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The duration‑energy‑size enigma 
for acoustic emission
Blai Casals1*, Karin A. Dahmen2, Boyuan Gou3, Spencer Rooke2 & Ekhard K. H. Salje1

Acoustic emission (AE) measurements of avalanches in different systems, such as domain movements 
in ferroics or the collapse of voids in porous materials, cannot be compared with model predictions 
without a detailed analysis of the AE process. In particular, most AE experiments scale the avalanche 
energy E, maximum amplitude Amax and duration D as E ~ Amax

x and Amax ~ D χ with x = 2 and a 
poorly defined power law distribution for the duration. In contrast, simple mean field theory (MFT) 
predicts that x = 3 and χ = 2. The disagreement is due to details of the AE measurements: the initial 
acoustic strain signal of an avalanche is modified by the propagation of the acoustic wave, which 
is then measured by the detector. We demonstrate, by simple model simulations, that typical 
avalanches follow the observed AE results with x = 2 and ‘half-moon’ shapes for the cross-correlation. 
Furthermore, the size S of an avalanche does not always scale as the square of the maximum AE 
avalanche amplitude Amax as predicted by MFT but scales linearly S ~ Amax. We propose that the AE rise 
time reflects the atomistic avalanche time profile better than the duration of the AE signal.

Avalanches commonly occur during deformation and failure of materials1–25. They dominate the hysteretic 
behaviour of domain switching in electric, magnetic or strain fields. They also occur in scenarios where local 
restructuring occurs, such as the collapse of voids in porous materials. Here we focus on ferroic switching as the 
defining feature that contributes to the classic Barkhausen noise26–31. The energy of avalanches in Barkhausen 
noise is partially released by elastic waves during acoustic emission, AE. As AE measurements have unsurpassed 
sensitivity they became the method of choice for the investigation of field induced changes in ferroics and are 
hence at the heart of current research into the dynamics of switching processes2,13,14,17–22,30,32–36. Here we show 
why some results of AE deviate from the predictions of mean field theory, MFT14,37.

The following parameters are typically measured during AE experiments: the energy E of an avalanche, the 
time evolution of the AE amplitudes AAE(t), the maximum AE amplitudes Amax per avalanche, their duration D 
and various correlations between avalanches like waiting time, aftershocks38 etc.… Other parameters are obtained 
indirectly, like the size S by integrating |AAE(t)| over time t during the progression of the avalanche. The funda-
mental assumption is then that these quantities can be equated with the fundamental avalanche parameters (i.e. 
of the behaviour of the avalanche source). These parameters are E, V(t), Vmax, and duration T. Similarly, the size 
S is derived from model simulations by integration over V(t), this function can then be compared with the AE 
size function. We use the common nomenclature of the AE literature and add a subscript AE whenever there is 
a danger that the reader confuses the quantities of the AE experiment and the equivalent (atomistic) avalanche 
parameter. The non-equivalence between EAE and E, AAE(t) and V(t), Amax and Vmax, and the AE duration D and 
its equivalent duration T of the atomic avalanche is at the heart of this study.

The amplitude AAE(t) is an experimental quantity directly measured in an AE experiment, namely the ampli-
tude of the strain wave arriving at the AE detector (Fig. 1). The local process of the avalanche nucleation and 
progression produces local strain amplitudes which is denoted A(t). A(t) is the local strain amplitude at the time 
t and represents the change of the atomic configuration at time t. It hence represents a ‘rate of change’ which 
we call in this paper V(t). The atomic interpretation of V(t) as ‘velocity’ of the advancing front of an avalanche 
is appropriate if the avalanche is a fairly compact region while nucleation and fractal regions do not have such 
a simple geometrical interpretation. In these cases, V(t) is understood as a ‘displacement rate’ when the objects 
are spatially distributed or fractal. In accordance with convention, we still use the symbol V(t) bearing in mind 
this more general ‘rate’ definition. In particular, the relevant patterns in ferroics are extremely complex and only 
occasionally compact. We use the symbol V(t) with the understanding that V(t) does not just mean a simple 
front propagation as, e.g., described in the Avrami–Ishibashi approach39,40.

