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Diffusion kurtosis imaging (DKI) is a new diffusion magnetic resonance imaging (MRI) technique to go beyond the shortages of
conventional diffusion tensor imaging (DTI) from the assumption that water diffuse in biological tissue is Gaussian. Kurtosis is
used to measure the deviation of water diffusion from Gaussian model, which is called non-Gaussian, in DKI. However, the high-
order kurtosis tensor in the model brings great difficulties in feature extraction. In this study, parameters like fractional anisotropy
of kurtosis eigenvalues (FAek) and mean values of kurtosis eigenvalues (Mek) were proposed, and regional analysis was performed
for 4 different tissues: corpus callosum, crossing fibers, thalamus, and cerebral cortex, compared with other parameters. Scatterplot
analysis and Gaussian mixture decomposition of different parametric maps are used for tissues identification. Diffusion kurtosis
information extracted from kurtosis tensor presented a more detailed classification of tissues actually as well as clinical significance,
and the FAek of D-eigenvalues showed good sensitivity of tissues complexity which is important for further study of DKI.

1. Introduction

Diffusion magnetic resonance imaging can detect the water
molecule diffusion in human tissues noninvasively, which
indicates the microstructure of biotissue such as one of the
most popular methods: diffusion tensor imaging (DTI), in
which the three-dimensional water diffusion probability dis-
tribution in an anisotropic medium has been quantified by
a 2-ranked tensor. The three eigenvectors of it are corre-
sponded to the axes of a triaxial diffusivity ellipsoid [1]. The
commonly employed rotationally invariant parameters are
derived from the diffusion tensor (DT) including the mean
diffusivity (MD) and fractional anisotropy (FA).

However, in the conventional diffusion tensor imaging
(DTI), water diffusion is assumed that diffusion appears to
be a free and nonrestricted environment within a Gaussian
distribution of diffusion displacement. Actually in biological
tissue, complex cellular microstructure makes water diffu-
sion a highly hindered or restricted and also non-Gaussian

process [2]. The diffusion tensor loses many details of the tis-
sues microstructure. There are many studies about the non-
Gaussian of diffusion in real tissues. DKI uses the kurtosis to
estimate this non-Gaussian distribution providing insights
into the microstructure of biological tissues. Recent studies
have demonstrated that DK (diffusion kurtosis) measures
offer an improved sensitivity in detecting developmental
and pathological changes in neuronal tissues, compared to
conventional DTI [3, 4]. In addition, directional kurtosis
analyses have been formulated to reveal directionally specific
information, such as the water diffusional kurtosis along the
direction parallel or perpendicular to the principle water
diffusion direction [5–8]. Because kurtosis is a measure of
the deviation of the diffusion displacement profile from a
Gaussian distribution, DKI analyses quantify the degree of
diffusion restriction or tissue complexity.

However, what is difficult is that the high-order (3-
dimensional 4-order) kurtosis tensor in DKI is complex to
analyses and it is an important feature like the diffusion
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tensor in DTI (diffusion tensor imaging). This paper here is
to promote some parameters mapping of the kurtosis tensor.

2. Materials and Method

2.1. Theory

2.1.1. Diffusion Kurtosis Imaging. As DTI assumes Gaussian
diffusion, the apparent diffusivity (Dapp) is derived by linear-
ly fitting the DW signals acquired with one or more nonzero
b values to the following linear equation:

ln
[
S(b)
S(0)

]
= −bDapp. (1)

In DKI, logarithmic expansion of DW signal can estimate
both apparent diffusivity (Dapp) and diffusion kurtosis
(Kapp), which keep an extra b-square term compared with
DTI. Thus, it forms a nonlinear equation [8]:

ln
[
S(b)
S(0)

]
= −bDapp +

(
1
6

)
b2Dapp

2Kapp,

Dapp = Dx2,

Kapp =
(

MD
Dapp

)2

Wx4,

(2)

where S(b) is the DW signal intensity at a b value and S(0)
is the signal without diffusion gradient; x is the gradient
magnetic encoding directions; MD is the mean diffusivity;
here appear the diffusion tensor (D) and kurtosis tensor
(W), which characterize the different diffusion motion. The
theory also indicates that the apparent diffusional kurtosis
approaches the true diffusional kurtosis in the limit of short
gradient pulse durations, which is analogous to the relation-
ship between Dapp and the true water diffusion coefficient D.

2.1.2. D-Eigenvalues of Kurtosis Tensor. DKI model provides
a high-order tensor except a two-order diffusion tensor, so
that the problem becomes more knotty. Just like the eigen-
values and eigenvectors of diffusion tensor from which we
can easily get a visualized structure model, and also more
insights into the tissues microstructure, which is viable and
potential via this 4-order 3-dimensional fully symmetric
tensor, diffusion kurtosis tensor (DK) .

