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Tuberculosis is once again a major global threat, leading to more than 1 million

deaths each year. Treatment options for tuberculosis patients are limited, expensive

and characterized by severe side effects, especially in the case of multidrug-resistant

forms. Uncovering novel vulnerabilities of the pathogen is crucial to generate new

therapeutic strategies. Using high resolution microscopy techniques, we discovered one

such vulnerability of Mycobacterium tuberculosis. We demonstrate that the DNA of M.

tuberculosis can condense under stressful conditions such as starvation and antibiotic

treatment. The DNA condensation is reversible and specific for viable bacteria. Based

on these observations, we hypothesized that blocking the recovery from the condensed

state could weaken the bacteria. We showed that after inducing DNA condensation,

and subsequent blocking of acetylation of DNA binding proteins, the DNA localization in

the bacteria is altered. Importantly under these conditions, Mycobacterium smegmatis

did not replicate and its survival was significantly reduced. Our work demonstrates that

agents that block recovery from the condensed state of the nucleoid can be exploited

as antibiotic. The combination of fusidic acid and inhibition of acetylation of DNA binding

proteins, via the Eis enzyme, potentiate the efficacy of fusidic acid by 10 and the Eis

inhibitor to 1,000-fold. Hence, we propose that successive treatment with antibiotics and

drugs interfering with recovery from DNA condensation constitutes a novel approach for

treatment of tuberculosis and related bacterial infections.
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INTRODUCTION

Tuberculosis (TB), caused by Mycobacterium tuberculosis infection, is the leading cause of death
from an infectious disease, resulting in 10.4 million new cases world-wide, including around
500,000 humans infected by the multi-resistant form, and an estimated 1.4 million deaths in 2016
alone (WHO, 2017). In recent years, multidrug-resistant, extensively drug-resistant and totally
drug-resistantM. tuberculosis strains have emerged, and in some regions the percentage of patients
infected by multidrug-resistant tuberculosis is well above 50% (Zignol et al., 2016). Thus, new
therapeutic approaches are urgently needed. Since part of the tuberculosis casualties are caused by
the reactivation ofM. tuberculosis in granuloma of latently infected individuals (Dye andWilliams,
2010), strategies for treating the latent form of this disease are essential.
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This study focuses on the preservation of bacterial genome
integrity by the temporary condensation of chromosomal DNA,
a process demonstrated to occur during latency and other
stressful conditions in Escherichia coli (Wolf et al., 1999), Bacillus
subtilis (Smith et al., 2002), Helicobacter pylori (Ceci et al.,
2007), cyanobacteria (Murata et al., 2016), and Deinococcus
radiodurans (Eltsov and Dubochet, 2005). This phenomenon
was observed for the first time during electron microscopic
imaging of starved E. coli, and led to the hypothesis that a
compact structure of DNA and DNA-binding proteins might
act as a physical barrier (Wolf et al., 1999; Smith et al., 2002;
Qu et al., 2013). Stress-induced DNA condensation was also
shown to promote homology-driven repair of DNA double
strand breaks in E. coli, further demonstrating a role for nucleoid-
condensation in maintaining genome integrity during stress
(Shechter et al., 2013). Moreover, DNA condensation is thought
to be associated with quiescence (Rittershaus et al., 2013), and
quiescent mycobacteria are able to condense their DNA (Wu
et al., 2016a,b,c). Interestingly, quiescent M. smegmatis with
condensed nucleoids display reduced metabolism and increased
tolerance to stress and antibiotics (Wu et al., 2016c).

The mechanisms driving nucleoid-condensation remain to
be identified. Computational simulations of idealized DNA
structural monomers showed that attraction is sufficient to
collapse a chain of large structural DNA monomers and
that entropic forces exerted by molecular crowding can
cause compaction of chromosomes (Pelletier et al., 2012;
Shendruk et al., 2015). These computational modeling studies
combined with physical manipulation demonstrated that E.
coli chromosome behaves as a loaded entropic spring in vivo.
Besides the entropic forces, this process also involves nucleoid-
associated proteins. These nucleoid-associated proteins (NAPs)
are homologous to histones and especially well studied in E.
coli. Here, NAPs interact with DNA and influence replication,
transcription and compaction (reviewed by Dillon and Dorman,
2010). As mycobacterial NAPs have limited homology to E. coli
NAPs, a number of mycobacterial DNA binding proteins have
been identified as NAPs only recently. HupB was described to be
binding to the origin of replication in M. smegmatis (Hołówka
et al., 2017). Deletion of Rel was shown to affect the lipid and
DNA distribution in M. smegmatis (Wu et al., 2016a). Also in
M. smegmatis, overexpression of histone like protein H-NS or
Rv3852 from M. tuberculosis, results in a less compact nucleoid
morphology (Ghosh et al., 2013). In addition, the change in the
acetylation state of the nucleoid associated proteins can cause a
shift in the DNA localization in this microorganism (Ghosh et al.,
2016).

