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Abstract
Preeclampsia is a pregnancy specific hypertensive disease that confers significant mater-

nal and fetal risks. While the exact pathophysiology of preeclampsia is unknown, it is widely

accepted that placental dysfunction is mechanistically involved. Recent studies reported

aberrant expression of placenta-specific microRNAs (miRNAs) in preeclampsia including

miR-517a/b and miR-517c. Using placental biopsies from a preeclampsia case-control

study, we found increased expression of miR-517a/b in term and preterm preeclampsia vs

controls, while, miR-517c was increased only in preterm preeclampsia vs controls. To deter-

mine if miR-517a/b and miR-517c are regulated by hypoxia, we treated first trimester prima-

ry extravillous trophoblast cells (EVTs) with a hypoxia mimetic and found both were

induced. To test for a mechanistic role in placental function, we overexpressed miR-517a/b

or miR-517c in EVTs which resulted in decreased trophoblast invasion. Additionally, we

found that miR-517a/b and miR-517c overexpression increased expression of the anti-

angiogenic protein, sFLT1. The regulation of sFLT1 is mostly unknown, however,

TNFSF15, a cytokine involved in FLT1 splicing, was also increased by miR-517a/b and

miR-517c in EVTs. In summary, we demonstrate that miR-517a/b and miR-517c contribute

to the development of preeclampsia and suggest that these miRNAs play a critical role in

regulating trophoblast and placental function.

Introduction
Preeclampsia affects 5–10% of pregnancies worldwide and continues to be a major contributor
to maternal morbidity and mortality. Severe preeclampsia, often occurring earlier than 37
weeks, is associated with maternal morbidity and adverse neonatal and fetal outcomes includ-
ing perinatal death, preterm birth, small for gestational age infants, and intrauterine growth
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restriction [1–3]. Despite the extensive research investigating the pathogenesis of preeclampsia,
the primary causes of this disease are unknown. However, several theories have sought to ex-
plain the development of preeclampsia, including abnormal placental implantation and func-
tion [4], imbalance of angiogenic factors [5, 6], changes in placental oxygen tension [7] and
alterations in the placental and maternal immune response [8]. Although symptoms of pre-
eclampsia can exist after delivery, clinically, delivery of the placenta remains the only treatment
suggesting that the origins of this disease may lie within the placenta.

Recent literature suggests that poor placental development and abnormal placentation early
in pregnancy is mechanistically involved in the development of disease. Poor placentation,
which is characterized by shallow trophoblast invasion into the maternal uterine spiral arteries,
results in narrow vessel diameter, decreased blood flow and, ultimately, poor uteroplacental
perfusion [9]. Consequently, the placenta becomes increasingly ischemic/hypoxic as gestation
progresses resulting in altered placental secretion/expression of many factors. These include
soluble fms-like tyrosine kinase 1 (sFLT1, soluble VEGF receptor) [5, 10, 11] and inflammatory
cytokines [12, 13], among many others, which are known to be associated with preeclampsia
pathogenesis. sFLT1 is a splice variant of the membrane bound VEGF receptor 1 (VEGFR1,
FLT1) and is classified as an anti-angiogenic protein by acting as a decoy receptor and blocking
the downstream signaling of VEGF and PLGF. While the mechanisms regulating VEGFR1
splicing are largely unknown, a recent study has indicated that the tumor necrosis factor super
family 15 (TNFSF15) signaling pathway may be involved [14]. However, not much is known
about the presence, function or regulation of TNFSF15 in the placenta.

To identify the molecular mechanisms contributing to the placental dysfunction seen in
preeclampsia, many studies have looked at differential gene expression between preeclamptic
and normal placentas [15, 16]. These studies provide clear evidence that changes in placental
gene expression contribute to the development of preeclampsia. However, the regulatory
mechanisms controlling these gene changes remain largely unknown.

In recent years, microRNAs (miRNAs) have emerged as important regulators of gene ex-
pression in many disease related pathologies. miRNAs are small, non-coding RNAs that regu-
late gene expression primarily at the post-transcriptional level. miRNAs function by binding to
the 3’-untranslated region (UTR) of target genes resulting in post-transcriptional repression
[17]. As this binding can occur with partial complementarity, one miRNA has the ability to
bind to multiple genes (even hundreds) and one gene can be regulated by many miRNAs [18].

