
Heliyon 10 (2024) e28609

Available online 24 March 2024
2405-8440/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license
(http://creativecommons.org/licenses/by-nc/4.0/).

Research article 

Artificial neural network (ANN) analysis on thermophysical 
properties of magnetohydrodynamics flow with radiation in an 
arc-shaped enclosure with a rotating cylinder 

T. Bairagi a, Md. Jahid Hasan b, M.N. Hudha a, A.K. Azad c, M.M. Rahman a,* 

a Department of Mathematics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh 
b Department of Mechanical and Production Engineering, Islamic University of Technology, Board Bazar, Gazipur, 1704, Bangladesh 
c Department of Natural Sciences, Islamic University of Technology, Board Bazar, Gazipur, 1704, Bangladesh   

A R T I C L E  I N F O   

Keywords: 
Artificial neural network 
Two-layer feed-forward model 
Lid-driven arc-shaped cavity 
Rotating cylinder 
Water-based Al2O3 nanofluid 

A B S T R A C T   

The objective of this research is to examine the thermophysical features of magnetic parameter 
(Ha) and time step (τ) in a lid-driven cavity using a water-based Al2O3 nanofluid and the efficacy 
of ANN models in accurately predicting the average heat transfer rate. The Galerkin weighted 
residual approach is used to solve a set of dimensionless nonlinear governing equations. The 
Levenberg-Marquardt back propagation technique is used for training ANN using sparse simu
lated data. The findings of the investigation about the flow and thermal fields are shown. 
Furthermore, a comparative study and prediction have been conducted on the impact of 
manipulating factors on the average Nusselt number derived from the numerical heat transfer 
analysis. The findings of the research indicate that, in the absence of magnetohydrodynamics, a 
rise in the Hartmann number resulted in a drop in both the fluid velocity profile and magnitude. 
Conversely, it was observed that the temperature and Nusselt number exhibited an increase under 
these conditions. The mean temperature of the fluid rises as the Hartmann number drops, 
reaching a peak value of 0.114 when Ha = 0. The scenario where Ha = 0, representing the lack of 
magnetohydrodynamics, shows the highest average Nusselt number, whereas the instance with 
Ha = 45 presents the lowest Nusselt number. The ANN model has a high level of accuracy, as seen 
by an MSE value of 0.00069 and a MAE value of 0.0175, resulting in a 99% accuracy rate.   

1. Introduction 

The enhancement of heat transfer in a lid-driven cavity subjected to mixed convection has been a prominent subject of investigation 
in previous decades. This issue is significant in several industrial applications, including microfluidics, heat exchangers, electronics 
cooling, solar energy, and renewable energy systems [1]. Azeez et al. [2] investigated the double-diffusive mixed convection in a 
lid-driven cavity using MWCNT/water varying the Reynolds number (Re), Richardson number (Re), Hartmann number (Ha), volume 
fractions, etc. They observed that the heat and mass transfer characteristics improve with the augment of Ri. The numerical inves
tigation conducted by Alsabery et al. [3] examined the impact of partial slip on a square cavity, using aluminum oxide nanofluid. They 
observed that an augment in the Ri corresponds to an increase in the Nusselt number (Nu). The study conducted by Kashyap and Dass 
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[4] examined the impact of cavity inclination on mixed convection, using various Richardson values. The researchers’ results provide 
clarification that the angle of inclination has a significant impact on both entropy formation and heat transport. Yaseen et al. [5] 
assessed the effects of lid-driven flow on mixed convection by using the finite element approach and manipulating the Richardson and 
Reynolds numbers. Their findings indicate that there is an augment in the heat transmission rate ranging from 4.5% to 28% across 
various wall motions. Yeasmin et al. [6] examined the thermal and fluid phenomena occurring in an L-shaped lid-driven hollow. They 
specifically investigated the use of kerosene-alumina nanofluid and used the Galerkin residual approach for their analysis. The findings 
of their study demonstrated a favorable correlation between the Reynolds number and Darcy number, and the temperature distribution 
and fluid velocity profile inside the cavity. 

Nanofluids are widely used in different industries for enhancing the heat transfer rate and have become one of the most popular 
topics in research. It has become trendy due to its high thermal conductivity and energy efficiency. Zang et al. [7] did a study on the 

Nomenclature 

В0 Magnetic field induction (T) 
Cp Specific heat at constant pressure (Jkg− 1K− 1) 
h Convective heat transfer coefficient (Wm− 2K− 1) 
H Length of the enclosure (m) 
k Thermal conductivity of the material (Wm− 1K− 1) 
p Dimensional pressure (Nm− 2) 
ψ Stream function 
t Dimensional time (s) 
Pr Prandtl number 
Ri Richardson number 
Rd Radiation parameter 

Greek Symbols 
α Thermal diffusivity (m2s− 1) 
β Co-efficient of thermal expansion (K− 1) 
ρ Density of the material (kgm− 3) 
σ Electrical conductivity (Ω− 1m− 1) 
σe Stefan-Boltzmann constant 
κ Permeable parameter 
θ Dimensional temperature (K) 
Θ Dimensionless temperature 
φ Solid volume fraction 
μ Dynamic viscosity of the fluid (kgm− 1s− 1) 
ω0 Dimensional rotation speed of the cylinder (rad/s) 
qR Radiative heat flux 
P Dimensionless pressure 
x, y Dimensional cartesian coordinates 
X, Y Dimensionless cartesian coordinates 
u, v Dimensional velocity components (ms− 1) 
U, V Dimensionless velocity components 
g Acceleration due to gravity (ms− 1) 
Nu Nusselt number 
Gr Grashoff number 
Ha Hartmann number 
Re Reynolds number 
ω Dimensionless rotation speed of the cylinder 
ν Kinematic viscosity of the fluid (m2s− 1) 
τ Dimensionless time (s) 