The analysis of AE spectra is typically based on their comparison with model simulations4–7,12,14,18,19,23. Most 
model parameters were initially borrowed from research into Earth Quake statistics [e.g.41] so that the 

OPEN

1Department of Earth Sciences, Cambridge University, Cambridge, UK. 2Department of Physics, University of 
Illinois, Urbana, IL  61801, USA. 3State Key Laboratory for Mechanical Behavior of Materials, Xi’An Jiao Tong 
University, Xian 710049, Shaanxi, People’s Republic of China. *email: blaicasals@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-84688-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5590  | https://doi.org/10.1038/s41598-021-84688-7

www.nature.com/scientificreports/

nomenclature was historically taken from this field. The fingerprint for critical avalanches is that the probability 
distribution functions (PDF) of EAE, Amax, and D are power law distributed with exponents ε, τ′, and α, respec-
tively. Here the energy is derived from the AE spectrum of AAE(t) by EAE =

DAE

∫
0

AAE(t)
2dt . Correlations exist 

between these parameters which also follow power laws with EAE ~ Amax
x and Amax ~ DAE

χ30.
Experimentally, the power law exponents ε and τ′ are typically measured over many decades and our knowl-

edge of any systematics of the dynamic properties of energies and amplitudes is rather good. The same is not true 
for the duration D. There are very few AE measurements available to determine α with reasonable accuracy17,42,43. 
The PDF of the duration D often follows a power law in some approximation for long durations, while it shows 
either constant or exponential distributions for short durations. ‘Half-moon’ shapes are found when plotting the 
durations as function of the maximum amplitudes, D(Amax), and duration as function of the avalanche energy, 
D(E)17,30,44. As the integration to determine EAE covers the duration of the AE signal, the correlation between 
the energy EAE and the maximum amplitude of an avalanche Amax as described by the correlation exponent x, 
is equally enigmatic.

The enigma, which we address in this paper, is the scaling between the AE energy and the AE maximum 
amplitude EAE ~ Amax

x. This relation is often the starting point for further analysis of the avalanche mechanism. 
Experimentally, x = 2 is found in systems that contain distributions of domain movements that are otherwise 
consistent with MFT. AE measurements for BaTiO3

30 are a key example for x = 2 while x = 3 would be consistent 
with MFT simulations. To the best of our knowledge, only the exponent x = 2 has been reported in AE experi-
ments. Exponents x = 3 or intermediate values between 2 and 3 were discussed, but not observed experimentally, 
by Vives et al.41. These authors clearly identified the discrepancy between x = 2 and x = 3 but offered no reason. We 
rationalize this observation and argue that avalanche exponents are modified by details of the AE experiments45.

The characteristic parameters for the energy (E), maximum amplitude (Amax), size (S), duration (D) and rise 
time (R) are evaluated by the following definitions from the time evolution of the �(t) signals (the so-called ‘jerk 
spectrum’, this terms is used both for AE spikes and also for atomic avalanche anomalies) which hence becomes 
V(t) before the convolution and AAE(t) after the convolution :

where �th is a threshold of �(t) and tn is the waiting time.

(1)Amax = max(|�(t)|)

(2)D = t(|�(t → tn)| > �th)

(3)R = t(|�(t)| = Maximum)

(4)E =
D
∫
0

�(t)2dt

Figure 1.   Schematic representation of the composition of an avalanche signal in acoustic emission experiments. 
The size of the sample and the detector is some 5 mm, the detector covers often a large part of the sample. 
During local switching, an avalanche with V(t) emits a strain signal (i.e. the source function) which propagates 
through the sample and is eventually measured by the detector. During the propagation, the signal generates the 
ringing of the sample and is modified by elastic wave reflections on surfaces, scattering on lattice imperfections. 
The profile of a source delta function would generate T(t), the so-called transfer function. The measured AE 
profile AAE(t) is described in this paper as the convolution of the source function with the transfer function.
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The PDFs of these magnitudes are power laws (e.g. for energy PDF(E) ∼ E−ε ). Here we use the exponent ε for 
E , τ ′ for Amax , τ for S , α for D and ρ for R . The correlations between these magnitudes are defined as E ∼ Ax

max , 
S ∼ A

γ
max , Amax ∼ Dχ and Amax ∼ Rξ.