Here we report that DNA condensation is a physiological
response to antibiotic stress or starvation conditions in the
clinically relevant M. tuberculosis. We also demonstrate that,
under normal conditions, this response is reversible, as DNA
returns to the initial decondensed state after withdrawal
of the stress-inducing agent. Importantly, however, blocking
this decondensation step by inhibition of histone-like protein
acetylation, sensitizes bacteria to the stress-inducing agent and
dramatically reduces their survival. These results uncover a
previously unknown vulnerability of M. tuberculosis, which can

be exploited for the development of conceptually novel treatment
strategies. Moreover, as stress-induced nucleoid condensation is
being recognized as a common response in bacteria, we propose
that rationally designed antibiotics regimens targeting changes in
DNA condensation state can form the basis for broadly applicable
antibacterial approaches.

MATERIALS AND METHODS

Bacterial Strains and Culturing Conditions
M. smegmatis mc2155, M. smegmatis mc26, M. smegmatis
mc23449 structural maintenance of chromosomes (SMC) triple
deletion mutant (Gifts from Paras Jain and William R Jacobs,
unpublished and Panas et al., 2014) andM. tuberculosismc26030
(originally described in Sambandamurthy et al., 2002) were
grown in Middlebrook 7H9 medium supplemented with 0.05%
Tween-80, 0.2% glycerol, and 10% Oleic Albumin Dextrose
Catalase (OADC) at 37◦C while shaking to an OD600 ranging
between 0.1 and 0.6 at the start of the experiment. Pantothenate-
auxotroph strain mc26030 was supplemented with 24µg/ml
pantothenate. For starvation experiments, cultures were grown
in PBS/Tween-80 at 37◦C while shaking.

Antibiotic Solutions
Bacteria were subjected to 20 times the MIC50 of fusidic acid
(FA) (250µg/ml; Sigma-Aldrich), nalidixic acid (330µg/ml;
Sigma-Aldrich), isoniazid (2µg/ml; Sigma-Aldrich), linezolid
(20µg/ml; Sigma-Aldrich), streptomycin (20µg/ml; SERVA),
rifampicin (20µg/ml; Sigma-Aldrich), Eis inhibitor 1a∗ (10µM)
(Chen et al., 2012; Green et al., 2018), or DMSO (solvent control;
Merck Millipore) for 1 h.

Transmission Electron Microscopy and
Tomography
M. smegmatis mc2155 or M. tuberculosis mc26030 was subjected
to FA for 1 h, fixed with McDowell fixative in 0.1M sodium
cacodylate buffer and postfixed with kaliumhexacyanoferrate
(VWR) and 1% osmiumtetroxide (ElectronMicroscopy Sciences)
in cacodylate buffer. Samples were embedded in gelatin and
after ethanol dehydration, embedded in Epon (Ladd Research).
Grids covered with formvar were used to collect 50-80 nm
sections made using a Leica EM FC6 (Leica). Sections were
stained using uranyl acetate and lead citrate. Electronmicroscopy
images were collected using a FEI TecnaiTM transmission electron
microscope with a LaB6 filament (Denka) at 120 kV. For
tomography, 100/200 nm thick sections of epon embedded M.
smegmatis with or without FA were imaged with ±60◦ tilt series,
with 5◦ increments. Images were aligned using Fourier filtered
cross correlation and reconstructed by SIRT (Simultaneous
Iterative Reconstruction Technique) with 25 iterations using the
Inspect3D Xpress software.

Fluorescence Microscopy and Combined
Light and Electron Microscopy
For fluorescence microscopy on fixed samples, cultures were
fixed by resuspension in fixative with paraformaldehyde and
glutaraldehyde (Sigma-Aldrich) for 4 h. Next, fixed bacteria
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were transferred to storage buffer with paraformaldehyde.
DNA was visualized by Hoechst 33342 (Thermo Fisher). Cell
membranes and lipid inclusions were visualized by either
BODIPY R© 558/568 C12 (4,4-difluoro-5-(2-thienyl)-4-bora-
3a,4a-diaza-s-indacene-3-dodecanoic acid; Molecular Probes)
or Nile Red (9-diethylamino-5H-benzo[a]phenoxazine-5-one;
Sigma-Aldrich) for 5min in the dark at room temperature. After
incubation, coverslips were mounted by using VectaShield
Mounting Medium (Vector Laboratories). Wide-field
fluorescence microscopy images were collected using a Leica
DM-RA light microscope equipped with a 100x Plan Apo 1.4
Phaco3 oil-immersion objective lens. Confocal fluorescence
microscopy images were collected using a Leica SP8-X SMD
confocal fluorescence microscope fitted with a 63x Plan Apo
NA 1.4 CS3 oil-immersion objective lens (Leica). Excitation
of fluorophores was done using a 100 mW White Light Laser
(Leica) and detected using a variable bandpass filter (Leica)
with HyD or photomultiplier tube detectors (Leica). For CLEM,
fixed M. smegmatis mc2155 cultures were stained for DNA
and lipids and incubated on Carbon coated golden reference
finder grids (Electron Microscopy Sciences). Grids were
subsequently analyzed with confocal fluorescence microscopy
and Transmission Electron Microscopy, and the images were
matched using Photoshop.