D-eigenvalues of the DK were proposed mathematically
with an assumption that D tensor is always positive definite
[9]. Then, a conversion was used:

D−1(Wx3) = λx,

Dx2 = 1.
(3)

A number of D-eigenvectors are obtained using the Sylvester
formula of the resultant of a two variable system. The D-
eigenvalues values are

λi =Wx4
i . (4)

2.2. Data Processing

2.2.1. Data Acquisition. The whole study and all the human
experiments have got the medical ethics authentication and
each subject or volunteer has knew it clearly. All human
experiments were conducted on a Siemens 3. 0 T Scanner
System with the physicist and 20 volunteers were normal
adults in the age between 20 and 30. The DW data were
acquired with SE-EPI (single shot echo-echo planar imaging)
sequence, following 30 gradient magnetic encoding direc-
tions and three b values (0, 1000, 2000 ms/μm2). Additional
image parameters were that image orientation is transverse,
TR = 10500 ms, TE = 103 ms, average = 1, TA = 11′14′′, noise
level = 30, acquisition matrix = 128 × 128, FOV = 230 ×
230 mm2, slice thickness = 1.8 mm, number of slices = 73, no
gap.

For each subject a 128 × 128 × 73 × 61 metric data
was acquired and prepared to fitting the tensors. Imaging
processing including eddy current correction and 3D motion
correction was conducted with FSL software. And for
accessibility the normalization to Standard brain was used
under SPM. Then the Dapp and Kapp were fitted using LMS
method and LS method to estimate the optimal components
of tensors.

2.2.2. Parameters Mapping. Although there is a way to anal-
yse the high kurtosis tensor, the number of D-eigenvalues is
random within the range between 3 and 13, even the practical
meaning of these vectors and values is not clear. Anyhow,
some parameters can be acquired for a further research.

In DKI, both DT and KT are obtained, and some kurtosis
parameters can be formed following DT’s method. Then the
DTI- & DKI-derived parametric maps were analysed on the
contrast between different tissues. Here are vD-eigenvalues
(λi) or D-eigenvectors (xi) from kurtosis tensor, FAek (FA
about eigenvalues of kurtosis tensor), Mek (mean eigenvalues
of kurtosis tensor), AKC (apparent kurtosis coefficient),
AKCd (apparent diffusion kurtosis coefficient) are defined as
following:

FAek = √
(

v
(v − 1)

)
· √

⎛
⎝
(∑

(λi −Mek)2
)

(∑
λi

2
)

⎞
⎠

Mek = mean(λ)

MK = mean
(
Kapp

)

AKCd = AKC ·MD2.

(5)

In the mapping of MK, these negative Kapp values are revised
as zeros as no medical significance. And for comparison, we
also get AKC (mean of Kapp) without revising. Except these
parameters above, this paper also considers FA (fractional
anisotropy) and MD (mean diffusivity) from DTI. And that
the MK (mean kurtosis) [6, 7] is considered as its popular
use. Figure 1 shows some parametric maps.

2.2.3. Data Analysis. For each subject, regions of interest
(ROIs) were manually defined in several transverse slices by
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Figure 1: Parametric mapping from a same anatomical slice, ((a)–(f)) FA, MD, FAek, Mek, MK, and AKCd.

referencing to the anatomical structure. Anatomical land-
marks were identified from both FA and MD. 6 WM struc-
tures were chosen, including the knee and the splenium of
corpus callosum (CC); 4 crossing fiber areas, 4 of which are
the extend areas along the knee and the splenium of CC and
where are full of crossing fibers; 2 areas of thalamus; 6 GM
structures, namely, 4 cerebral cortex CSF, more details from
Figure 2. Various properties such as diffusivity or kurtosis
can help to recognize the tissues [10, 11].

The mean and standard-variance were computed by vol-
ume averaging within the multislice ROIs for each structure.
For each parameter, analysis of variance (ANOVA) was per-
formed to compare the measurements among different tis-
sues, followed by independent-samples t-test to detect inter-
group differences.

Also in order to combining the whole image and the
relativity between each other, we scattered two of the param-
eters with their gray histogram curves. As we already know
that same tissues’ voxel gray values’ distribution is similarly
Gaussian, and that we can assume that the histogram curves
a first-order Gaussian mixed signal. The decomposition may
be some single independent parameter histogram curve and
also a scattered figure.