Sample ringing and average avalanche profile
AE spectroscopy is characterised by a close proximity of the sample and the detector. Both have very similar 
dimensions and are closely coupled. It appears impossible to analyse an emitted wave profile, as sometimes done 
in geophysics and other acoustic investigations of large bodies, by either inverse or direct methods46. Instead, 
we consider in this paper a simple approach to estimate the influence of wave propagation on the scaling of the 
typical AE parameters. We cannot investigate the actual waveform of the triggering event nor do we analyse 
the sample-shape dependence of the AE signal, still we derive a simple interpretation of the AE scaling x = 2.

We first consider acoustic emission of a ferroic material that originates from the propagation of domain 
boundaries and domains during switching30. When domain walls hit the sample surface or when domain walls 
intersect or annihilate, they emit a primary strain signal that incites the traveling acoustic wave. Similarly, 
crack propagation47,48 and porous collapse17,19 generate equivalent AE signals. The signals are then measured 
by acoustic detectors and analysed electronically. The key characteristic of AE is that it does not measure the 
acoustic collision directly but measures the macroscopic vibration (the so-called ringing) of the sample. Such 
ringing phenomena in the 104–107 Hz region were thoroughly investigated in the field of acoustic resonance 
spectroscopy49–55. The frequency of the ringing is determined by the elasticity of the sample and is only weakly 
influenced by the acoustic wave emitted by the domain switching process.

In order to demonstrate the modifications of the initial source function we first consider a simple toy model. 
We use the theoretical averaged source function V(t) which would be measured if the time resolution of the 
experiment were extremely poor. In this case, many local events overlap and initiate the ringing of the sample. 
This approach has the advantage to clarify the various parameters analytically; a full simulation is presented in 
the next paragraph. We use the averaged source function37,56 with the time variable t

The maximum amplitude Amax of the source signal V(t) scales with parameters a and b as,

and the rise time called when the maximum amplitude is reached

The size of the avalanche is defined as

The traveling wave is then approximated by the convolution of the source signal with the transfer function. 
This convolution is expressed by the integral

This integral extends over the full time, which in an experimental situation means the full duration of the 
source function. We tested several transfer functions (see supplemental material section 1). In our toy model 
we use a exponentially damped sinusoidal which is compatible with typical experimental AE profiles42,45,57,58:

where w is the frequency and q is a damping parameter. Figure 3a shows the source function and its convolution 
with the transfer function. We also explored a Gaussian decay (supplementary information section 1 and 3) 
which is often used to describe resonance ultrasound spectroscopy (RUS) signals59, the convolution shows very 
similar behaviour to the simple exponential decay.

The source function is parameterised by the non-universal constants a and b denoting the amplitude and the 
position of the maximum (i.e. the width of the distribution), respectively. A typical example for the variation of 
the source function depending on its width is shown in Fig. 2a, b. The energy E is calculated as the integral over 
the squared temporal amplitude.

(5)S =
D
∫
0

|�(t)|dt.