Monitoring Mycobacterial Survival
M. smegmatis mc2155 overnight cultures were treated with FA,
Eis inhibitor 1a∗(Chen et al., 2012; Green et al., 2018), or a
combination hereof. Cultures were treated with antibiotic for 1 h
before second antibiotic was administered. Before treatment, and
after 2 h and at day 1, 2, 3, and 6, the OD600 was determined with
a spectrophotometer, and a sample of the culture was fixed, or
plated in a dilution series on 7H10 plates in triplicate. At day
2, the antibiotic treatment was repeated. At least 3 independent
experiments were quantified per condition.

Live Cell Imaging
For live cell imaging, bacteria were stained with the
LIVE/DEAD R© BacLight R© Bacterial Viability Kit. M. smegmatis
mc2155 or M. tuberculosis mc26030 suspension was incubated
on poly-L-lysine-coated multiwell microscopy slides in the
dark at room temperature. FA was added before coverslips
were mounted, and bacteria were monitored using wide-
field fluorescence microscopy. M. smegmatis cultures were
treated with FA and time-lapse images (time interval of
2 or 5min) were acquired using a fully motorized Leica
DMi8 inverted widefield fluorescence microscope (Leica
Microsystems, Wetzlar, Germany) equipped with culture
incubator. Images were recorded with a high numerical
aperture 63 × oil immersion objective (HC PL APO CS2
63.0 × 1.40 OIL UV; Leica Microsystems) [immersion oil,
Leica Type N, nD(refractive index) = 1.518 (at 23◦C); Leica
Microsystems, Wetzlar, Germany] using a 16-bit Hamamatsu
ORCA–Flash4.0 V2 sCMOS C11440-22CU camera (Hamamatsu
Photonics, Hamamatsu, Japan) with Leica Application Suite X
image acquisition software and a GFP filter (Ex: 450-490 nm,
Dc: 495 nm, Em: 500-550 nm; Leica Microsystems, Wetzlar,

Germany). After deconvolution from ∼4 to 5 z-sections with
0.5µm spacing, images were analyzed by local background
subtraction and thresholding using Huygens Software (Scientific
Volume Imaging, SVI, Hilversum, The Netherlands). Final image
adjustments were done using ImageJ 1.49s (National Institutes
of Health, Bethesda, MD).

DNA Volume Quantification
Z-stack Wide-field FM images of fixed M. smegmatis mc2

155 stained for DNA and lipids were collected at 200 nm
increments. Deconvolution and DNA volume quantification
was subsequently performed using standard deconvolution
parameters of Huygens Professional software (Scientific Volume
Imaging, SVI, Hilversum, The Netherlands). Average volume was
determined for 60 bacteria per condition per experiment and
standard deviation was calculated with 2-tailed t-test.

Statistical Analysis CFUs
In all experiments, factor correction (Ruijter et al., 2006) was
applied to remove systematic differences between the different
measuring sessions needed to obtain the results. In case of
2 experimental conditions, Student’s t-test was applied. More
than 2 conditions were compared with 1-way Analysis Of
Variance (ANOVA). When more conditions were compared
at different time points, a 2-way ANOVA always showed a
significant interaction between culture conditions and time
points, indicating that the effects of the culture conditions
dependent on the time of analysis. To further dissect these effects,
a 1-way ANOVA per time point was performed. After each 1-
way ANOVA a post-hoc Student-Newman-Keuls was applied to
determine subsets of conditions with similar effects; conditions
in different subsets differ significantly from each other. P-values
< 0.05 were considered significant.

RESULTS

Stress-induced Ultrastructural
Rearrangement of DNA in M. smegmatis

and M. tuberculosis
Previous studies using transmission electron microscopy (TEM)
have identified striated bundles of crystalline DNA in different
bacterial species (Levin-Zaidman et al., 2000; Eltsov and
Dubochet, 2005). To determine if mycobacteria undergo similar
ultrastructural changes, TEM was performed on ultrathin
sections of early log phaseM. smegmatismc2155 control cultures
(OD < 0,8) and cultures treated with the antibiotic fusidic
acid (FA). FA inhibits protein synthesis by blocking GTPase
activity of ribosomal elongation factor G. In FA treated M.
smegmatis, bundles of DNA were localized in a single compact
nucleoid, whereas DNA in untreated bacilli was more dispersed
in multiple smaller nucleoids (Figures 1A,B). To enhance
the resolution of smaller ultra-structures such as DNA and
ribosomes, tomographic analysis was performed on semi-thick
sections of Epon-embedded M. smegmatis. Using differences in
(electron) density, we were able to identify enlarged, striated
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FIGURE 1 | Altered localization of DNA visible in M. smegmatis after FA treatment. TEM-images of ultrathin (80 nm) sections of untreated (A) and FA-treated (B) M.

smegmatis showing a single, enlarged area with typical DNA structure (*) in the FA treated bacteria. (C,D) Tomogram slices containing a semi-thick (300 nm) section of

FA treated M. smegmatis. Stacks are artificial color coded based on electron-density, with in red e-dense ribosome-like structures, in green DNA clusters (C), and the

separate TEM image (D). Arrowhead indicates septum, * indicates typical DNA structure and all scale bars represent 500 nm.

clusters of DNA (in green), which did not overlap with ribosomes
(in red, Figures 1C,D and Supplemental Figures 1A,B).