Subscripts 
av average 
f fluid 
h hot 
c cold 
nf nanofluid 
p solid particle 
s solid  
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mixed convection in a semi-elliptic cavity flow under mixed convection using water-silver nanofluid varying the nanofluid concen
trations and Grashoff number. They concluded that with the rise of nanofluid concentrations, the heat transfer rate shoots up 
significantly. On top of that, the temperature and velocity profile also rise due to the higher Grashoff number. Wang and Xu [8] 
examined the mixed convection flow in an inclined cavity using hybrid nanofluids by the Coiflet wavelet-homotopy method. They 
noticed that the hybrid nanofluids perform better than the conventional fluids in terms of thermal enhancement. Hussain et al. [9] 
carried out the magneto-bioconvection flow in a porous cavity using hybrid nanofluids using the Galerkin finite element method. They 
declared that the thermal performance lessens with the augment of Darcy number. Batool et al. [10] inspected the thermal and mass 
transport in an enclosure using a micropolar nanofluid by finite volume approach. Ahmed et al. [11] built a model of convective 
transport for obtaining heat transfer coefficients for hybrid nanofluid. They successfully modeled for getting the Nusselt number by 
quadratic multiple regression where the thermophoretic impact is more considered than the Brownian motion. Das et al. [12] con
ducted research on mixed convective flow in a vertical channel, where they noticed that as the volume proportion of nanoparticles 
increased, the rate of heat transfer also increased. Furthermore, they discovered that the rate of fluid flow increases as the Rayleigh 
number increases. 

In cavity flow, radiation plays a crucial role in augmenting the heat transfer rate under different conditions. Due to the complex 
boundary conditions and real-life situations, radiation is considered for modeling heat transfer calculations. The work done by Farooq 
et al. [13] investigated the flow of a nanofluid, taking into account nonlinear radiation in the presence of magnetohydrodynamics. The 
researchers concluded that the radiation parameter has a role in augmenting the thickness of the thermal barrier layer. The laminar 
flow in a vertical channel with variable radiation parameters was explored by Mostafazadeh and Toghraie [14]. The investigation 
conducted by Sheikholeslami et al. [15] assessed the radiation impact inside an enclosure, including an elliptical cylinder under 
natural convection. The study used the finite element approach and specifically focused on the utilization of Fe3O4 nanofluid. The 
research revealed a positive correlation between the Nu and the radiation parameters, indicating that a rise in the latter leads to an 
augment in the former. In a separate investigation, Sheikholeslami [16] conducted an assessment of the magnetic influence within the 
context of radiation and natural convection. The author demonstrated that the thermal transport shoots up as the radiation parameters 
and buoyancy forces increase. Soomro et al. [17] worked on the effects of nonlinear radiation in a moving slip surface using the finite 
difference technique. They discovered that both the Nu and Sh go up with the rise of the thermal radiation parameter. 

Magnetohydrodynamics is a notable consideration while working with the cavity flow under various conditions such as mixed 
convection, radiation, etc. Barnoon et al. [18] did a study on a cavity under mixed convection and magnetohydrodynamics. The results 
revealed that the thermal performance shoots up with the rise of solid volume fraction and the reduction of the Ha and Ri. Çolak et al. 
[19] examined the impact of MHD in a chamfered cavity using OpenFOAM varying the Ri, Ha, and magnetic source inclination angle. 
Korei et al. [20] inspected the magnetic effect in a cavity where Al2O3–Cu/water hybrid nanofluid is taken as fluid considering the 
variable Ri, Ha, and concentrations. They observed that the inclination angle highly affects the heat transfer performance in the cavity. 
Nasrin and Parvin [21] evaluated the unsteady mixed convection considering the magnetic impact in a cavity with a sinusoidal wavy 
wall. They concluded that the Hartmann number and Reyleigh number act opposite in terms of thermal performance and fluid 
phenomena. Selimefendigil and Öztop [22] considered an L-shaped cavity under MHD mixed convection with the existence of external 
heat generations varying the Reighleigh number, Ha, Ri, inclination angle, and aspect ratio. The results elucidated that the magnetic 
inclination angle greatly affects changing the thermal transport, considering other parameters to be constant. Das et al. [23] worked on 
the unsteady magneto-buoyancy driven flow using eater ethylene glycol nanofluid. They found that Hall currents tend to enhance the 
vertical fluid flow and reduce the magnitude of the fluid velocity in the cross-flow direction. In another study [24], they worked on the 
gyrating channel filled with reactive second-grade nanofluid and declared that the Hall currents have a substantial impact on the flow 
dynamics and thermal characteristics of the gyratory motion. Shafiq et al. [25] assessed the bioconvection flow of second-grade 
nanofluid with gyrotactic microorganisms using Artificial Neural Network (ANN). They observed that when the thermophoretic 
parameter is big, both the concentration of nanoparticles and the distribution of temperature rise. 