(6)V(t) = ate−bt2

(7)Amax ∼ ab−
1

2

(8)t|Amax ∼ b−
1

2

(9)S =
+∞
∫
0

|V(t)|dt ∼ a/b

(10)AAE(t
′) =

+∞
∫
0

V(t)T
(

t ′ − t
)

dt

(11)T(t) = cos (wt)e−qt

(12)

E =
+∞
∫
0

V(t)2dt =
+∞
∫
0

a2t2e−2bt2dt

=
√
2a2

8b
3

2

+∞
∫
0

u

(

3

2
−1

)

e−udu ∼ a2b−
3

2
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Remembering (a/b0.5)2 * b−0.5 = Amax
2 * t ( Amax ) shows that E is proportional to Amax

2 multiplied by the time 
when the maximum amplitude occurs. A constant model parameter a leads to E ~ Amax

3 as shown in Fig. 2c. The 
size can be deduced similarly and shows S ~ Amax

2 in Fig. 3b. However, if we keep the b parameter constant and 
change the a parameter then the scaling becomes E ~ Amax

2 (Fig. 2c) and S ~ Amax (Fig. 2d). This difference stems 
from the duration of the source function. The duration is defined by the time to reach a given threshold of the 
amplitude, whereby this threshold is constant for all A(t). When changing the amplitude (a parameter) the dura-
tion reaches an asymptotic limit (‘half-moon’ shape in Fig. 2e) and since the position of the Amax is unchanged, 
the rise time is constant (Fig. 2f). In the opposite scenario, when changing the b parameter, the duration and the 
rise time scales linearly with Amax. We can use Amax to compare the different scaling between parameters because 
Amax does not depend on the duration of the V(t) profile.

We now consider the convolution in Eq. (10) between the source function V(t) and the transfer function T. 
With an ansatz T = cos (wt)e−qt2 we calculate Amax, E, S, D, and the rise time R of the convoluted AAE(t) wave-
form using the Eqs. (1–5). Figure 3a shows an example of the convolution between the source function and 
the transfer function. The waveform of the convoluted function AAE(t) changes by changing the b parameter as 
shown in Fig. 3b. For short durations, the convolution shape is closer to the shape of the transfer function and 
for large durations the shape is more similar to the source function. The scaling of EAE with Amax shows equally 
two tendencies (Fig. 3c): for small values of Amax the scaling is E ~ Amax

2 and for high values it becomes E ~ Amax
3. 

Similarly, the scaling of SAE with Amax shows S ~ Amax for low amplitudes and S ~ Amax
2 for large amplitudes 

(Fig. 3d). This change of scaling is caused by the large variability of the duration D in the convoluted AAE(t) 
waveforms (Fig. 3e). For short source function durations, the convoluted duration is dominated by the duration 
of the transfer function, thus, converging to an asymptotic value. In this regime, the source function effectively 
determines the maximum amplitude Amax of the convolution but does not change the duration D. For large source 

Figure 2.   Scaling relations for the averaged source function. Shapes of source functions V(t) = ate−bt2 with 
different parameters a (a) and b (b), as shown, a changes the amplitude and b modifies both duration and 
amplitude. Panels (c–f) show scaling relations before convolution for E ∼ Ax

max (c), S ∼ A
γ
max(d), Amax ∼ Dχ(e) 

and Amax ∼ Rξ (f) when the model parameters a (red circles) and b (blue circles) are varied.
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function durations, the convoluted duration increases with the maximum amplitude of the source function and 
changes the integrals to calculate EAE and SAE, which modify their scalings with respect to Amax. This behaviour 
differs from the scaling of the rise time R which does not change with variable Amax after convolution (Fig. 3f). 
In this toy model we hence observe both scenarios, x = 2 and x = 3, depending on the duration of the local strain 
signal: if the source signal is short (e.g. delta function) the AE signal is identical or close to the transfer function 
and we find x = 2. For long local events we find x = 3.