To confirm that the induced rearrangements indeed involve
DNA, we performed Correlative Light and Electron Microscopy
(CLEM). To this end, intactM. smegmatis were fixed and applied
to finder grids to enable tracing individual bacteria first using
fluorescencemicroscopy (FM) and subsequently with EM. CLEM
analysis demonstrated that the electron-lucent, ribosome-free
clusters co-localized with the fluorescence signal of DNA in
the bacteria (Supplemental Figures 1C,D). Taken together, these
data indicate that nucleoid condensation in distinct areas takes
place inM. smegmatis upon FA treatment.

DNA Condensation Is a General Stress
Response in Mycobacteria
To gain further insights into the prevalence of nucleoid
aggregation upon stress, M. smegmatis mc2155 and M.
tuberculosis mc26030 were treated with antibiotics or
mock-treated, and localization of DNA was categorized
and quantified by FM. During early log phase, DNA of
untreated M. smegmatis appeared distributed across the cell

in a distinctive pattern, forming a chain of small nucleoids.
However, more than 90% of the bacteria condensed their
DNA into a single nucleoid after FA treatment (Figure 2A).
Similarly, M. tuberculosis mc26030 subjected to the same
experimental conditions condensed their DNA into a single
nucleoid (Figure 2B). For M. smegmatis mc2155 cultures
treated with FA or mock-treated, DNA localization was
categorized and quantified after 1 h of antibiotic stress, more
than 80% of the bacteria condensed their nucleoid (Figure 2C).
Thus, within 1 hour of antibiotic-induced stress, the DNA
in mycobacteria rearranges and condenses into a single
clump.

To evaluate whether DNA condensation in mycobacteria is
a generic response to antibiotic-induced stress, M. tuberculosis
mc26030 was exposed to a variety of antibiotics that hamper
DNA replication, transcription, translation, and cell wall
synthesis (Figure 2D). Treatment with streptomycin, fusidic
acid, rifampicin and nalidixic acid resulted in a significantly
increased fraction of bacilli with condensed DNA, indicating that
DNA condensation is a generic response to antibiotic-induced
stress inM. tuberculosis.
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FIGURE 2 | DNA condensation is a generic response to antibiotic-induced stress in Mycobacterium. Fluorescent microscopy images of lipid and DNA patterns in M.

smegmatis mc2155 (A) and M. tuberculosis mc26030 (B) in control and FA treatment conditions. Lipids stained with BODIPY (red), DNA stained with Hoechst 33342

(green), an overlay of the two fluorescent signals and the overlay with the bright-field image (DIC). (C) Average bacteria with condensed DNA distribution patterns in M.

smegmatis, in control (gray bar) and after 1 h FA-treatment (black bar, bars represents mean ± standard error, n = 3, *P < 0.05). (D) M. tuberculosis mc26030 was

exposed to various antibiotics to target different cellular processes. The incidence of DNA condensation was quantified for untreated, DMSO treated as a control (gray

bars) and antibiotic treated (black bars) M. tuberculosis mc26030 cultures. Per condition, the percentage of bacilli with condensed DNA is displayed, which was

based on three measurements of n ≥ 20 bacteria per condition. Treatment with streptomycin, fusidic acid, rifampicin and nalidixic acid increased the percentage

bacteria with condensed DNA significantly (bar represents mean ± standard error, *P < 0.05). Scale bar represents 2µm.

To evaluate if DNA condensation might occur under
conditions of stress caused by agents other than antibiotics,
nutrient starvation was carried out by culturing M. tuberculosis
and M. smegmatis in phosphate-buffered saline (PBS) after

regular culturing. These culturing conditions need to be
maintained for 14 days or longer to induce quiescence in M.
tuberculosis (Gengenbacher et al., 2010), and several hours to
starve M. smegmatis (Wu et al., 2016b,c). At different time
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points, the incidence of DNA condensation was evaluated
(Figure 3 and Supplemental Figure 2). Nucleoid condensation
was apparent in M. smegmatis after 1–4 h of culturing in PBS.
ForM. tuberculosis, a slow growing bacterium, which is extremely
resistant to starvation, a gradual increase in DNA condensation
was visible after 10–14 days. Interestingly, the nucleoid was
relocated to the poles of M. smegmatis after 24 h, whereas this
condensation pattern was evident neither forM. tuberculosis, nor
for M. smegmatis treated with FA. In summary, our experiments
demonstrate DNA condensation in response to starvation- and
antibiotic-induced stress, demonstrating that DNA condensation
is a generic response to stress in mycobacteria.