The rotational movement of mechanical parts in a chamber or machinery region is usually seen in heat transfer applications. Many 
researchers consider rotating cylinders in the cavity flow to assess the additional impact of the movement of the fluid along with the 
moving lid. Chatterjee et al. [26] did a study on a cavity using Cu-water nanofluid with a rotating cylinder at the center varying the 
Richardson number, rotational speed, and Grashoff number. They concluded that the heat transfer is highly dependent upon the 
rotational speed of the moving cylinder. Kareem and Gao [27] inspected the mixed convective heat transfer phenomena in a cavity 
with a rotating cylinder for different Reynolds numbers using Large Eddy Simulation (LES). They also declared that the heat transfer 
performance depends on the cylinder’s rotational speed or the Reynolds number. Khanafer and Aithal [28] evaluated the thermal 
performance and fluid flow phenomena in a lid-driven cavity with a rotational cylinder under mixed convection. They noticed that the 
Nu rises with the augment of angular velocity and the highest thermal transport is found when there is the rotational cylinder is placed 
inside the cavity. Imtiaz et al. [29] assessed the influence of heat generation in a cavity under mixed convection considering a rotating 
cylinder changing the Re, Ri, and Grashoff numbers. They noticed that when the velocity of the lid rises, the effect of heat generation 
on the cavity reduces, resulting in lower temperature distribution. In a separate investigation, Selimefendigil and Oztop [30] worked 
on mixed convective cavity flow considering two rotating cylinders using the finite element method varying the Reynolds number, 
angular velocity, and diameter ratio. They observe that the moving cylinders augment the heat transfer rate by 181.5% in the cavity 
compared to the case of the non-rotating cylinders. 

Artificial neural network (ANN) analysis has recently been introduced in order to optimize the solution [31–35]. Various re
searchers implemented ANN to solve the problems of heat transfer and fluid flow. Çolak et al. [36] worked on the reliability study of 
the Rayleigh distribution and inverse power law to implement a new model of ANN. Shafiq et al. [37] investigated the Dar
cy–Forchheimer Tangent hyperbolic flow in a cylindrical surface utilizing ANN. The rheological features are examined for both 
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Newtonian and tangent hyperbolic fluid scenarios in order to have a better understanding of the results. Shafiq et al. [38] analyzed the 
distribution’s behaviour by employing the Maximum Likelihood Estimation (MLE) technique to estimate its parameters. Additionally, 
the study aims to identify the most effective ANN method by comparing it to the maximum likelihood estimation method. The ANN 
method will be applied to actual data from breast cancer patients to determine survival rates, risk factors, and other survival study 
functions associated with the log-logistic distribution. Sindhu et al. [39] investigated the multilayer ANN with Bayesian regularization 
modelling for reliability metrics of the generalized exponential model. Several studies have been carried out analyzing the problems on 
SWCNT nanofluid, Williamson nanofluid, Ree–Eyring fluid with chemical reaction, exponentiated Weibull distribution etc., using the 
ANN algorithm [40–43]. 

The literature review reveals that numerous studies have been conducted on mixed convective flow in a lid-driven cavity, involving 
MHD, nanofluids, radiation, and a rotating cylinder. However, no research has been conducted in which the ANN model is used to 
predict the average heat transfer rate due to the thermophysical properties of magnetohydrodynamics on an arc-shaped cavity with a 
rotating cylinder using nanofluid and radiative heat flux. This study aims to assess the impacts of MHD on heat transfer and fluid flow 
phenomena using a feed-forward back propagation neural network model. A comparative study and prediction of the average Nusselt 
number, obtained from a numerical study, were conducted by using a neural network model to investigate the influence of regulating 
factors. The Levenberg-Marquardt backpropagation algorithm is employed for training an ANN using sparse simulated data. The ANN 
architecture consists of two hidden layers, with the first hidden layer containing 15 neurons and the second hidden layer containing 
five neurons. The activation function used for the first hidden layer is the rectified linear unit (ReLU), while the second hidden layer 
utilizes the Tangent Hyperbolic (Tanh) activation function. MHD flow with radiation in an arc-shaped cage with a spinning cylinder 
has several engineering and industrial uses. One example is designing and optimizing electromagnetic pumps for liquid metal cir
culation in metallurgical industries. Heat transmission and fluid flow are improved by MHD. In the cooling systems of advanced 
nuclear reactors, magnetic fields, fluid flow, and thermal radiation affect reactor efficiency and safety. Aerospace technology depends 
on studying MHD flow and radiation in arc-shaped enclosures with spinning cylinders. This research affects magnetohydrodynamic 
thrust-producing spacecraft propulsion systems. Understanding and using these complex fluid dynamics phenomena in various in
dustrial and technological domains can improve engineering efficiency, safety, and performance. The findings of this research will 
contribute to the development of mechanical systems that include the principles of heat transfer in the presence of mixed convection, 
radiation, and magnetohydrodynamics. This discovery has the potential to greatly help the fields of heat transfer, nanomaterials, 
industrial components design, and the microfluidics community. 