Increasing evidence suggests that miRNAs are important regulators of placental develop-
ment and function. Many studies identified placenta specific miRNAs [18, 19] including one
study that found more than 600 miRNAs in healthy term placenta [20]. The most highly ex-
pressed placental miRNAs were found to be encoded by the primate specific C19MC- cluster
of miRNAs located on chromosome 19 [21]. Encoding 54 predicted miRNAs [22], C19MC is
the largest human miRNA gene cluster and is almost exclusively placental specific [23]. miR-
NAs in the C19MC cluster comprise the majority of human term trophoblast miRNAs which
includes the miR-517 family of miRNAs [23, 24]. The miR-517 family consists of three iso-
forms, miR-517a, miR-517b, and miR-517c [25]. However, sequence data from miRBase [26],
a central repository for published miRNA sequences, lists an identical sequence for miR-517a
(hsa-miR-517a-3p, accession # MIMAT0002852) and miR-517b (hsa-miR-517b-3p, accession
# MIMAT0002857) indicating that miR-517a/b have identical target genes and functions. Due
to their sequence homology, miR-517a and miR-517b will henceforth be referred to as miR-
517a/b. Recent studies have reported aberrant expression of placenta-specific miRNAs in pre-
eclamptic pregnancies [27–29]. Several studies used arrays to investigate differential expression
of miRNAs in preeclamptic placentas and identified increased expression of miR-517c [30]
and miR-517� (miR-517-5p) [28]. The expression of miR-517a/b in preeclamptic placentas has
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not been investigated. While the functions of miR-517a/b and miR-517c remain largely un-
known, their placental expression suggests a role in the regulation of altered placental and tro-
phoblast function including abnormalities in trophoblast invasion known to be associated
with preeclampsia.

Here we investigate whether altered expression of miR-517a/b and miR-517c result in tro-
phoblast dysfunction that contributes to the development of preeclampsia. To address this,
first we used an existing case-control study to determine 1) if miR-517a/b and miR-517c are al-
tered in preeclamptic placentas and 2) if these expression changes were associated with disease
severity. Second, we used primary first trimester extravillous trophoblast (EVT) cells to investi-
gate if miR-517a/b and miR-517c are regulated by hypoxia, a known contributor to the devel-
opment of preeclampsia. Lastly, using primary EVTs, we tested whether increased expression
of miR-517a/b and miR-517c altered trophoblast invasion, TNFSF15 expression and the release
of angiogenic factors—sFLT1, VEGF and PLGF.

Materials and Methods

Ethics Statement
The Preeclampsia: Mechanisms and Consequences case-control study was performed with ap-
proval from the University of Pennsylvania Institutional Review Board. Written informed con-
sent was obtained from all study participants prior to sample collection. Extravillous trophoblast
cells lines were isolated from de-identified first trimester placental tissues and were, therefore,
exempt from IRB approval (University of Pennsylvania Institutional Review Board (IRB #7)).

Case-control study
A case-control study (Preeclampsia: Mechanisms and Consequences) was performed between
March 2005 and October 2009 at the Hospital of the University of Pennsylvania. Controls were
defined as women without hypertension-related complications that presented for delivery at
term (�37 gestational weeks). Cases were identified based on pre-specified maternal criteria
according to standard American College of Obstetricians and Gynecologists (ACOG) [31–33].
Based on these pre-specified criteria, case eligibility was determined at the time of enrollment
by the study investigators and not by the treating physician. Demographic variables were com-
pared between all cases and controls and between term and preterm cases using t-tests. Imme-
diately after delivery, placental biopsies were taken from cases and controls. After removal of
the fetal membranes, four full-thickness (0.5 inch in diameter) random biopsies were taken by
a trained research coordinator. The tissues were washed in sterile saline and immediately fro-
zen in liquid nitrogen and stored at -80°C until use. Placental expression of miR-517a/b and
miR-517c was assessed by qPCR. Clinical information including race, BMI at first prenatal
visit, maternal age and other maternal and prenatal factors were abstracted from the patient’s
medical record.