Model simulations with transfer functions
The collapse model.  We now consider more realistic source functions and ask whether source functions 
alone, without the interference of the transfer function, can generate the observed EAE ~ Amax

2 scaling. For this 
purpose, we construct a simple atomic model based on the mechanism leading to porous collapse. In this model 
we choose random sites for the collapse and a feedback that stipulates that the next step depends on the collapsed 
regions multiplied by a probability chosen from a probability distribution function f(t) as

Here Vs(t − 1) is the is number of collapsed sites at t − 1 and f(t) is a Gaussian function centered at zero with 
half width w. The product defines the number of attempted collapsing sites Va(t) that will be placed randomly in 
space. The sites will successfully collapse if they do not overlap with previously collapsed sites. Thus, the avalanche 
profile V(t) is defined by the collapsed sites per time Vs(t). The initial condition is the collapse of a single site 
( Vs(t = 0) = 1 ) that is randomly chosen. When an avalanche ends because Vs(t − 1) = 0, the next avalanche is 
chosen to start at a new random site with Vs(0) = 1 in an empty frame. The half width of f(t) is chosen as w = 1.4 
in our simulations, more general conditions will be discussed in a forthcoming paper. This model is similar to 
the mean field approximation of the non-equilibrium random field Ising model with power law distributed spin 
flip avalanches at a critical width of the distribution of random fields60–63. Finite-size effects have an impact on 
the cut-off of E, Amax, S etc. but not on the correlation between these quantities. This is caused by a direct impact 
of the overlap between attempted sites Va(t) and previously collapsed sites Vs(t − 1). The widest scaling interval 
is found when the overlap is reduced to zero. We hence use the Eq. (13) without placing actual sites in space and 
accepting all sites to collapse successfully Va(t) = Vs(t) = V(t). Here we use avalanches profiles produced by the 
equation V(t) = f(t)V(t − 1). Examples of the computed avalanche profiles are shown in Fig. 4 for different dura-
tions. The average avalanche profile11,37, generated by this model, is similar to the initially used average avalanche 
profile (supplementary information section 5).

The PDFs are shown together with the maximum likelihood profiles of E, Amax and S in Fig. 4a,b. The PDFs 
exhibit a good power law behavior with the exponents ε = 1.33 (for E), α = 1.66 (for Amax) and τ = 1.66 (for S).

The correlations between the avalanche magnitudes are given in Fig. 5 (red circles in c–f). The scaling between 
E and Amax shows E ∼ A2

max (Fig. 5c). The scaling between S and Amax follows the relation S ∼ Amax (Fig. 5d). 
The duration of V(t), computed as the time when V(t) crosses a threshold, scales with Amax as shown in Fig. 5e. 
The rise time scales in the same way as the duration (Fig. 5e,f). Our simple model exhibits the half-moon profile 
of the correlation between the duration and the maximum amplitude.

(13)Va(t) = f (t)Vs(t − 1).

Figure 3.   Scaling relations for the averaged source function before and after convolution. (a) Example of the 
convolution (in blue) of an avalanche profile V(t) (in red) with a transfer function ( cos (wt)e−qt with w=0.5 
and q = 5 × 10−4 with time unit normalized to 1 (in black). (b) Examples of convoluted avalanche profiles for 
different durations (blue to red when decreasing the b parameter) and the original profiles (in black). Both 
convoluted and elementary profiles were normalized with respect to their maximum amplitudes. The scaling 
correlations E ∼ Ax

max (c), S ∼ A
γ
max (d), Amax ∼ Dχ(e) and Amax ∼ Rξ (f) for the original V(t) profiles (red 

points) and after the convolution for AAE(t) (blue points).
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We now explore the scaling after convolution to AAE(t) with different transfer functions. As an example, we 
consider again the transfer function T = cos (wt)e−qt , where w is the frequency and q a damping factor with 
w = 1(1/t) and q = 10–7 (1/t2). Other transfer functions are shown in the Supplementary Material section 1, 3 and 
4. The Fig. 5a shows an example of a single avalanche profile, the transfer function and the result of the convo-
lution. Different AE signals AAE(t) are shown in Fig. 5b for the same transfer function but different durations. 
The scaling between E, Amax and S remains unperturbed by the convolution as shown in Fig. 5c,d. However, the 
scaling between Amax and duration is different after convolution and strongly depends on the chosen transfer 
function (see supplementary information section 2, 3 and 4) and the threshold that is used to define the duration 
of AAE(t). The time evolution of AAE(t) is dominated by the decay of the transfer function. We now calculate the 
rise time, defined as the time to reach Amax. The relation between the rise time R and the duration D is propor-
tional R ~ D for the V(t) profiles and it is preserved after the convolution, as shown in Fig. 5f and directly for the 
convoluted profiles in Fig. 5b. The model is similar to spin-based models, such as the non-equilibrium random 
field Ising model37,60–63.