2. Mathematical specification 

2.1. Physical model 

The physical representation of this problem entails a square cavity with a length H that is filled with a nanofluid composed of water 
and Al2O3, as seen in Fig. 1. The flow under consideration is characterized as a Newtonian unstable laminar mixed convection flow, 

Fig. 1. Physical model of the body with boundary conditions and dimensions.  
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taking into account the influence of a magnetic field and the radiative properties of the medium. The water molecules and Al2O3 
nanoparticle forms exhibit a uniform and consistent morphology and size, and are in a state of thermal equilibrium, with no relative 
motion or slide occurring between the two mediums. The lower wall of the hollow exhibits an arc form with a radius of H. The virtual 

center of the arc is positioned equidistantly from both of the bottom corners of the cavity. So, the virtual center of the arc is, 
(

H
2, −

H
̅̅
3

√

2

)
, 

as mentioned before the radius of the arc is H. A conductive solid cylinder of diameter is placed in the middle of the cavity and un
dergoes counterclockwise rotation with rotational speed ω = 5. The top wall is kept at a constant low temperature (θc), moving with a 
uniform velocity of u0, all other walls are stationary. The bottom arc-shaped wall is kept at a constant high temperature (θh) and both 
sidewalls are thermally insulated (θh > θc). A homogeneous magnetic field is applied to the right-side wall of the cavity, with the 
magnetic field lines oriented perpendicular to the right wall in a leftward orientation. 

2.2. Governing equations 

The governing equations used for this numerical study have been given as follows based on [44]: 
Continuity equation 

ρnf (∇ ⋅ u)= 0 (1) 

Momentum equations 

ρnf

{
∂u
∂t

+(u ⋅∇)u
}

= − ∇ ⋅ p+ μnf∇
2u + F (2) 

Energy equation for nanofluid 

(
ρCp
)

nf

(
∂θ
∂t

+ u ⋅∇θ
)

= knf∇
2θ − ∇ ⋅ qRI (3) 

Equation for solid region 

∂θs

∂t
= ks∇

2θs (4)  

Where u = (u, v)TF = (0, (ρβ)nf g(θ − θc) − σnf B0
2v)TI = (̂i, ĵ)T and ks is the thermal conductivity of the solid cylinder. 

With boundary conditions 

t = 0, u = v = θ = p = 0

t > 0, u = v = 0, θ = θh along
(

x − H /2

)2

+

(

y +
̅̅̅
3

√
H /2

)2

= H2, [y ≥ 0]

u = u0, v = 0, θ = θc along y = H; 0 ≤ x ≤ H

u = v =
∂θ
∂x

= 0, along x = 0, 1; 0 ≤ y ≤ H

At solid (cylinder) fluid interface, u = − ω0 sin θ, v = ω0 cos θ; kf
∂θ
∂n

= ks
∂θs

∂n

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)  

2.3. Dimensional analysis 

To minimize the computation cost and to introduce dimensionless parameters we’ve used the proper scaling technique to convert 
the equations from (1) to (5) into dimensionless form. 

The scaling techniques are 

X =
x
H
, Y =

y
H
, τ =

u0t
H
,U =

u
u0
,V =

v
u0
,P =

p
ρf u0

2,Θ =
θ − θc

θh − θc
,Θs =

θs − θc

θh − θc
,ω =

ω0

2π (6)  

2.4. Approximation of the radiative term 

The approximation of the term for the radiation effect was done according to the following procedure [45]. 

For
∂qR

∂x
, qR = −

4σe

3βR

∂θ4

∂x

and for,
∂qR

∂y
, qR = −

4σe

3βR

∂θ4

∂y

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(7) 
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Also, θ4 was approximated by Stefan’s law of radiation. 

θ4 ≅ 4θ3
cθ − 3θ4

c (8) 

The radiation parameter used as 

Rd =
4σeθ3

c

βRk
(9) 

Using the aforementioned transformations, the dimensionless set of governing equations has been reduced to the following form. 
Continuity equation 

∂U
∂X

+
∂V
∂Y

= 0 (10) 

Momentum equations 

∂U
∂τ +U

∂U
∂X

+V
∂U
∂Y

= −
ρf

ρnf

∂P
∂X

+
υnf

υf Re

(
∂2U
∂X2 +

∂2U
∂Y2

)

(11)  

∂V
∂τ +U

∂V
∂X

+V
∂V
∂Y

= −
ρf

ρnf

∂P
∂Y

+
υnf

υf Re

(
∂2V
∂X2 +

∂2V
∂Y2

)

+
(ρβ)nf

ρnf βf
RiΘ −

σnf ρf

σf ρnf

Ha2V
Re

(12) 

Energy equation for nanofluid 

∂Θ
∂τ +U

∂Θ
∂X

+V
∂Θ
∂Y

=
αnf

αf RePr

(

1+
4kf

3knf
Rd
)(

∂2Θ
∂X2 +

∂2Θ
∂Y2

)

(13) 

Energy equation for solid cylinder 

∂Θs

∂τ − K
(

∂2Θs

∂X2 +
∂2Θs

∂Y2

)

= 0 (14)  

Where K is the ratio of thermal conductivity of solid cylinder to nanofluid K = ks
knf

. 

2.5. Non-dimensional boundary conditions 

Now using the same transformation technique, the dimensionless boundary conditions are transformed as 

τ = 0,U = V = Θ = P = 0

τ > 0,U = V = 0,Θ = 1 along bottom wall of the cavity

U = 1,V = Θ = 0, along moving Lid

U = V =
∂Θ
∂X

= 0, at the sidewalls

At the solid(cylinder) fluid interface,

U = − ω(Y − 0.5),V = ω(X − 0.5),
∂Θ
∂N

= K
∂Θs

∂N
,K =

ks

knf

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15)  

2.6. Nanofluid and its properties 

These thermophysical properties of the nanofluid are considered as below according to Hasib et al. [46] and presented in Table 1. 
The properties of nanofluids that are used in equations (10)–(14) will be used according to the following relations. 

Table 1 
Thermophysical properties of the base fluid and nanoparticles [46].  