3. Results

3.1. Results of ROIs Analysis. The RIOs’ statistics are figured
in Figure 3. Different ROIs show pronounced average values
(P < 0.05), and mainly five kinds of tissues in the ROIs. In
a general view, the corpus callosum, cerebral cortex and
CSF can be recognized obviously, while ((c)–(f)) cannot

Figure 2: The ROIs selection according FA map. (1-2) the knee and
splenial of callosum; (3–6) the crossing fibers; (7-8) the thalamus;
(9–12) the cerebral cortexes; 13 is CSF.

distinguish the crossing fiber tissues and thalamus. In detail,
the first two ROIs, which are two parts of corpus callosum:
the knee and the splenium, result in pronounced different
values (P < 0.05). As the fibers in the splenium are mostly
more slender than the knee, and its diffusion environment
is more restricted or non-Gaussian. The MK shows similar
values of the two parts (1.94 ± 0.15, 1.96 ± 0.14), but it is
MK that can only differs from the crossing fiber (1.67± 0.16)
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Figure 3: Mean variance of every ROIs, (1-2) the knee and splenial of callosum; (3–6) the crossing fibers; (7-8) the thalamus; (9–12) the
cerebral cortexes; 13 is CSF.

and thalamus (1.42 ± 0.17) which is full of both cytons and
fibers. The cerebral cortex, which mainly consists of cytons or
cell membranes is which all parameters can obviously differ
from white matter but the CSF in FA. What is special is that
Mek is just showing the index number of the mean of D-
eigenvalues, as the values is very large and resulting in a lower
gray contrast between different tissues.

Having a whole picture of these ROIs tissues’ structure
and considering the diffusion environment, we can select the
freest and the most restricted: CSF and corpus callosum espe-
cially the splenium. Then the following crossing fiber area,
basal ganglia (thalamus here) and cerebral cortex are less
free successively. Freer the environment is, more Gaussian
the Diffusion displacement distribution is. So, MK gives a
good distinguish, but not very precise; FAek distinguishes
different tissues more in details. Compared with AKCd, MK
does not show stably to specific structure while the AKCd
performances better.

Figure 4 gives a visualized comparison of different tissues
about the same property (anisotropy and kurtosis) with spe-
cific method. From the figure, FAek also performances sim-
ilarly with FA, but gains better contrast in cerebral cortex
(0.28 ± 0.03). FAek shows high sensibility to gray matter
as well as that like thalamus. Considering Figure 4(b), the
kurtosis, MK shows low gray contrast, and AKCd and MK
are better recognized, but MK shows a significant difference
between crossing fibers and thalamus.

3.2. Results of Histogram Analysis. With the principle that the
gray values or parameters of the same characteristic tissues
will be under a displacement of Gaussian function and inde-
pendent from different tissues, the parametric map’s his-
togram is decomposed using first-order Gaussian mixed
signals. The mask was used in order to ignore the zeros back-
ground. MD map can gives a practical view of the tissues, so
FA, FAek, Mek, and AKCd are compared with it in Figure 5,
and also the kurtosis parameters’ relativity are shown in
Figures 5(e) and 5(f).

In Figure 5(a), FA has a wide range when MD is low
which represents white matter mainly, and MD shows also a
wide range when FA is low which represent gray matter and
CSF mainly. But there is no relativity between them and most
information is distributed where both FA and MD are low.
Following Figure 5(b), FAek has more balanced distribution
of histogram, an obvious subpeak, so the most information
distributes where higher FAek and low MD, which indicates
more sensitive to white matter. And there has some negative
correlation. In Figures 5(c) and 5(d), MK and AKCd have
the similar distribution with MD, while MK shows more
balanced with its MK value range is wider than AKCd. But
in Figures 5(e) and 5(f), the decompositions of AKCd’s his-
togram are much independent and signi orientation is trans-
verseficant, while the MK’s are much overlapped with others.
As known that Mek has low gray contrast, and here it has
an obvious negative correlation with MD in Figure 5(d),
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Figure 4: Anisotropy and kurtosis. In (a) several anisotropy values (FA, FAek) were detected averaging the volume value in different ROIs
(knee of callosum, splenium callosum, crossing fiber, dorsal thalamus, cerebral cortex, CFS) as well as in (b) about kurtosis values; the
statistical significance is all P < 0.05.
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Figure 5: Scatterplot analysis. ((a)–(f)) give a visualized relationship between different parameter maps, and the Gaussian decomposition
of the histogram is drew along the axis. Previous ROIs for different tissues’ data were also marked on it.
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because the points are distributed along a similar line with
MD increasing.

4. Discussion

As known theoretically, the DKI specifically the kurtosis
tensor characterizes more detailed information and can show
us a real insight into the microstructure of brain tissues.
Practically, many work about kurtosis using DKI were carried
out verifying that kurtosis provides more information and
is more sensitive than diffusivity, but the kurtosis absolutely
because of its complexity.