The slip model.  We compare these results with mean field simulations of a simple slip model23. In contrast 
to the collapse model, the slip model takes into account the long-range character of the elastic interactions 
between weak spots in a slowly sheared solid. While the collapse model is more empirical in spirit, the mean 
field model is a coarse-grained model that is based on the physical dynamics on scales as small as individual 
weak spots in the material. It is again a threshold model, and the long-range interactions between the slips in 
the material enable one to compute analytical solutions for the universal scaling behavior of the slip statistics. 
Renormalization group methods have been used to show that this scaling behavior is the same as slips in slowly 
deformed solids with slip localization, such as nanocrystals, bulk metallic glasses, rocks, jammed granular mate-
rials, friction and earthquakes23,25,60–63. The model assumes a solid that consists of N interacting cells, each of 

Figure 4.   Avalanches of the collapse model. (a) Examples of normalized avalanche profiles V(t)/Amax with 
different durations (blue to red means increasing the duration) for simulations of the model of Eq. (13). PDF (b) 
and maximum likelihood exponent (MLE) (c) of the energy (E), maximum amplitude Amax and size S for the 
model of Eq. (13).

Figure 5.   Scaling relations of the collapse model before and after convolution. (a) Example of convolution 
leading to AAE(t) with an avalanche profile V(t) (in red) and a transfer function T(t) = cos (wt)e−qt (in black). 
(b) Examples of 6 convoluted avalanche profiles for different source functions V(t) with different durations, and 
the same transfer function. Both convoluted and original profiles are normalized with respect to their maxima. 
(c–f) scaling relations E ∼ Ax

max (c), S ∼ A
γ
max (d), Amax ∼ Dχ(e) and Amax ∼ Rξ (f) for the original V(t) 

profiles (red points) and after the convolution AAE(t) (blue points).
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which can slip by a random amount when the local stress reaches a local stress threshold. When a cell slips the 
released stress is equally redistributed to the other cells, which can trigger other cells to slip also in a slip ava-
lanche. A slip avalanche ends when the stress at all cells is below the local failure stress. Then the external loading 
stress is slowly increased until the next cell slips, triggering the next avalanche. In its simplest version the model 
predicts power law distributed avalanche sizes, and durations. The time profiles of the avalanche propagation 
speeds (averaged over all avalanches of the same size or duration) follow simple scaling functions that can be 
computed analytically23. Many predictions for the scaling properties of the model are given in23,25,60–63. There 
are related spin flip models, such as the non-equilibrium random field Ising model, which give similar scaling 
results60–62, and they are likely even more closely related to the model introduced here because of their notable 
disorder dependence. Here, the source time functions are extracted from the slip model and convolved with the 
transfer function T(t). The results are shown in the Fig. 6.

Following the same steps as previously, we plot the transfer function T(t) with an example of a source func-
tion V(t) and the correspondent convolution AAE(t) in Fig. 6a. Figure 6b shows some examples of V(t) and the 
corresponding AAE(t) for increasing durations. The correlation E ∼ Ax

max exhibits x = 3 for the local strain signal 
V(t) and x = 2 for the measured AE signal AAE(t) (Fig. 6c). Similarly, the scaling relation S ∼ A

γ
max shows γ = 2 

for V(t) and γ = 1.5 for AAE(t). This change of the scaling relation exponent is expected as shown previously for 
the average source function V(t) = ate−bt2 (see Fig. 3). The duration scaling with Amax before the convolution 
is clearly different for the collapse model and the slip model, after convolution the initial scaling is almost lost. 
Only the rise time R preserves qualitatively the scaling after convolution (Fig. 6f).

