C2 and C4 show very similar temporal characteris-
tics in the contralateral premotor cortex, and posterior lateral

sulcus areas (Fig. 3). These responses were characterized by a
dual peak after the first stimulus (before 200 ms) and a substan-
tial decrease (gating) in amplitude after the second stimulus.
The dual peak characteristics are also visible in grand average
timeseries from subcentral gyrus (Supplementary Fig. 1).

Both clusters C3 and C5 show a delayed transient peak fol-
lowed with a more sustained response in the contra and ipsi-
lateral lateral sulci, respectively. This could represent expected
bilateral SII cortex activation to the somatosensory stimulus,
as demonstrated earlier using MEG for tactile (Hari et al. 1993)
and proprioceptive (Alary et al. 2002) stimuli. The contralateral
response included an early peak concurrent with the primary
somatosensory response that was lacking from the ipsilateral
responses. Ipsilateral peaks were also delayed by 50 ms com-
pared with contralateral ones. Cluster C6 peaked at the superior
parietal lobule (Brodmann’s areas 5 and 7) and showed two
distinct peaks at roughly 200-ms intervals with strong gating
effect.

Clusters C7–C12 represent delayed and prolonged responses
that were located in the contralateral frontal (cluster C8) and
occipital (clusters C7 and C12) cortices, ipsilateral parietal (clus-
ter C9) and occipital (cluster C11) cortices, and bilateral occip-
ital cortices (cluster C10). Despite very different spatial rep-
resentations, the clusters C8–C10 show very similar temporal
characteristics peaking around 200 ms.

Consistent Response Clusters in Adults

In line with child data analysis, we chose the same number of
12 most representative clusters from the adult data for phys-
iological comparison and methodological validation purposes.
Figure 4 illustrates the response clusters for the adults. The only
clear consistent difference compared with the children is the
stronger negative rebound after the initial peak and is visible in
multiple clusters (e.g., clusters A1, A5, and A6).

Clusters C3 and A3, from child and adult data, respectively,
correspond to ipsilateral lateral sulcus (SII cortex) response with
very similar average time course for both groups. Clusters C4 and
C5 and A2 and A4, corresponding to contralateral lateral sulcus
responses, in child and adult data, respectively, also appear very
similar although in the adults show more prominent activity
after ∼200 ms.

Likewise, to the children, there are several clusters (clus-
ters A7–A12, Fig. 4) showing a slow response after the first
stimulus and very limited response to the second one. These
were located in frontal and parietal cortices. The ipsilateral
SI response appeared very similar in both adults and children
(clusters C9 and A10, respectively).

Gating Ratios in Children and Adults

The early M1 and SI cortex responses contralateral to the move-
ment appeared similar for both groups (Figs 3 and 4). Table 1
shows the group average gating ratios for the six transient
response clusters in children and adults. The gating effect was
statistically significant in each cluster. Interindividual variability
was high compared with between cluster differences. Gating
ratio was not computed for the prolonged response clusters as
they showed a negligible response to the second stimulus. The
gating ratio of the primary SI cortex cluster contralateral to the
stimulus did not differ between the children and adults (i.e.,
clusters C1 and A1; Welch’s t(35.22) = 1.04, P = 0.31). In addition,
no significant differences in gating ratios between the groups

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa306#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa306#supplementary-data
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Figure 3. Twelve most consistent response clusters to the paired-proprioceptive stimulus in children. Spatial distributions are normalized cluster averages thresholded

to 60% of the maximum. Cluster average timeseries are shown with a 95% confidence interval for the mean (in red). The dashed vertical lines indicate the onsets of
the evoked responses at 0 and 0.5 s. Cluster averages are divided into transient responses that react to both stimuli and prolonged responses that only have one clear
response in the stimulus interval.