Cell Culture
Primary extravillous trophoblast cells (EVT) were isolated from first trimester villous tissue
using a protocol that has been established and well documented by Graham et al. [34–36].
Briefly, finely minced chorionic villi collected from de-identified elective first trimester preg-
nancy termination tissues (less than 12 weeks) were cultured at 37°C in RPMI 1640 medium
containing 20% charcoal-stripped (steroid-free) fetal bovine serum (FBS). EVT cells, which
outgrow from attached villous fragments, were separated from villous tissue during washing
and passaging of the cells. The isolated EVT cells were maintained in RPMI 1640 medium
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containing 20% FBS and 1% penicillin (100 U/mL)/ streptomycin (100 U/mL) solution. The
EVT cells used in our experiments were characterized by immunostaining for trophoblast cell
markers, cytokeratin-7, 8 and 18 and integrin alpha-1 [35, 37–39]. These results are similar to
those obtained by other investigators using the same EVT isolation methods and confirm the
purity of the EVT cell preparations [34, 36].

EVT Cobalt Chloride Treatment
EVTs were plated at 2.5 x 105 cells/well in 24-well plates. Forty eight hours later, the cells were
treated with 0–100 uM of CoCl2, (Sigma, St. Louis, MO) a hypoxia mimetic [40, 41], or vehicle
control (water) dissolved in RPMI 1640 for 6 hours (n = 4). After treatment, the media was as-
pirated, the cells were washed with PBS and 500uL of Trizol (Invitrogen, Life Technologies,
Grand Island, NY) was added to each well for future miRNA extraction.

EVT Cell Transfection
EVT cells were plated at 1x105 cells/well in 6-well plates in antibiotic-free 1640 RPMI media
containing 20% FBS. The next day, the cells were transfected with miRNA mimics (40 nM) or
miRNA inhibitors (40nM). Hsa-miR-517a/b, hsa-miR-517c and miR-negative (non-targeting
control) miRNA mimics and anti-miR-517a/b, anti-miR-517c and anti-miR-negative control
inhibitors were purchased from Ambion (Life Technologies). Lipofectamine RNAiMAX (Invi-
trogen) was used for the transfection of the miRNA mimics and inhibitors according to the
manufacturers’ protocol. Cells were transfected for 48 to 72 hours and maintained under nor-
mal growth conditions. Cells were then used for invasion assays or QPCR measurement of tar-
get genes or media was collected for angiogenic growth factor measurement by ELISA.

miRNA Isolation from Placental Tissue and EVT Cells
Approximately 25 mg of placenta tissue per sample was homogenized in 500uL of Trizol with
5mm steel beads using a TissueLyser (Qiagen, Valencia, CA) set at 30 Hz for 3 mins (2 times).
Placental tissue and EVT cells (with or without miRNA transfection) in Trizol underwent phe-
nol-chloroform extraction and the resulting aqueous phase was further column purified with
the miRNeasy kit (Qiagen) according to the manufacturer’s protocol for total RNA isolation
including small RNAs. RNA concentration was determined via a NanoDrop 2000 Spectropho-
tometer (Nanodrop Rockland, DE) prior to the generation of cDNA.

cDNA generation and qPCR
cDNA was generated from 1μg of isolated RNA from either placental tissue or EVT cells (with
or without transfection) using the miScript Reverse Transcription II kit (Qiagen) or high ca-
pacity cDNA reverse transcription kit (Applied Biosystems, Life Technologies) for SYBR
Green or TaqMan primers, respectively. qPCR was performed on the 7900HT Real-Time PCR
System (Applied Biosystems) using the miScript SYBR Green PCR kit (Qiagen) or Taqman
Universal PCR Master Mix (Applied Biosystems) according to the manufacturers’ protocols.
The ΔΔCT (SYBR Green PCR) or standard curve (TaqMan PCR) method was used for relative
expression quantification using the RQ manager software v2.4 (Applied Biosystems). For
SYBR Green PCR, the endogenous reference genes SNORD25 and RNU6B were used for
miRNA quantification from placental tissues and EVT cells, respectively. All primer sets were
purchased from Qiagen: hsa-miR-517a/b (MS00004459), hsa-miR-517c (MS00009954),
SNORD25 (MS00014007) and RNU6B (MS0001400). For TaqMan PCR, the relative abun-
dance of the target of interest was divided by the relative abundance of 18S in each sample to
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generate a standardized abundance for the target transcript of interest. All primer sets were
purchased from Applied Biosystems: TNFSF15, JMJD6, U2AF2, JMJD8 and 18S.