Properties Base fluid (Water) Solid Nanoparticle (AL2O3) Unit 

ρ 997.1 3970 kgm− 3 

Cp 4179 765 Jkg− 1K− 1 

k 0.613 40 Wm− 1K− 1 

β 21× 10− 5 85× 10− 7 K− 1 

μ 0.001003 – kgm− 1s− 1 

σ 0.05 1× 10− 10 m2s− 1  
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The density, specific heat, and viscosity of the nanofluids are used according to the relations [47]. 

ρnf =(1 − φ)ρf + φρp (16)  

(
ρCp
)

nf =(1 − φ)
(
ρCp
)

f + φ
(
ρCp
)

p (17)  

μnf = μnf
(
123φ2 + 7.3φ+ 1

)
(18) 

The other properties of the nanofluid were taken as below [48]. 

(ρβ)nf =(1 − φ)(ρβ)f + φ(ρβ)p − φ(1 − φ)
(
ρp − ρf

)(
βp − βf

)
(19)  

σnf =

(

1+
3
(
σp − σf

)
φ

(
σp + 2σf

)
−
(
σp − σf

)
φ

)

σf (20) 

The thermal conductivity of nanofluid is used according to the Maxwell model [49]. 

knf = kf

(
kp + 2kf + 2φ

(
kp − kf

)

kp + 2kf − φ
(
kp − kf

)

)

(21)  

2.7. Physical and hydrodynamic properties 

Average Nusselt numbers are calculated over the arc-shaped heater and defined as: [50]. 

Nuavg = −

(
knf

kf
+

4
3

Rd
)∫

S

∂Θ
∂N

dS (22) 

The average velocity of the fluid is calculated as [51]. 

Vavg =

∫∫

A

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
U2 + V2

√

A
dA (23) 

The average temperature of the domain is calculated as [51]. 

Θavg =

∫∫

A

Θ
A

dA (24) 

To construct the graphs of streamlines, the value of the stream function Ψ(X,Y) has been used which is defined as, in non- 
dimensional form U = ∂Ψ

∂Y,V = − ∂Ψ
∂X [48]. 

The positive value Ψ(X,Y) indicates counterclockwise rotation of the flow and the negative value Ψ(X,Y) indicates clockwise 
rotation of the flow of nanofluid. 

3. Numerical methodology 

3.1. Finite element algorithm 

In this study, the algorithm utilized the Newton-Raphson method. To derive the discrete forms of the continuity, momentum, and 
energy equations, both a method and an algorithm were applied. The procedure was then employed to ascertain the values of velocity 
and temperature based on these equations. Predicting the initial values of the variables was crucial for determining potential out
comes. Following the calculations, numerical results were obtained, meeting the convergence criteria. The flowchart presented in 
Fig. 2 depicts the straightforward algorithm employed to solve this method. 

3.2. Grid test 

To decrease computing expense, non-uniform triangular elements were used to discretize the domain. Initially, a set of 882 
triangular elements was taken into consideration, and thereafter, the number of elements was gradually augmented. The Nusselt 
number and temperature of the domain were computed for the augmented number of elements. The outcome is shown in Fig. 3. Based 
on the aforementioned study, it was determined that a total of 21,116 elements is the optimal amount for minimizing computing costs 
while still resulting in insignificant changes to the outcome. Fig. 4 depicts the process of generating a mesh for the physical model. 

3.3. Code validation 

To assess the precision, the existing numerical code is compared with the previously published research conducted by Khanafer and 
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Aithal [28]. This study aims to compare the characteristics of streamlines and isotherms, and the local Nu number along the bottom 
surface, in a cavity with a rotating cylinder under mixed convection conditions. Re is set to 100, Ri is set to 1, and the Prandtl number is 
set to 0.7. The findings are shown in Fig. 5. The comparison of the findings demonstrates a level of accuracy that is deemed adequate. 
The Nu number comparison, is carried out for several Ri = 0.1, 1, 5, 10, and two rotational speeds (ω = 10 and − 10), and other 
parameters were kept fixed. This is illustrated by a line graph in Fig. 6, which shows the fine accuracy of the result. 

4. Results and discussions 

This portion discusses the impact of Ha on thermal performance and fluid flow in the square cavity with varying dimensionless time 
considering the constant Prandtl number (6.82), Reynolds number (100), Richardson number (1), solid volume fraction (4%), rota
tional speed of the cylinder (− 5), and Radiation number (1). Different graphs, contours, and visualizations have been plotted such as 
streamlines, isotherms, average fluid velocity, average fluid temperature, and average Nusselt number. 

4.1. Effect on streamlines 

Fig. 7 depicts the velocity streamlines with magnitudes for four different Hartmann numbers (Ha = 0, 15, 30, 45) and various 
dimensionless times (0.1, 1, 2). When Ha = 0, no magnetohydrodynamics were considered, resulting in scattered velocity streamlines 
across the three dimensionless times. At dimensionless time = 0.1, the velocity profile created a cylindrical adjacent region, and a wake 
region appeared at the cavity’s top side. However, with an increase in dimensionless time, the wake region was eliminated due to 
cylindrical rotations, and the velocity profiles were also scattered. A similar phenomenon was observed for Ha = 15 and 30, but the 

Fig. 2. Flowchart of the computational procedure.  
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wake region remained for all dimensionless times in both cases due to the hindrance of fluid velocity flow by magnetohydrodynamics. 
The higher the presence of magnetohydrodynamics, the lower the velocity profile strength, resulting in the wake region staying in 
these cases. For Ha = 45, where the highest magnetohydrodynamics were present, the velocity profile effect was fragile. The wake 
region was present for all dimensionless times, and two wake regions with different magnitudes were formed at dimensionless times 1 
and 2, situated one inside another. The presence of a magnetic field disrupts the fluid flow and has a significant impact on heat transfer, 
too. 