Conclusion
We have shown that the measured AE spectrum, i.e. the macroscopic jerk spectrum of a sample, does not reflect 
the initial avalanche distribution V(t) nor the predictions of mean field theory. There are two main reasons. 
Firstly, the measured AE is modified by the transfer function in a well-defined fashion. This modification is most 
notorious if the time and frequency scales of the initial avalanche formation (some microseconds in many cases) 
differs greatly from the inverse frequency of the sample ringing and hence the transfer function. Ringing times 
are typically between several microseconds and some milliseconds. This time scale depends on the sample size 
(decreasing transfer time with decreasing sample size) and the nature of the initial avalanche. Crack propagation 
and dislocation dynamics are fairly similar in their local duration D while ferroelectric and ferroelastic domain 
movements are often much slower. Nevertheless, the general rule is that the transfer function shifts exponents 
to x = 2 while x = 3 has never been observed experimentally.

Figure 6.   Scaling relations of the slip model before and after convolution. (a) Example of a convolution leading 
to AAE(t) (in blue) from an avalanche profile V(t) (in red) and a transfer function T(t) = cos (wt)e−qt (in black). 
(b) Examples of 6 convoluted avalanche profiles for different source functions V(t) with different durations, and 
the same transfer function. Both convoluted and original profiles are normalized with respect to their maxima. 
(c–f) scaling relations E ∼ Ax

max (c), S ∼ A
γ
max (d), Amax ∼ Dχ(e) and Amax ∼ Rξ (f) for the original V(t) 

profiles (red points) and after the convolution AAE(t) (blue points). For e) and f) the exact exponent values in 
mean field theory are Χ=1 and ξ=1.
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Comparing the toy model with the more realistic profiles of the transfer function highlights the reasons. The 
average profile of the toy model is very broad. In contrast, the simulated avalanche profiles and experimental 
profiles show few very sharp peaks, often only one dominant peak. The convolution with the transfer function 
then yields the transfer function as AAE. All information about the initial duration of the source event and its 
line profiles is lost and only the transfer function is measured. This seems to be the fate of most AE spectra so 
that a detailed analysis of the observed jerk profiles only reveals information about the transfer function and says 
little about the local avalanche mechanism. The main information is hence the parameter x: x = 2 means that the 
local process is fast compared with the sample ringing, x > 2 means that some information about the local time 
scale could be obtained from AE spectra.

The observation x = 2 does not mean that the avalanche process does not follow the predicted mean field 
scaling. The observed duration is usually not the correct time scale because it is strongly modified by the transfer 
function. If the spectrum V(t) contains narrow peaks, then the integral is determined by the integral over the 
peak area and not by the much wider integration interval over the duration of the avalanche. This effect is very 
common in ferroelastics where a domain collapses or scatters with another domain. After one massive event, 
there are long-term relaxations, which contribute to the duration D but contain very little energy. In this case 
we find that x = 2.

The third fundamentally important result is that the duration is in all cases a very complex quantity, which 
cannot be approximated easily. In contrast, we find that the rise time R represents the avalanche formation and 
propagation much better (supplementary information section 7). It is close to the local rise time and is less pol-
luted by the effect of the transfer function.

Different models for avalanches statistics yield similar macroscopic behaviour while some characteristic dif-
ferences occur23,24. The power law distributions for energy and sizes are invariant (supplementary information 
section 5), however. The main differences stem from the role played by the duration. The ‘half-moon’ shape of 
Amax(D) and Amax(R) is well reproduced in the collapse model but much less in the slip model. This result points 
to the usefulness of the duration and specially rise time as AE avalanche characteristics, which allow at least a 
partial distinction between different atomic avalanche mechanisms. Further work on the distinction between 
avalanches models and their consequences for AE measurements are planned.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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