DNA Condensation Responses Are Limited
to Viable Mycobacteria
Condensation of DNA could be an indication of cell death,
similar to eukaryotic apoptosis and it has indeed been reported
that that nucleoid-condensation accompanies cell death in E.
coli (Dwyer et al., 2012), whereas others have reported that
DNA condensation upon stress is reversible, suggesting that it is
restricted to viable bacteria (Levin-Zaidman et al., 2000).

To determine whether DNA condensation is reversible in
mycobacteria, M. tuberculosis mc26030 cultures were treated
with FA for 1 h and washed to remove the antibiotic, followed
by regular culturing for 24 h (Supplemental Figure 3). The
incidence of DNA condensation increased until 6 h after
treatment, followed by a gradual reduction. This decrease could
not be attributed to the progression of cell division because
the duplication time of M. tuberculosis is ∼20 h. Thus, DNA
condensation is a reversible process in mycobacteria.

To support these findings, we evaluated the viability of
mycobacteria with condensed nucleoids after FA treatment at
single-cell resolution using a viability staining, which allows
distinguishing between viable and inviable bacteria based
on the integrity of the cell wall. Live-cell imaging of M.
smegmatis was started 5min after FA addition, when the
nucleoid is uncondensed. Differences in nucleoid localization
became visible after 10min, and the first bacteria converted
from viable (green) to inviable (red) after 16min (Figure 4A,
movie in Supplemental Figures 3, 4). However, while bacteria
that condensed their DNA survived the entire duration of
the experiment (white arrowheads in Figure 4A), the dying
bacteria did not condense their nucleoid (red arrowheads). To
support this observation, the incidence of DNA condensation
was evaluated in FA-treated and control M. tuberculosis
mc26030 cultures that were fixed after the viability staining
(Figures 4B,C). One hour after FA treatment, the percentage
of viable bacteria with condensed DNA increased significantly,
whereas the percentage of nonviable bacteria with condensed
DNA did not differ between the untreated and FA-treated
cultures.

In summary, DNA condensation upon antibiotic-induced
stress is a reversible process, limited to viable mycobacteria,
and therefore, it might be part of the survival strategy of M.
tuberculosis under stress conditions, rather than a manifestation
of cell death.

Altered DNA Distribution Is DNA
Condensation
To determine whether the observed DNA redistribution is a
result of condensation or rearrangement, the average 3D volume
of the DNA clusters was measured in M. smegmatis cultures
incubated with or without FA for 1 h (Figure 5A). We observed
a significantly larger average cluster volume in the control vs. the
FA treated bacteria (1.58 and 0.24 µm3, respectively Figure 5B),
confirming DNA condensation under the latter experimental
condition.

SMCs Are Not Involved in DNA
Condensation Upon Stress
As our experiments suggested that DNA condensation might
be a survival strategy, we speculated that interference with
this process would sensitize bacteria to antibiotic treatments.
Both DNA condensation and de-condensation are likely to be
essential for the recovery from stress and progress of cell division
(Eskandarian et al., 2017). DNA-binding proteins are probable
participants in this process, and several DNA-binding proteins
involved in regulating the DNA condensation state have already
been identified. In addition to the nucleoid associated proteins
described above, the structural maintenance of chromosomes
(SMC) proteins are highly conserved factors involved in
chromosome organization and compaction in eukaryotes and
most bacteria (Sullivan et al., 2009). There are three SMCparalogs
inM. smegmatis.MSMEG_2423 is conserved in all mycobacterial
species and shares homology with the SMC from gram-positive
bacteria. EptC and MSMEG_0370 are MukB like proteins and
expression of EptC interferes with the segregation of plasmids
with pAL5000 origin of replication by manipulating plasmid
DNA topology (Panas et al., 2014). To investigate whether
these SMCs play a role in FA dependent nucleoid condensation,
the triple SMC deletion knock-out mc23449 was compared
to its isogenic strain mc2155 before and after FA treatment.
Surprisingly, the DNA in the triple deletion knock-out mc23449
still condensed into nucleoids, similar to the control strain.
More importantly, DNA condensation was clearly visible after
FA treatment, suggesting that these SMCs are redundant for this
phenotype (Figure 6).

Blocking Acetylation After DNA
Condensation Kills Mycobacteria
Ideally, DNA condensation or de-condensation could be
manipulated by inhibitors specific to bacteria and neutral to
humans. As bacteria and eukaryotes have distinct histone-like
proteins, these proteins could represent a selective antibiotic-
target. Multiple different histone-like proteins affect the
organization of the bacterial genome. For instance, Rv3852
is a histone-like protein involved in several pleiotropic
phenotypic changes, including DNA compaction, as M.
smegmatis overexpressing Rv3852 show a dispersed genome
localization (Ghosh et al., 2013). Recently, it was demonstrated
that acetylation of a histone-like protein termed MtHU by
the enzyme Eis reduces its DNA-binding capacity, leading to
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FIGURE 3 | M. tuberculosis condenses DNA during starvation. M. tuberculosis mc26030 was cultured in ADC-supplemented Middlebrook 7H9 medium before being

starved in PBS. Lipid distribution and DNA localization was imaged using Nile Red (red) and Hoechst (green) respectively at day 0, 6, and 10 (A) and percentage

bacteria with condensed DNA was quantified at day 0, 3, 6, and 10. Values represent mean percentage bacteria with condense DNA ± standard error, pooled data of

2 measurements, *P < 0.05 (B). Scale bars represent 2µm.

decompaction of DNA (Ghosh et al., 2016). Thus, the DNA-
binding properties of mycobacterial histone-like proteins are at
least partly regulated by posttranslational modifications such as
acetylation. We therefore investigated whether interfering with
acetylation affects the condensation state of the DNA.