were found for the remaining clusters detectable for both groups
in the posterior (Clusters C4 and A2: Welch’s t(29.4) = −1.02,
P = 0.32) or anterior (C5 to A4: Welch’s t(30.0) = 0.68, P = 0.50) parts
of the contralateral SII cortex or ipsilateral SII cortex (C3 and
A3: Welch’s t(22.3) = −1.00, P = 0.32). The participants’ age did
not correlate with the gating ratios. Pearson correlation coef-
ficient between age and gating ratio within SI cortex clusters
for children (C1) was r(17) = 0.07, P = 0.78 and for adults (A1)
was r(17) = −0.07, P = 0.77. When the children (C1) and adult (A1)
clusters were combined, the correlation between age and gating
ratio was nonsignificant (r(36) = 0.06, P = 0.74). The intersubject
variation of the gating ratio was high compared with expected
effect size.

Discussion
Our spatial ICA and clustering approach extracted consistent
cortical activity patterns for paired-proprioceptive stimuli of the

index finger. Each cluster represented independent components
of the cortical processing related to the evoked propriocep-
tive afference. The gating ratio of the primary proprioceptive
response in the SI cortex (represented by the first cluster) was
comparable to the earlier observations using other somatosen-
sory stimuli (e.g., Spooner et al. 2019). The participants’ age
did not correlate with the gating ratio and was at similar level
in children and adults. Thus, the mechanisms behind gating
appeared to be primarily matured in the 10- to 17-year-old par-
ticipants; however, some differences were observed to adults in
more delayed proprioceptive processing after ≥150 ms poststim-
ulus. Proprioceptive stimulation activated the cortex broadly
beyond the SM1 cortex, and the gating ratio was similar across
the specific cortices. The proprioceptive gating appears to be
comprehensive in nature throughout the human brain. These
results indicated that the spatial ICA source separation-based
approach is feasible tool to extract extended neurophysiologi-
cally relevant information beyond the strongest primary cortical
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Figure 4. Twelve most consistent response clusters to the paired-proprioceptive stimulus in adults. Spatial distributions are normalized cluster averages thresholded
to 60% of the maximum. Cluster average timeseries are shown with a 95% confidence interval for the mean (in red). The dashed vertical lines indicate the onsets of
the evoked responses at 0 and 0.5 s. Cluster averages are divided into transient responses that react to both stimuli and prolonged responses that only have one clear

response in the stimulus interval.

responses to proprioceptive and likely also to other sensory
simulations.

Proprioceptive Gating in Children and Adults

The primary aim of this study was to decompose the pro-
prioceptive gating to distinct cortical components within
and beyond SI cortex using a novel method. Our method
did indeed reveal new important insights about cortical
proprioceptive processing in children and adults. Most previous
studies in the somatosensory domain have focused on the
somatosensory gating of the most prominent response arising
from the SI cortex. To our knowledge, there are no prior
studies investigating the effect of age on gating in children and
adolescents.

The proprioceptive gating ratio in the SI cortex was at similar
level as reported earlier for mechanical tactile and electrical

peripheral nerve stimulations (Edgar et al. 2005; Thoma et al.
2007; Wiesman et al. 2017). The gating ratio for the early propri-
oceptive processing was at similar level in children and adults,
indicating that the proprioceptive system is primarily matured
before or shortly after the start of puberty, or even earlier.
Furthermore, the participants’ age did not significantly correlate
with the gating ratio in any of the clustered components within
our group of 10- to 17-year-old children and adolescents. In
the other spectrum of the lifespan, the somatosensory gating
has been found to be reduced in older individuals (i.e., over
50 years old) corresponding to decline in tactile discrimination
performance (Lenz et al. 2012; Cheng and Lin 2013; Spooner
et al. 2019). In addition, the cortical proprioceptive processing
has shown to be altered in the older individuals being associated
with worse postural standing balance performance (Piitulainen,
Seipäjärvi, et al. 2018b). However, gating experiment in this
domain is lacking.
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Table 1 Mean (±SD) gating ratios for the transient clusters in
children and adults