Western Blots
EVTs were plated at 1x105 cells/well in a 6-well plate in 2mL of media (1640 RPMI + 20%
FBS). 48hrs later, the cells were treated with 100uL of a CoCl2 solution in RPMI for the indicat-
ed times. The final concentration of CoCl2 in each well was 100 uM. The cells were rinsed with
ice cold PBS at the time of harvesting and whole cell protein lysates were extracted with ice-
cold RIPA buffer. Protein concentrations were estimated with the DC protein assay (BioRad,
Hercules, CA) according to the manufacturer’s protocol. 20ug of each protein lysate was re-
solved via SDS-PAGE and transferred to PVDF membranes. The membranes were blocked for
1hr at room temperature with blocking buffer (5% milk, 0.5% Tween20, 1X Tris-buffered sa-
line) and then probed with HIF1α (Cell Signaling, Beverly, MA; 3716S) or alpha tubulin
(Abcam, Cambridge, MA; ab7291) primary antibodies in blocking buffer at 4°C overnight.
Membranes were rinsed twice each with wash buffer (0.5% Tween20, 1X Tris-buffered saline)
then blocking buffer, then probed with anti-rabbit or anti-mouse IgG HPR-linked secondary
antibodies (GE Healthcare, Piscataway, NJ) in blocking buffer for 30 minutes at room tempera-
ture. Membranes were rinsed 4 times in wash buffer for 10–15 minutes each. Chemiluminesce
ECL reagent (Perkin Elmer, Waltham, MA) was added to the membranes according to the
manufacturer’s instructions. Membranes were then exposed to X-ray film.

Matrigel Invasion Assay
The invasiveness of primary EVT cells through an extracellular matrix was measured using a
commercially available cell invasion assay kit (Chemicon, Temecula, CA). Briefly, EVT cells
were 1) treated with CoCl2 (100uM) for 24 hours prior to being used for the invasion assay and
for an additional 72 hours in the media in the top chamber during the invasion assay or 2) trans-
fected with miR-negative control, miR-517a/b and miR-517c mimics or inhibitors (as described
above) for 48 hours prior to the start of the invasion assay. The transfected EVT cells (300ul of
1x106 cells/ml suspension) were then plated onto ECMatrix gel-coated cell culture inserts (8 μm
pore size) in 24 well plates (n = 3 per treatment group). After 72 hours, the non-invading cells
and the ECMatrix gel from the upper surface of the inserts was removed using a cotton-tipped
swab. Invasive cells on the lower surface of the membrane were stained with 0.2% crystal violet
for 20 minutes. The membranes were mounted onto microscope slides. Stained cells from five
randommicroscope fields at 20X magnification were photographed, counted and analyzed.
Data from experiments measuring EVT invasion are expressed as a percent of control.

Angiogenic Growth Factor ELISAs
EVTs were cultured and transfected as stated above. sFLT1, VEGF and PLGF were measured
in EVT cell culture media after 48 hours of transfection with miR-negative, miR-517a/b or
miR-517c mimics (n = 4). The expression of sFLT1, VEGF and PLGF were measured by ligand
specific commercially available ELISA kits that utilize a quantitative sandwich enzyme immu-
noassay technique using regents from R&D Systems (Minneapolis, MN).

Lactate Dehydrogenase (LDH) Cytotoxicity Assay
The viability of EVT cells (n = 3), after transfection with miR-517a/b, miR-517c and miR-
negative, was determined by measuring LDH leakage into the medium using the CytoTox 96
Non-Radioactive Cytotoxicity Assay (Promega Corp, Madison, WI). After collecting cell culture
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medium, the EVTs were lysed with RIPA Buffer containing protease and phosphatase inhibitors
(Sigma, St. Louis, MO). Released LDH was measured with a coupled enzymatic assay that results
in the conversion of a tetrazolium salt into a red formazan product. The amount of color formed
is proportional to the number of lysed cells. The enzymatic reaction was measured spectropho-
tometrically by absorbance readings at 490 nm. The percentage of cytotoxicity was calculated as
experimental LDH (cell culture media)/maximum release of LDH (cell lysates).