Several highly potent and selective Eis inhibitors have been
developed (Garzan et al., 2016a,b, 2017; Willby et al., 2016),
suppressing the aminoglycoside acetylation activity of Eis in
vitro and in M. tuberculosis (Chen et al., 2012) cultures. The
pyrrolo[1,5-a]pyrazine-based Eis inhibitor 1a∗ was shown to
inhibit kanamycin acetylation biochemically, biologically and
structurally (Garzan et al., 2017; Green et al., 2018), and
therefore we chose to examine whether this inhibitor could
block DNA condensation. At MIC50, Eis inhibitor 1a∗ treated
M. smegmatismc2155 cultures did not reveal DNA condensation

(Figure 7A, Supplemental Figure 5). In addition, at 2 h of
incubation, Eis inhibitor 1a∗ did not affect FA-induced DNA-
relocalisation, irrespective of whether it was added before (EIS→
FA) or after FA (FA→ EIS), indicating that inhibiting EIS
does not influence the FA induced DNA condensation. As the
bactericidal effect of Eis inhibition might take a few days to
develop, effects of the combination treatment might be likewise
delayed. Therefore, DNA localisation was monitored for several
days. Untreated and EIS 1a∗ treated bacilli grown for 2 days
(Figure 7B, Supplemental Figure 5) displayed condensed DNA
similar to that observed under starvation conditions in PBS
(Supplemental Figure 2), which can be attributed to the high
OD of these cultures. However, bacilli treated first with FA for
1 h and subsequently by Eis inhibitor 1a∗ for 1 h (FA→ EIS)
showed an amorphous DNA distribution at this time point,
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FIGURE 4 | Mycobacteria with condensed DNA are viable. To evaluate the viability of treated M. smegmatis with condensed DNA at single cell resolution, a bacterial

viability staining was applied to live bacteria 5min after FA treatment and imaged at t = 0, 10, 16, and 28min (A; see also movie in Supplemental Figure 3). Live

bacteria (green) condense their DNA (white arrowheads), and in red, dying bacteria with dispersed DNA (red arrowheads). Scale bar represents 1µm. (B,C)

Quantification of M. tuberculosis mc26030 control (gray bars) and after 1 h treatment with FA (black bars). Bacteria stained with Syto9- and PI-fluorescence were fixed

with PFA and images were generated by confocal fluorescence microscopy. DNA distribution of (B) nonviable and (C) viable M. tuberculosis mc26030 bacteria were

quantified as dispersed (normal) and condensed. Bars represent mean ± standard error. Data were pooled from 3 measurement sessions and occurrence of DNA

condensation in viable control and FA-treated cells was compared with a Chi2-test, *P < 0.05.

FIGURE 5 | DNA volume decreases in response to antibiotic-induced stress. (A) Deconvolved widefield fluorescence microscopy images of lipid (Nile Red) and DNA

(DAPI) patterns in (un)treated M. smegmatis mc2 155. Deconvolved DAPI signal was used to compute DNA volume. Scale bar represents 1µm. (B) Quantification of

DNA volume. Bars represent mean ± standard deviation of 3 independent experiments (n = 60 bacteria per condition). ***P < 0.0005.

whereas bacteria treated in the reverse order (EIS→ FA), or by FA
alone, still displayed condensed DNA. These results suggest that
acetylation is involved in recovery of the structural organization
of the nucleoid. The amorphous DNA distribution could have
an effect on the survival of mycobacteria, and thus growth of

cultures treated with FA, Eis inhibitor 1a∗, or the successively
administrated combinations was monitored by determining CFU
on antibiotic free 7H10 plates.

Colony forming ability of cultures treated with FA→
EIS 1a∗ on day 2, 3, and 6 was significantly reduced
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FIGURE 6 | DNA condensation is independent of SMC. DNA stained with

Hoechst of 1 SMC triple mutant M. smegmatis mc26 cultures (A) untreated or

(B) treated with for 1 h with Fusidic Acid (FA). Bar represents 1µm.

(Supplemental Figure 5), as compared to those treated with
FA alone and with EIS inhibitor 1a∗→ FA [Figures 7C,D;
Supplemental Figure 5 (P < 0.05)]. Thus, interfering with
acetylation of DNA-binding proteins such as MtHU after
antibiotic treatment results in increased cytotoxicity and the
order of administration of the successive FA→ EIS 1a∗ treatment
is critical. The amorphous DNA distribution detected in bacteria
cultured under these conditions indeed correlates with reduced
survival. In summary, our results suggest that the EIS inhibitor
can interfere with the recovery after DNA condensation,
which renders mycobacteria more vulnerable to antibiotic
treatments.