Cluster Gating t P

Children
Cluster C1 (cSI) 0.72 ± 0.22 5.27 <0.01
Cluster C2 (cPM) 0.72 ± 0.23 4.59 <0.01
Cluster C3 (iSII) 0.73 ± 0.31 3.60 <0.01
Cluster C4 (cSII) 0.61 ± 0.17 8.31 <0.01
Cluster C5 (cSII) 0.76 ± 0.22 4.16 <0.01
Cluster C6 (cSPL) 0.87 ± 0.30 2.61 <0.05
Adults
Cluster A1 (cSI) 0.69 ± 0.18 4.9 <0.01
Cluster A2 (cSII) 0.62 ± 0.23 5.6 <0.01
Cluster A3 (iSII) 0.52 ± 0.23 5.9 <0.01
Cluster A4 (cSII) 0.65 ± 0.18 6.21 <0.01
Cluster A5 (cPM) 0.69 ± 0.21 6.18 <0.01
Cluster A6 (c/iSM1) 0.61 ± 0.19 5.01 <0.01

Note: The t- and P-values are from a paired sample t-test between amplitude
for the first and second stimulus.

The only consistent difference between adults and children
in the transient responses, including the primary response (C1
and A1), was the visibly larger activity at 200 ms in the adults.
This activity may reflect more complex proprioceptive process-
ing in a wider cortical neuronal network. Although the phys-
iological mechanisms are unclear, it could be that the devel-
opment of this network is slower compared with the early
proprioceptive processing in the SI cortex.

Spatiotemporal Properties of Proprioceptive Gating

We demonstrated that proprioceptive gating occurs within a
large cortical network, including SI (BA3, 1, 2) and SII cortices,
premotor cortex (BA6), and superior parietal lobule (BA5 and 7).
These regions are all relevant for sensorimotor processing and
integration. Furthermore, we found a widespread cortical neu-
ronal network of prolonged responses that demonstrated very
strong gating or were nonresponsive to the second stimulus.

The transient-response clusters that presented clear peaks after
both stimuli (C1–C6 and A1–A6) showed consistent gating behav-
ior. The C1 cluster in children represented the expected primary
response to the proprioceptive stimulation in the SI cortex, and
a corresponding cluster (A1) in adults appeared very similar but
exhibited the larger rebound after the initial peak.

Cluster C2 represented most likely premotor activity. The
cluster was spatially widespread, and its exact peak response
location was hard to define. This activity could originate from
the ventral premotor cortex which has been found to have a
role in hand movement and object manipulation (Binkofski et al.
1999; Binkofski and Buccino 2006; Miquée et al. 2008). Spatially,
the cluster C2 corresponded approximately to cluster A5 in the
adults, but the temporal characteristics of the activities were
different.

We also found consistent responses bilaterally in the lateral
sulci, most likely representing proprioceptive processing in the
SII cortices. The response in the ipsilateral posterior lateral sul-
cus (C3 and A3) peaked at 150 ms after the response onset. These
clusters were remarkably similar both spatially and temporally
between the children and adults, suggesting that the neural
source is consistent between the populations. For the contralat-
eral SII cortex, two spatially distinct clusters were detected both
in adults and children (C4, C5, A2, and A4). The more posterior

cluster (C4 and A2) indicated a dual-peaked initial response
with ∼100-ms interval. The more anterior cluster (C5 and A4)
demonstrated a small initial negative peak followed with large
positive deflection. The deflection was visibly more prominent
in adults than children especially after 250 ms. Previous work
has suggested that the somatosensory M200 component of tac-
tile stimulation is localized to SII cortex (Nevalainen et al. 2008),
whereas based on our observation, the activity in the same time
frame was spread to multiple cortical regions beyond the SI and
SII cortices.