4.2. Effect on isotherm 

Heat is transmitted from the bottom curved wall to the fluid inside the cavity as a result of the existence of heat flux. The tem
perature distribution is shown by isotherm plots for different scenarios, as seen in Fig. 8. At a dimensionless time of 0.1, the tem
perature distribution is seen in the vicinity of the neighboring section of the bottom curved wall for all Hartmann number scenarios. 
However, the differentiation is not readily discernible in this particular dimensionless instance. However, the growth in dimensionless 
time reveals considerable effects in other circumstances without dimensions. As the spinning cylinder undergoes counterclockwise 
motion, the temperature distribution becomes more pronounced on the right side of the chamber. At a dimensionless time of 1, a little 
shoot emerges from the right corner of the hollow and thereafter ascends along the neighboring wall of the revolving cylinder located 

Fig. 3. Grid Sensitivity test.  

Fig. 4. Mesh generation of the physical model.  
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at the center of the cavity. These effects were seen in all examples of Hartmann numbers examined in this investigation. At a 
dimensionless time of 2, the temperature distribution attains its maximum value and propagates along the direction of fluid flow. The 
presence of magnetohydrodynamics is also apparent in the observed temperature differential. The relationship between the magnitude 
of the Hartmann number and the temperature distribution is such that a greater magnitude of the Hartmann number corresponds to 
lower temperature distributions. Consequently, the temperature distribution with the greatest magnitude is seen when magnetohy
drodynamics is absent (Ha = 0) at a certain dimensionless time, and the lowest temperature distribution is observed when Ha = 45. The 
hindrance of fluid flow caused by magnetohydrodynamics leads to a decrease in heat dissipation inside the cavity. 

4.3. Effect on average velocity of fluid for different Hartmann Number 

The present investigation involves the use of a rotating cylinder positioned at the central region of the hollow, which undergoes 
continuous rotation at a constant velocity. Additionally, a moving lid is positioned at the upper wall. Therefore, the motion of the fluid 
may be characterized by its velocity. Fig. 9 illustrates the average velocity of the fluid inside the cavity is notably influenced by 
magnetohydrodynamics. Fig. 9 (a) presents a graphical representation showcasing the influence of Ha on the velocity at various 
dimensionless time intervals ranging from 0 to 2. A notable observation is that there is a substantial drop in the average fluid velocity as 
Ha rises. The adverse effects on the fluid dynamics inside the cavity may be attributed to the influence of magnetohydrodynamics. The 
scenario in which there is no magnetic influence (Ha = 0) has the greatest mean fluid velocity, measuring 0.82 in magnitude at a 
dimensionless time of 2. The scenario using Ha = 45 exhibits the minimum average velocity, measuring 0.28 in magnitude at a 
dimensionless duration of 2. The magnitudes corresponding to Hartmann numbers of 30 and 15 are 0.32 and 0.55, respectively. In 
addition, the mean fluid velocity experiences an upward trend as the dimensionless time grows over all Hartmann number scenarios. 
The differentiation of the average magnitude of fluid velocity for the four examples is not possible until dimensionless time 0.1. 
Nevertheless, the size exhibits a positive correlation with the augmentation of dimensionless time. For the scenarios where Ha = 45 
and Ha = 30, the mean fluid velocity stays consistent beyond a certain dimensionless period. Nevertheless, when considering Ha = 15 
and Ha = 0, it is shown that the average velocity exhibits a continuous rise as dimensionless time progresses. This phenomenon may be 
attributed to the inverse relationship between the Hartmann number and the level of impediment experienced by the fluid flow. 
Therefore, it may be concluded that the scenario where Ha = 0 exhibits the greatest mean fluid velocity. Fig. 9 (b) illustrates the same 
occurrence using an alternative visualization approach using a three-dimensional plot. Additionally, the average velocity of the fluid 
falls as the Hartmann number increases, whereas it increases significantly when the dimensionless time increases. 

Fig. 5. Comparison of isotherms and streamlines with the previous study done by Khanafer and Aithal [26].  
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4.4. Average temperature of the fluid for different hartmann number 

The non-uniform temperature distribution inside the cavity is attributed to the existence of a heat source, which is further affected 
by the presence of a centrally positioned revolving cylinder. Fig. 10 illustrates the influence of magnetohydrodynamics on the mean 
fluid temperature inside the cavity, as a function of dimensionless time, across various Hartmann number scenarios. Fig. 10 (a) il
lustrates the graphical representation of the average fluid temperature plotted against dimensionless time for four distinct situations of 
Hartmann number. The data reveals that there is a positive correlation between the fluid temperature and the dimensionless time. This 
correlation becomes more pronounced with larger dimensionless numbers for all the instances of Hartmann number. Hence, Fig. 10 (b) 
provides a magnified depiction of the graph, specifically emphasizing the situations with greater dimensionless numbers. The picture 
demonstrates a clear inverse relationship between the average fluid temperature and Ha. Specifically, as Ha lessens, the average fluid 
temperature increases. Because when there is lesser impact of magnetic field the fluid tends to flow freely inside the cavity and 
therefore the heat can dissipate easily. Notably, the example with Ha = 0 exhibits the highest average fluid temperature, measuring 
0.114 in magnitude. The instance with a Ha = 15 exhibits the second-highest average fluid temperature, while the case with a Ha = 45 
demonstrates the lowest average fluid temperature. The decrease in fluid temperature seen at higher Hartmann numbers may be 

Fig. 6. Comparison of Local Nusselt number with the study of Khanafer and Aithal [26] and present study.  
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ascribed to the impediment imposed by magnetohydrodynamics, leading to a reduction in fluid velocity and influencing the dissipation 
of heat inside the cavity. Furthermore, Fig. 10 (c) illustrates a three-dimensional plot that depicts the same pattern, whereby the 
average fluid temperature augments as the dimensionless time increases and the Hartmann number decreases. 