DISCUSSION

DNA condensation is thought to preserve genome integrity
in bacteria (Almirón et al., 1992; Martinez and Kolter, 1997;
Wolf et al., 1999; Gordon and Wright, 2000; Smith et al.,
2002; Qu et al., 2013; Shechter et al., 2013; Badrinarayanan
et al., 2015) and in mycobacteria condensed DNA is detected
as foci in dividing bacteria (Santi et al., 2013), in log vs.
stationary phase (Vaubourgeix et al., 2015), after starvation in
PBS for M. tuberculosis (Figure 3) and for M. smegmatis (Wu
et al., 2016c), and after treatment with different antibiotics
(Figure 2). Condensation of DNA thus appears to be a
generic response to various stress conditions and our study
extend this conclusion to M. tuberculosis and M. smegmatis,
which condense their DNA in response to stress. Recently,
cryo-electron tomography demonstrated that viral phage-
infected bacteria assemble the membrane-wrapped nucleus-like
structures (Chaikeeratisak et al., 2017), which are different
from the membrane-less DNA condensates described here. The
authors demonstrated that the compact DNA is dynamic and
allows for viral DNA replication. Our results show that DNA
condensation inmycobacteria is dynamic, reversible and unlikely
to be associated with cell death, as suggested by others (Dwyer
et al., 2012). Furthermore, the involvement of acetylation in
the DNA (de)condensation process we detected, may resemble
mammalian regulation of chromatin compaction that is partly
driven by histone acetylation (Kouzarides, 2007). Interestingly,
even though conclusive data are not available, it has been
suggested that the condensed heterochromatin in mammalian
cells is more resistant to double stranded breakage induction, as

compared to euchromatin, and associated with increased radio-
resistance (Falk et al., 2010; Storch et al., 2010). DNA compaction
may thus represent a widely preserved response to stress, which
could be of benefit in the early evolutionary history of life
when harsh environmental conditions may have continuously
threatened genomic integrity.

The mechanism driving DNA condensation is not yet
understood, but our live-cell imaging experiments demonstrate
that it is a relatively fast process, as condensation occurred
within 10min after stress-induction. Others have suggested that
condensation may be a product of entropic forces, molecular
crowding and actions of NAPs or other DNA binding proteins
(de Vries, 2010; Shendruk et al., 2015) and its fast nature observed
here is in agreement with at least the first two of these suggestions.
However, our results demonstrate that the participation of SMCs
is unlikely (Figure 6) like the acetylation of DNA binding
proteins. On the other hand, NAPs could be involved in recovery
after condensation as overexpression of DNA binding proteins
resulted in de-compaction of DNA (Ghosh et al., 2013, 2016)
and the recovery after condensation can be inhibited by blocking
acetylation in general, and presumably more specifically of DNA
binding histone-like proteins.

New strategies for drug administration are urgently needed,
especially to treat the quiescent and multidrug-resistant M.
tuberculosis strains. The ongoing clinical trials mostly focus on
identifying high-efficacy treatment regimens based on combining
new (bedaquiline and delamanid Diacon et al., 2009; Gler
et al., 2012) and old antibiotics. Accordingly, the current
WHO recommendation for treatment of multi-drug resistant
tuberculosis in some patients with limited options includes
a combination therapy or concomitant use of multiple drugs
(Matteelli et al., 2016). Our results suggest a more refined,
conceptually novel strategy where a stress-inducing (antibiotic)
agent is first used to provoke a protective response in the
pathogen and subsequently the cytotoxic effect is potentiated
by inhibiting the recovery from this protective response.
Accordingly, the order of administration of these drugs is crucial
for the treatment outcome. Indeed, we found that while exposing
bacteria to the acetylation EIS inhibitor 1a∗ after FA-induced
DNA condensation dramatically enhanced the cytotoxicity, the
same combination failed to achieve similar effects when the
inhibitor was administered before DNA condensation. Thus far, a
comparable approach has not been considered and the only drug
that binds and condenses bacterial chromosomes to kill both
Gram-negative and Gram-positive species is the antimicrobial
polyhexamethylene biguanide (PHMB) (Chindera et al., 2016).