The delayed and prolonged response clusters were found in
frontal and parietal lobes both in children and adults (C7–12
and A7–12). These responses continued beyond the onset of
the second stimulus (onset at 0.5 s) and reacted negligibly if at
all to the second stimulus. This could indicate that activity in
these regions is associated more to the higher level processing
or integration of the proprioceptive afference, and not the
early somatosensory processing. In this context, a complex
bilateral network connecting the frontal and parietal cortices
in somatosensory processing could be involved. These fronto-
parietal networks (FPNs) are, for example, linked to attention
control (Coull et al. 1996; Wang, Liu, et al. 2010), which might be
relevant also for gating of excessive sensory afference. Likewise,
abnormal gating (Edgar et al. 2005; Thoma et al. 2007) and
reduced function in FPN have also been linked to schizophrenia
(Roiser et al. 2013). However, the role of FPN in sensory and
especially in proprioceptive gating still requires further studies
to be confirmed.

In children, there were two clusters in the occipital areas
(clusters C10 and C12). It is possible that these clusters primarily
reflect slightly mislocalized posterior parietal activity similar to
clusters C7, A7, A9, and A11. It is unlikely that the visual system
would have been activated systematically by the proprioceptive
stimuli. Cluster C11 reflects occipitotemporal activity which
seems unintuitive for the proprioceptive stimulation. It is pos-
sible that this activity is projected from deeper sources not well
visible using MNE-based inverse methods. Some activity might
also be projected from the cerebellum, which was not included
in the source model. Cerebellum receives fast proprioceptive
input, and MEG responses to finger movement stimulus has
been demonstrated previously (Marty et al. 2018).

Paired-Proprioceptive Stimuli—Strengths and
Weaknesses

There are several challenges when examining sensory gating
in the proprioceptive domain using natural stimuli. The Paired-
movement stimuli with short intervals are challenging because
the finger needs to be returned to the initial position prior the
next stimulus. This can cause the contamination of the primary
stimulus response or baseline of interest by the returning move-
ment. However, we concluded that the contamination effect to
the second primary response was negligible, most likely because
we kept the applied movement range short enough (∼6 mm).
The shape of the main response, that is, SI cortex response
cluster, was similar to earlier reported responses using the same
proprioceptive stimulator for index finger stimulation (Smeds
et al. 2017). Smeds et al. (2017) used equivalent current dipole
modeling to extract the evoked-response strength in SI cortex
and showed that with short below 0.5-s ISI, the response would
be strongly reduced. This strong gating effect may explain why
we did not observe a clear response for the returning finger-
flexion movement that occurred immediately after the finger
extension. Only in cluster C6 in the superior parietal lobule
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(BA 5 and 6), it was possible to detect also a response pattern
coinciding with the returning movement. The superior parietal
lobule has important role in the sensory integration including
proprioception-based limb orientation and position (Felician
et al. 2004; Limanowski and Blankenburg 2016). This may explain
its sensitivity to fine proprioceptive details of the hand and
detecting the fine kinematics of the current extension-flexion
movement.

It should be noted that the pneumatic muscle actuator
did not return completely to the initial position between the
paired stimuli (see Fig. 1). This was inevitable, because we
attempted to keep the returning flexion movement slower
than the actual stimulus (fast extension movement). The
properties of the pneumatic artificial muscle did not allow full
return to the initial position in ∼250 ms. However, the speed
of the actual paired stimuli was similar. The speed is likely
more crucial factor compared with the ∼2-mm difference in
the initial position of the finger because the proprioceptors
are activated by the movement rather than exact position
(Proske and Gandevia 2012).

The current evoked finger movements activate primarily
the proprioceptors; however, some skin movement and tension
around the metacarpophalangeal joint and tip of the finger is
inevitable that may activate some of the cutaneous mechanore-
ceptors. We attempted to minimize tactile afference by taping
the fingertip with two layers of surgical tape and attaching
the finger firmly to the pneumatic actuator so that the tactile
sensation was kept constant. In addition, it has been shown that
when using MEG, the cortical responses to passive movements
reflect primarily the proprioceptive afference (Piitulainen et al.
2013). Some of the cutaneous receptors may be considered as
proprioceptors as their functions are partly overlapping, and
thus have an important role in proprioception. Therefore, some
overlap in the cortical patterns is inevitable (Collins et al. 2000).