Statistical Analysis
Statistical analyses for the in vitro studies were performed for all experiments with the GraphPad
Prism Software (Version 4.0, San Diego, CA). For data that were normally distributed, t-tests or
one-way analysis of variance (ANOVA) was used. If statistical significance was reached
(p<0.05), then pair-wise comparison with a Student-Newman-Keuls (SNK) test was performed.
If data were not normally distributed then the non-parametric Mann-Whitney test was used.

Results

Clinical and demographic characteristics of case-control study
We investigated the association between preeclampsia and the expression of miR-517a/b and
miR-517c in placentas from our case-control study. Clinical and demographic characteristics
of the study groups are shown in Table 1. There was a statistically significant decrease in mean
gestational age at delivery and mean fetal weight in cases versus controls (p<0.05) and in pre-
term cases versus term cases (p<0.0001). All other parameters including maternal age, race,
body mass index and fetal gender were not statistically different.

miR-517a/b and miR-517c expression are up-regulated in preeclamptic
placentas
miR-517a/b (p = 0.0085, Fig. 1A) and miR-517c (p = 0.0043, Fig. 1B) were significantly up-reg-
ulated in preeclamptic placentas relative to control placentas. Premature delivery is often

Table 1. Clinical and demographic characteristics of Preeclampsia case-control study.

Case—Control Analysis Case—Case Analysis

Control (n = 14) Preeclampsia (n = 31) Term PE (n = 18) Preterm PE (n = 13)

Mean maternal age (years) 27.0 ± 7.2 28.1 ± 7.7 28.3 ± 8.2 27.8 ± 7.3

Mean gestational age at delivery (weeks) 39.2 ± 1.2 35.7 ± 4.6* 38.8 ± 1.0 31.4 ± 4.0**

Race, n (%)

African American 11 (78.6) 25 (80.6) 14 (77.8) 11 (84.6)

Other 3 (21.4) 6 (19.4) 4 (22.2) 2 (15.4)

Mean Body Mass Index (BMI) (lbs/inches2) 30.1 ± 8.2‡ 30.3 ± 7.5‡ 31.7 ± 6.8‡ 28.2 ± 8.2‡

Mean Fetal Weight (grams) 3272 ± 467 2630 ± 962* 3225 ± 534 1807 ± 804*

Fetal Gender, n (%)

Male 5 (35.7) 17 (54.8) 7 (38.9) 10 (76.9)

Female 9 (64.3) 14 (45.2) 11 (61.1) 3 (23.1)

Data expressed as Mean ± SD.
‡BMI at first prenatal visit with an average gestational age of 18 weeks (controls), 15 weeks (cases), 14 weeks (term cases) or 17 weeks (preterm cases).

*p<0.05 versus Controls,

**p<0.0001 versus Term Cases

doi:10.1371/journal.pone.0122707.t001
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necessary in severe preeclampsia due to fetal and maternal health complications. Hence, pre-
term status in our cohort served as an indicator of disease severity. We stratified the preeclamp-
tic placental samples into term and preterm based on gestational age at delivery and compared
miRNA expression to that of the control (normal term deliveries). miR-517a/b was significant-
ly up-regulated in both term (p = 0.0426) and preterm (p = 0.0060) preeclamptic placentas rel-
ative to the control (Fig. 1A) while miR-517c was significantly up-regulated in the preterm
cases (p = 0.0098) but not in the term cases (p = 0.0547) (Fig. 1B). These results suggest that
placental expression of miR-517a/b and miR-517c may be further correlated with the severity
of preeclampsia.