The cytotoxicity analysis presented here focused on the
activity of EIS 1a∗ inhibitor in M. smegmatis which in
combination potentiated the efficacy of fusidic acid by 10 fold.
For the application as an effective antimicrobial strategy the
decrease in CFU should be higher and clearly effective in
M. tuberculosis. However, our preliminary experiments showed
that structurally unrelated sulphonamide acetylation inhibitor
is not active in M. tuberculosis (data not shown). Therefore,
our ongoing experiments aim at testing the activity of EIS 1a∗

and a library of its derivatives in M. tuberculosis. We believe
that M. tuberculosis-optimized inhibitors could have immediate
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FIGURE 7 | Inhibition DNA acetylation after condensation DNA, improves killing M. smegmatis. (A) Fluorescence microscopy of DNA of M. smegmatis treated with

FA, compound EIS 1a*, inhibiting the Eis enzyme (Eis) or FA and subsequently Eis inhibitor (FA→ EIS), the reverse order (EIS→ FA) or control (Con) (Nile Red stained

as counterstaining is presented in Supplemental Figure 5A). (B) Similar set-up as in (A) imaged after 2 days of incubation (Nile Red stained as counterstaining is

presented in Supplemental Figure 5B). (C) Relative Colony Forming Units (CFU) based on untreated controls at 6 days after incubation in liquid antibiotic containing

medium and plated on antibiotic free plates (relative CFU is calculated based on untreated controls and average of 3 independent experiments with standard error and

* for significant differences to control P < 0.05). (D) Representative colonies from 10 µl 7H9 medium at a dilution of 102, 104, or 105 with FA, Eis inhibitor or antibiotic

combinations or control after incubation for 6 days in 7H9 and subsequently grown on 7H10 plate without antibiotics. Bars represent 1µm.

impact on rational design of combination treatment strategies
exploiting protective DNA condensation as a new Achilles’ heel
of mycobacteria.
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Supplemental Figure 1 | DNA condensation imaged with EM and CLEM.

Tomogram slices containing a semi-thick (300 nm) section ofM. smegmatis control

(A) or FA treated (B). Stacks are artificial color coded based on electron-density,

with in red e-dense ribosome-like structures, in green DNA clusters, top section

(TEM) and the segmentations of the tomograms separate from the TEM image

(tomo). Scale bars represent 500 nm and A
′
or B

′
movie focusing through the

section, depicting different layers. (C) Combined Light and Electron Microscopy

images of a small group of intact, PFGA fixed M. smegmatis treated with FA for

1 h and stained with BODIPY (red, lipid), DAPI-Hoechst (green, DNA arrowheads

indicate clustered DNA), the combination of DNA and Lipid and combinations of

EM and DNA and Lipid, bar represents 2µm. (D) high magnification CLEM and

(D
′

) EM image of fixed M. smegmatis from (C) demonstrating e-lucent areas in the

bacteria that correspond to the DNA clusters (arrowheads). Bar represents 2µm.

Supplemental Figure 2 | M. smegmatis condenses DNA during starvation. M.

smegmatis was cultured in ADC-supplemented Middlebrook 7H9 medium before

being transferred to PBS. Bacteria were starved in this medium for 0, 1, 4, and

24 h. Lipid distribution (Nile Red) and DNA localization (Hoechst in green) and

overlay with DIC detected at the different time points (A). Genome localization was

quantified and categorized in dispersed, condensed and polar at 0, 1, 4, 24 h (B).

Bars represent mean ± standard error n = 2, based on >500 bacteria. Scale bars

represent 2µm.

Supplemental Figure 3 | M. tuberculosis condensation is reversible. The

reversibility of DNA condensation after antibiotic treatment was evaluated. (A) At

time points pre- and post-treatment of M. tuberculosis mc26030 with FA for 1 h,

the incidence of DNA condensation was quantified in fixed samples stained with

DAPI using confocal fluorescence microscopy. Values represent mean ± standard

error based on 8 measurements of n ≥ 20 bacteria per time point, originating from

2 independent experiments ∗P < 0.05. (B) DNA in response to antibiotic-induced

stress, schematically illustrated, with green resembling DNA-localization. (C) Live

cell imaging combined with bacterial viability staining applied to live M. smegmatis

5min after FA treatment and imaged at t = 0 till 28min with 5min intervals (see

also separate movie file and stills in Figure 4).

Supplemental Figure 4 | Live cell imaging of FA treated M. smegmatis. Two M.

smegmatis bacteria are imaged 5min after FA treatment, stained with bacterial

viability staining and imaged at t = 0 till 38min with 2min intervals (A) with stills in

(B).

Supplemental Figure 5 | Inhibition DNA acetylation after condensation DNA,

does not prevent DNA condensation but improves killing M. smegmatis. (A)

Fluorescence microscopy of DNA (green) and lipids with Nile Red stained as

counterstaining (red) of M. smegmatis cultures treated with FA (FA), compound Eis

1a∗, inhibiting the Eis enzyme (EIS) or FA and subsequently Eis inhibitor (FA→ EIS),

the reverse order (EIS→ FA) or control (Con). (B) Similar set-up as in (A) imaged

after 2 days of incubation in antibiotics. (C) Average CFU at 2 h,1, 2, 3, and 6 days

after incubation in liquid antibiotic containing medium and plated on antibiotic free

plates (average of 3 measurements of 3 independent experiments with standard

error). (D) A one-way ANOVA was performed on log transformed CFU data per

time point. Subsequently Student-Newman-Keuls test was applied to identify

subsets of conditions with similar effects on CFU (P < 0.05). Bars represent 1µm.
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