However, there is a minute pressure change in the fingertip
during the actuator movement, and its exact effect to the conclu-
sions of this study is difficult to quantify due to overlap between
respective cortical processes. Tactile receptors in the skin also
play an important role in proprioception, so some overlap in the
cortical patterns is inevitable (Collins et al. 2000).

Attention is known to have an effect in cortical gating. In
the current study, participants’ attention to the proprioceptive
stimuli was not quantified. However, we do not expect strong
systematic effect of attention for the current results. Further-
more, the randomized stimulus order and jittered timings of the
stimuli most likely mitigated the possible effect. Additionally,
it has been shown, for example, that movie watching does not
influence somatosensory responses (Espenhahn et al. 2020). We
instructed the participants to focus on an uneventful video to
help them to direct their attention away from the stimuli.

It should be noted that the interindividual variability in the
gating ratio was high. Therefore, it is difficult to draw reliable
conclusions at the individual level or using small sample sizes.
The currently used proprioceptive stimuli and the related MEG
responses have proved to be very reproducible at the group level,
even with 1-year follow-up (Piitulainen, Illman, et al. 2018a).
However, caution needs to be taken if the aim is to follow
individuals, such as a patient. Reproducibility of the propri-
oceptive gating in repeated sessions has not been examined.
In the auditory domain, the reproducibility depends on the
method used for computing the amplitude and gating values
(Fuerst et al. 2007; Rentzsch et al. 2008). In addition, the different
response components show different reproducibility. Interindi-
vidual variability of the gating ratio has been high, and the

patient and healthy control populations overlap strongly even
though there are statistically significant difference between the
populations (Patterson et al. 2008). Although our proprioceptive
stimuli were very stable, we cannot entirely rule out the effects
of interindividual variations in the proprioceptive stimulation,
for example, in hand position or possible tactile interference.
However, such small differences do not likely explain the high
interindividual variation that has been detected for all sensory
domains.

Spatial ICA—Strengths and Weaknesses

ICA-based approach enables the extraction of weaker cortical
activities from MEG signals that might go undetected if using
more conventional methods. The weaker activities are often
unobtainable since they are covered by sensor or brain noise
sources or a strong primary activity extended by the point spread
of the inverse solution. We validated this problem by extracting
grand average timeseries from multiple ROIs corresponding to
the cluster locations (Supplementary Figs 1 and 2). We found
highly correlated early peak activity visible in most regions.
This is likely just a point spread from the primary response
location. However, the primary concern with ICA methods is
the difficulty to interpret the results. FastICA algorithm used
in the current study acts essentially as a “black box,” and thus,
it is hard to discern what are the exact causes for a partic-
ular component separation. Furthermore, FastICA, as a fixed-
point iteration-based algorithm, is inherently unable to indicate
whether global optimal solution is found (Hyvärinen and Oja
1997). There are possible methods to mitigate this problem (e.g.,
Himberg et al. 2004; Du et al. 2014). However, this problem is less
significant in MEG compared with fMRI analysis, because of the
better MEG signal to noise ratio compared with fMRI resting state
recordings. For the current MEG data, successive test runs of
the ICA with randomized initialization produced very consistent
results.

Spatial ICA is frequently used in fMRI analysis but less in
MEG, probably because MEG-based ICA analysis has largely con-
centrated on sensor space, and the number of sensors provides
few sample points for ICA. Also combining different information
modalities, such as magnetometers and gradiometers, can be
problematic in sensor space. In addition, the MEG signals in
sensor space are highly spatially overlapping, and thus, their
meaningful separation is more challenging compared with the
source space. In the source space, the inverse model has already
spatially filtered the activity from the sensors to the cortical
locations. The results are also simpler to justify physically in
the cortical space compared with the sensor space that possess
multiple factors affecting how each source is seen by a given
sensor.