4.5. Effect on Average Nusselt number for different Hartmann Number 

The Nusselt number is a non-dimensional heat transfer metric that establishes a relationship between the convective and the 
conductive heat transfer rate over a boundary layer. It refers to the convective-to-conductive heat transfer ratio. Fig. 11 depicts the 
impact of magnetohydrodynamics on the mean Nu inside the cavity across various Hartmann number scenarios, with dimensionless 
time serving as the independent variable. Fig. 11 (a) displays a graph depicting the average Nu as a function of dimensionless time for 
four distinct Hartmann number scenarios. Nu exhibits a decreasing trend as the dimensionless time increases across all the Hartmann 
number scenarios. This is because the magnetic field hinders the fluid flow and heat dissipation. Furthermore, when the Hartmann 
number increases, there is a corresponding drop in Nu. Therefore, the situation with Ha = 0, where magnetohydrodynamics is absent, 
exhibits the greatest average Nusselt number, while the case with Ha = 45 demonstrates the lowest Nusselt number. Distinguishing the 

Fig. 7. Effect of Hartmann Number on Streamlines at different dimensionless times.  
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Fig. 8. Effect of Hartmann number on isotherms at different dimensionless time.  

Fig. 9. Average velocity of fluid for different Hartmann number over dimensionless time.  
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variations among the Hartmann number situations becomes challenging during lower dimensionless timeframes. Nevertheless, beyond 
a dimensionless duration of 0.75, the disparities become more apparent. For every 0.1 s increase in time, heat transfer rate decreases 
exponentially. The amount of Nuav can be modeled by the at Ha = 0, Nu = 47.674e− 0.252τ, at Ha = 15, Nu = 35.528e− 0.187τ, at Ha = 30, 
Nu = 30.201e− 0.154τ, and at Ha = 45, Nu = 29.681e− 0.151τ. On the other hand, as Ha increases from 0 to 15, Nuav decreases by 
approximately 3.82%. From 15 to 30, it decreases by about 2.23%, and from 30 to 45, it decreases by about 0.05%. The 3D figure 

Fig. 10. Average temperature of the fluid for different Hartman number over the dimensionless time τ  

Fig. 11. Average Nusselt number for different Hartmann number over dimensionless time.  

T. Bairagi et al.                                                                                                                                                                                                         



Heliyon 10 (2024) e28609

15

Fig. 12. ANN diagram (top) and number of parameters solved in ANN model (bottom).  
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shown in Fig. 11 (b) exhibits similar patterns, indicating that Nu declines as the dimensionless number rises and Ha increases. 

5. Artificial neural network analysis 

An artificial neural network (ANN) is a computer framework that emulates the functioning of the human brain, enabling the 
modeling of complex patterns and the resolution of prediction problems. The process of establishing a relationship between a set of 
numerical inputs and a corresponding set of numerical objectives is accomplished via the use of a neural network. An ANN may possess 
a range of architectural configurations, including feed-forward, recurrent, multi-layer, or single-layer designs. The ANN structure 
shown in Fig. 12 has three layers: the input layer, the hidden layer, and the output layer. The used model was a feed-forward back
propagation neural network, since feed-forward networks are well-suited for solving finite input-output mapping problems. To forecast 
the output variable (Nus), a dataset consisting of 6144 entries for the six input variables (Ra, Ha, φ, Ri, τ, ω) is used. 

The figure presented depicts the schematic graph of the Artificial Neural Network (ANN) model, located at the top, and the number 
of parameters that have been resolved inside each layer of the ANN model is illustrated in the bottom graph. This investigation 
involved the use of two hidden layers with the objective of enhancing the functionality of the hidden layer. The second concealed layer 
comprises five neurons, whereas the first concealed layer comprises fifteen neurons. In light of the lack of a predetermined approach to 
determining the ideal number of hidden layers. Two hidden layers are used inside this particular framework to enhance operational 
effectiveness and address the complexity of the model. 

5.1. Training, testing, and finding of the model 

In this study, we used the total number of observations (6144), 4300 observations, or 70% of the total data, are used as train data, 
while 1844 observations, or 30% of the data, are used as test data. For this study, a wide range of parameters were taken into 
consideration to analyze of the behavior of the Nusselt number. Here, the values of the variables were considered as Ha (10, 20, 30, 40), 
Rd (1, 2, 3.5, 5), φ (0.01, 0.05, 0.1, 0.15), ω (1, 2, 5, 10), Ri (0.01, 1, 5, 10), τ (0, 0.4, 0.8, 1.2, 1.6, 2), and others parameters were kept 
fixed. The network is employed to predict Nuavg and evaluate model accuracy using the mean square error (MSE), mean absolute error 
(MAE), and mean absolute percentage error (MAPE). The network under consideration is trained using the Levenberg-Marquardt 
backpropagation technique, as described in Ref. [52]. This research examines the use of the Rectified Linear Unit (ReLU) as the 
transfer function for the first hidden layers, the Tangent Hyperbolic function as the transfer function for the second hidden levels, and a 
linear transfer function for the output layer. 