It is obvious that MK has great potential in biotissues
mapping, such as tumor diagnosis and other Nerve damage
disease, and kurtosis tensor can also provide an insight into
the brain tissues’ microstructure especially for white matter.
These D-eigenvalues of kurtosis indicate more information
about tissues microstructure where diffusivity cannot. How-
ever, FAek performs much better than MEK, that is to say
that these D-eigenvalues can really indicate the complexity
of the microenvironment but the average level of kurtosis is
less sensitive. Here the cause maybe the number of the D-
eigenvalues or the algorithm. What is common and impor-
tant is that all kurtosis information gives more information
or sensitivity about white matter microstructures [3–8].

From the black triangles in Figures 5(a) and 5(b), we can
see FA recognizing cortex and thalamus as the same, but FAek
recognizes crossing fibers and thalamus as the same, and
FAek differs from the cortex and CSF obviously. In Figures
5(e) and 5(f), the difference is that MK recognizes the thala-
mus and cortex which is better than AKCd.

In the Figure 5(c), MK is the directly kurtosis calculation
while the Mek is from D-eigenvalues of kurtosis tensor,
which the “D-” means diffusion in original paper [9]. That is
to say MK is the real kurtosis information but not accurate,
but Mek is the “diffusivity” information of kurtosis tensor,
because there is a stronger relativity between Mek and
MD. Here “diffusivity” means the level of 2-order diffusion
coefficient. But it shows actually different evaluation of the
tissues, maybe just the level of complexity. In the results
other parameters’ classification between the crossing fibers
and thalamus show that they are likely the same complexity
while not exactly the diffusivity in some degree, except MK.

Kurtosis information can be used to get a more delicate
classify of the tissues [12, 13]. The scatter figure and the
Gaussian distribution classifying can give us ideas about
image segmentation of different tissues. Within Figure 5 dif-
ferent two parameters put the tissues in different locations.
In this part, FAek associated with AKCd and MD classified
the typical tissues well. According to this, Figure 6 shows a
different cluster of the scatter points.

In Figure 6, with previous knowledge, these 4 Gaussian
distribution represent 4 kinds of tissues: CSF, Gray matter,
crossing fibers; single diffusion orientation areas (corpus cal-
losum). However, the third Gaussian class has a wide range
which represents a collection of all crossing fiber areas as
their complicated various fiber structures.

For achieving better jobs, there are several aspects need
be considered further.
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Figure 6: Scatter between AKCd and FAek, showing a 4 indepen-
dent Gaussian distribution and probability gradients.

Firstly, the calculation of kurtosis anisotropy is just sim-
ilar to DT. However, the D-eigenvalues and vectors have no
clear meaning, and even more important is that DT’s three
eigenvectors are always of orthogonal to each other while
the D-eigenvectors’ orientation are random here. For exam-
ple, same eigenvalues with different eigenvectors give differ-
ent anisotropy properties.

Secondly, these parameters in this paper are just aimed at
the contrast or discrimination between different anatomical
structures at the 2-D imaging level. Anyhow this work is a
start, and what’s need more is the white matter microstruc-
ture and 3D space reconstruction. Several studies about the
partition of diffusion or ODF have carried out aiming at the
3D space diffusion property distribution [13, 14].

Thirdly, clearer relationship between DT and KT should
be clearer and what to do with them should be clear. For
example, how the 4-order statistic kurtosis is related prac-
tically to the 2-order variance which suggests that diffusion
coefficient here should be clear. About this, popular speaking
think the kurtosis can revise or make up the deviation from
Gaussian, but not in a specific way. Another idea about this
is that DKI gives the Gaussian diffusion and non-Gaussian
diffusion.

Finally, not least, the imaging processing to reducing
noises or advancing SNR before fitting (2) is most important.
Because high-order kurtosis is more sensitive to errors than
diffusivity such as what appears as error spots in Figures 1(e)
and 1(f) though using appropriate pre- and postprocessing.
What is worse is that it will reduce the fitting results. So
better signal processing is needed, or just increase the repeat
times of signal acquisition (AVERAGE or NEX) but losing
acquisition time (TA) for better signals from the view of
experiment setting [15].

5. Conclusion

DKI is a straightforward extension of DW signals that pro-
vides a sensitive measurement of tissue structure by quanti-
fying the non-Gaussian degree of water diffusion. DKI has
been demonstrated to be highly sensitive and directionally
specific in detecting brain maturation processes, and the
parametric analysis of kurtosis tensor was carried out in this
paper. The results indicated that more detailed insights of the
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microstructure can be detected and differed from diffusivity
of diffusion tensor by the kurtosis tensor.

The D-eigenvalues of kurtosis tensor give the diffusivity
information about tissues complexity which is different from
diffusion coefficient, but the FAek (fractional anisotropy of
these eigenvalues) shows more different properties than FA of
diffusion tensor, which means the level of tissues complexity.
Multiparameters analysis can give more detailed tissues of
human brain. Diffusion kurtosis tensor can show a more
comprehensive and sensitive detection of subtle difference,
but more energy should be paied for this kurtosis tensor.
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