Using spatial ICA over temporal one is justified because
temporal ICA would assume that the time locked responses from
different cortical regions are temporally independent. We did
tests using temporal ICA and validated that it tends to combine
temporally correlated cortical regions in the somatosensory
areas under single spatially wide component. Spatial ICA
on the other hand does not require temporal independence.
In recent years, spatial ICA has been applied to Hilbert
envelopes derived from cortical oscillatory resting state activity
(Ramkumar et al. 2014), but to our knowledge, there has not
been attempts to apply spatial ICA to evoked responses. For
the proprioceptive evoked MEG data, the spatial ICA appears to
find primarily relatively focal distributions, potentially implying
highly localized approximately dipolar sources in these cortical

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa306#supplementary-data
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locations. However, it is challenging to demonstrate that this is
the case. It is likely that the ICA process cannot always perfectly
separate the sources, meaning that the resulting components
can still be a mixed combination of the true sources. We
cannot assume that a true separation of the original sources
is achievable without the ground truth.

The properties of the distributed inverse solution can affect
the separation significantly. In the current study, we used MNE-
based dSPM method (Dale et al. 2000) because we thought it
would be neutral about the spatiotemporal properties of the
response while offering good dipole location accuracy (for
assessment of MNE methods, see Lin et al. 2006; Hauk et al. 2011).
In comparison, beamformers assume uncorrelated sources in
the first place. This affects the independent component separa-
tion compared with minimum norm solutions because possible
correlated sources are already attenuated by the beamforming.
Another issue is localization errors and biases generated by
the source estimation methods. These errors may shift the
cortical activity distributions and consequently hinder the
correct separation of the respective components. Localization
errors are partially dependent on the specific individual factors,
such as the accuracy of the cortical model, quality of MEG
recording, and co-registration and interindividual variability
in the functional anatomy. Altogether, this means that the
component corresponding to the same functional activity
may localize slightly differently across the individuals. We
assume that these errors were insignificant in the current data.
Nevertheless, it is currently very challenging to meaningfully
validate the ICA decomposition results using physiological data.

It should also be noted that we did not study the inverse
solutions for magnetometers or gradiometers separately but for
their combination. Due to their technical differences, gradiome-
ters and magnetometers measure partly different features of
the cortical signal, which can be considered an advantage, but
have different units and sensitivity scale. The use of different
sensor types may, in some circumstances, distort the result-
ing source estimate. To overcome this issue, use of prestimu-
lus (i.e., baseline) noise covariance for the regularization term
in the minimum-norm estimation effectively spatially whitens
the data and converts the magnetometers and gradiometers
to the same base. In addition, tSSS denoising algorithm that
we applied significantly diminishes the spatial differences of
source topographies estimated with magnetometers and gra-
diometers (Garcés et al. 2017). Taken together, we do not expect
the choice of using both magnetometers and gradiometers to
have significant impact on the reported results.

Despite the methodological limitations, the spatial ICA
detected several consistent separate spatially distinct compo-
nents that were challenging to distinguish from simple averaged
evoked responses. The detected components corresponded well
with the main features of the grand average time courses. Spatial
ICA is a fully data driven method and thus does not require prior
knowledge or model of the response. Therefore, it shows a high
potential as a tool for exploratory MEG studies, as well as for
generating new research hypotheses.

Clustering—Strengths and Weaknesses

In the current study, we chose to first run individual ICA, and
then cluster the extracted components to derive group level
results. Another common approach is to concatenate the data
across all individuals and perform dimensionality reduction and
run ICA to the resulting group-data matrix to derive the group
results. The latter approach is simpler and allows a trivial back
projection to check how each individual contributes to each

component. However, as the data are concatenated in the group
ICA, it assumes that the individuals share the same mixing
matrix. That is, no anatomical, functional, or method derived
variation between the individuals. For this reason, each com-
ponent derived by the group ICA includes only the “common”
part of each individual’s data that can be explained by the
generalized group component. The currently applied clustering
of individual ICA components allows more interindividual vari-
ability in the functional anatomy of the brain, because the com-
ponents are not required to be identical across the individuals.
This is beneficial feature as it is well known that interindividual
variability is inevitable between the brains.