MSE=
1
n
∑n

i=1
(Nus − NuA)

2 (25)  

MAE=

∑n

i=1
|Nus − NuA|

n
(26)  

MAPE=
1
n

∑n

i=1

⃒
⃒
⃒
⃒
Nus − NuA

Nus

⃒
⃒
⃒
⃒ (27)  

ReLU : f (x)=max(0, x) (28)  

Tanh : tanh(x)=
2

1 + e− 2x − 1 (29)  

Here, NuA stands for ANN Nusselt (predicted output data), NuS for simulated Nusselt (input data), and n for data size or number of 
observations. 

The activation functions that were employed in the hidden layers are found in equations (28) and (29) according to Sharma et al. 
[53], while the MSE, MAE, and MAPE are found in equations (25)–(27) based on Rana et al. [54]. 

Fig. 13 illustrates the relationship between the loss function, specifically the mean absolute error (MAE), and the number of epochs. 
In this instance, the model underwent initial training with a batch size of 20 and a total of 100 epochs. However, according to the 
preceding image, it is evident that a mere 15–20 epochs of data would suffice. Finally, a total of 20 epochs were used to predict the 
data. The Mean Squared Error (MSE) value is calculated to be 0.00069, while the Mean Absolute Error (MAE) value is determined to be 
0.0175. Furthermore, the accuracy of the model, as measured by the Mean Absolute Percentage Error (MAPE), is 99.0225, equivalent 
to 99.02%. The following data is a random selection of predicted test results. Table 2 presents the projected data and the Absolute 
Percentage Error (APE) associated with the forecasted data. Furthermore, the data supplied is presented randomly and is considered to 
be test data. 

6. Conclusions 

The primary objective of this computational study was to analyze the heat transfer mechanisms and fluid dynamics occurring in an 
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arc-shaped cavity with a lid-driven motion, where the cavity was filled with a nanofluid consisting of water and Al2O3 nanoparticles. 
The research investigated the effect of manipulating the Hartmann number while keeping the Richardson number, Radiation 
parameter, solid volume percentage, and Reynolds number constant. Furthermore, a cylindrical object was positioned in the central 
region of the hollow. The Levenberg-Marquardt backpropagation method is used to train artificial neural networks (ANNs) utilizing 
sparse simulated data. The findings of the research are shown via the use of streamlines, isotherms, mean fluid velocity, mean fluid 
temperature, and mean Nusselt number. The Hartmann number was changed over four distinct values (Ha = 0, 15, 30, 45), whereas 
the dimensionless time was varied across three distinct values (τ = 0.1, 1, 2). The primary outcomes of this investigation are succinctly 
outlined as follows.  

• The velocity profile exhibits a positive correlation with the augmentation of dimensionless time. Moreover, an upper cavity zone 
experiences the formation of a wake region of greater magnitude as the Ha augments. The strength of the velocity profile diminishes 
as the intensity of magnetohydrodynamics rises.  

• The temperature distribution lessens as the size of the Hartmann number augments as a result of the impediment to fluid motion. 
The temperature distribution exhibits its maximum value when the magnetohydrodynamics parameter (Ha) is set to zero, at a 
certain dimensionless time. Conversely, the minimum temperature distribution is seen when Ha is equal to 45.  

• When the Hartmann number is increased, there is a corresponding drop in the average fluid velocity at a certain dimensionless 
time. The scenario in which there is no magnetic influence (Ha = 0) has the greatest average fluid velocity, measuring 0.82 in 
magnitude at a dimensionless time of 2. The scenario in which Ha = 45 exhibits the lowest average velocity, measuring 0.28 in 
magnitude at a dimensionless time of 2.  

• The scenario in which there is no magnetic influence (Ha = 0) has the greatest average fluid velocity, measuring 0.82 in magnitude 
at a dimensionless time of 2. The scenario in which Ha = 45 has the smallest mean velocity, measuring 0.28 in magnitude at a 
dimensionless period of 2. The fluid temperature increases as the Hartmann number decreases, reaching its maximum value for the 
Ha = 0 condition, with a magnitude of 0.114.  

• The average fluid temperature increases as the Hartmann number decreases, reaching its maximum value of 0.114 for the situation 
of Ha = 0. The situation with Ha = 0, indicating the absence of magnetohydrodynamics, exhibits the greatest average Nusselt 
number, whilst the case with Ha = 45 demonstrates the lowest Nusselt number.  

• Among the total of 6144 data, a subset of 4300 observations was used to train a two-layer feed-forward back propagation sequential 
model, while the remaining 1844 observations were reserved for assessing the performance of the model. The model has a level of 
accuracy of 99.02%. In this research, a neural network model was used to predict the average Nusselt number using six input factors 
and one output variable. The results indicate that the artificial neural network achieved a prediction accuracy of 99%. 

The major limitation of the study lies in having convergence issues while considering higher Hartmann numbers. Future research 
can be focused on introducing more inlets and in the cavity, changing the shape of the lower wall, such as the wavy-shaped wall, and 
incorporating various hybrid nanofluids, etc. 

Fig. 13. MAE vs Epochs graph.  
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