Since the ICA was performed to unaveraged data, featuring
activity that is not stimulus locked, multiple components had
activity that diminished during averaging. While we reduced
several least relevant components from each subject, we were
conservative with this as we did not want to lose information.
These components feature spurious correlations that created
clusters with very little stimulus-related activity. We picked
most relevant clusters manually to mitigate this, but it would
be beneficial if this could be automated in a data driven manner
in the future.

The primary issue with the clustering approach, at least in
the current study, was that the clustering result is sensitive to
the chosen methods and parameters. For example, adjustment
of the clustering threshold or weighting of spatial and temporal
similarity may change the features of the clusters significantly.
To mitigate this issue, we used a data driven approach to define
the clustering threshold. The applied clustering algorithm only
allowed to pick one ICA component from each individual subject
to each cluster. The hierarchical clustering algorithm combines
neighboring clusters according to distance criterion, and if two
clusters contain a component from the same individual, the
clusters cannot be combined. However, some subjects had mul-
tiple ICA components that were relatively close to each other
and probably should have been included in the same cluster to
avoid the generation of multiple clusters from the same physi-
ological activity. It might thus be beneficial to choose a further
reduced number of sufficiently different components form each
individual for the analysis. The current child and adult data
sets had reasonable similarity in the resulting clusters. This is a
promising result about reliability and robustness of the method
and its future use.

We used an arbitrary threshold of two-third of participants
for a cluster to be considered group representative. Ideally each
cluster would have contained a component from each subject,
but this was not practically possible due to the variation of
source estimation and ICA decomposition results. A data driven
method should be developed to decide which clusters to choose
as representative. However, we think that the results using this
simple threshold were reasonable.

Future Prospects

Spatial ICA clustering methodology could potentially be used to
examine populations with neuronal disorders. The brain lesions,
tumors, and other prominent structural deformations are a
major challenge when examining the affected brain function in
the group level. The currently used correlation similarity metric
requires the individual cortices to be morphed to a common
reference brain and thus is not suitable for patients with major
deformities. To overcome this issue, a different metric could be
used without morphing, for example, similarity based on the
anatomical peak location of the component. Such modifications
could further extend the feasibility of the proposed methods to
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patient populations by allowing more interindividual anatomi-
cal variation.

The current experimental design was not aimed for studying
induced responses, for example, in the rolandic rhythms but
the gating effect to the paired stimulus. However, such induced
responses could be linked to the gating behavior and especially
to some of the currently observed more delayed and slower
response clusters. ICA has been previously used to examine the
induced responses in frequency and spatial domains (Hyvärinen
et al. 2010; Ramkumar et al. 2014).

Gating has been shown to be involved in attention control
(e.g., Cheng et al. 2016), but associations and causality between
attention-based gating, paired-stimulus paradigms, and the
respective brain networks are not well established. Therefore,
it may be that selective-attention task during somatosensory
stimulation may alter the functional state of the frontal and
parietal response components, and this may further modulate
somatosensory gating in the SI cortex. According to our
observations of fronto-parietal response clusters, it is possible
that the same cortical network is involved in the gating of
repeated proprioceptive stimuli.

Conclusion
In this study, we applied spatial ICA and clustering of compo-
nents in the source space to proprioceptive MEG responses of
the hand in children and adults. Consistent transient cluster
corresponding to primary SI cortex response was detected and
was accompanied with a variety of transient clusters beyond the
SI cortex, all exhibiting gating behavior in very similar manner.
The gating ratio for proprioception was around 70% in line
with previous findings in other sensory domains. We did not
find age-related differences in gating of the primary responses.
The only visible difference was more prominent proprioceptive
processing at ≥150 ms poststimulus in the adults. Therefore, it
is possible that some aspects of the processing of proprioceptive
stimuli in the brain mature still in the early adulthood. Finally,
we found delayed and prolonged activity components in the
middle frontal areas and posterior parietal areas, which likely
corresponded to more higher order sensorimotor processing.
These components did not visibly react to the second stimulus.
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