miR-517a/b and miR-517c expression is regulated by hypoxia
Studies suggest that preeclampsia is associated with abnormal placental hypoxia early in preg-
nancy [42, 43]. Therefore, in order to determine if miR-517a/b and miR-517c expression is reg-
ulated by hypoxia, we treated first trimester primary EVT cells with a hypoxia mimetic, cobalt
chloride (CoCl2) [40, 41]. CoCl2 induced miR-517a/b (p = 0.0003, Fig. 2A) and miR-517c
(p = 0.0027, Fig. 2B) expression. miR-517a/b and miR-517c expression was significantly in-
duced in EVTs treated with 100 uM of CoCl2 for 6hrs (miR-517a/b: p<0.0001; Fig. 2A and
miR-517c: p<0.01, Fig. 2B). To confirm that CoCl2 was mimicking hypoxia in the EVTs, we
measured HIF1α protein expression in cells exposed to CoCl2 over the course of 24 hours
(Fig. 2C). Expression of HIF1α protein was evident as early as one hour after treatment, peaked
at three hours (a time period prior to the observed increase in miR-517), and remained high as
long as 24 hours post treatment. As hypoxia is a known regulator of trophoblast function, we
assessed if the hypoxia mimetic, CoCl2, altered trophoblast invasion. Indeed, treatment of
EVTs with CoCl2 decreased EVT invasion by 40% relative to the negative control (p = 0.014;
Fig. 2D). These results suggest that CoCl2 induces hypoxia in EVTs, which in turn activates
HIF1α protein and miR-517a/b and miR-517c expression.

miR-517a/b and miR-517c decrease trophoblast invasion
Given the results of our clinical studies showing that the expression of miR-517a/b and miR-
517c are increased in preeclamptic placentas and that these miRNAs can be induced by

Fig 1. Placental miR-517a/b andmiR-517c expression is upregulated in preeclampsia. Boxplots of miR-517a/b (A) and miR-517c (B) expression in
human placentas from a preeclampsia case-control study. Case cohort (case-all) samples were divided into preterm (case-preterm) and term (case-term)
subgroups. All comparisons are relative to the control group. *p<0.05

doi:10.1371/journal.pone.0122707.g001
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hypoxia, we sought to determine if these miRNAs altered placental function, specifically EVT
invasion, a process known to be abnormal in preeclampsia. Invasion was decreased (p<0.0001)
in EVTs transfected with miR-517a/b and miR-517c (Figs. 3A and 3C). miR-517a/b decreased
invasion by 80.9% (p = 0.0002) and miR-517c decreased invasion by 67.9% (p = 0.0001) com-
pared to EVTs transfected with a miR-negative control. EVTs were also transfected with inhibi-
tors of miR-517a/b and miR-517c in order to silence endogenous miR-517 levels. miR-517a/b
inhibition increased EVT invasion by 41.8% (p = 0.0057) and miR-517c inhibition increased
invasion by 35% (p = 0.0337) compared to anti-miR-negative control transfected cells (Figs. 3B
and 3D). Additionally, transfection of EVTs with miR-517a/b and miR-517c had no effect on
levels of LDH released into the media (miR-517a/b: 0.96% cytotoxicity miR-neg vs 1.05% cyto-
toxicity miR-517a/b, miR-517c: 0.96% cytotoxicity miR-neg vs 1.03% cytotoxicity miR-517c).
These results indicate that the decreased invasion observed in EVTs was not a result of cell
death caused directly by the transfection of miR-517a/b or miR-517c but was instead a regulat-
ed response by their downstream targets.

miR-517a/b and miR-517c increase sFLT1 expression
Previous studies showed that an imbalance of placental angiogenic factors, specifically sFLT1,
VEGF and PLGF; contribute significantly to the development of preeclampsia. Thus, we inves-
tigated if increased amounts of miR-517a/b and miR-517c, as was seen in our preeclamptic pla-
centas, could alter the release of angiogenic factors from primary first trimester EVT cells.

Fig 2. Hypoxia upregulates trophoblast miR-517a/b andmiR-517c expression.miR-517a/b (A) and miR-517c (B) expression in EVT cells treated with
the indicated doses (0–100 μM) of CoCl2 for 6hrs. Time course of HIF1α protein (C) expression in EVTs treated with CoCl2 (100 μM). (D) Invasion assay of
EVTs treated with 100 μMCoCl2. Values are mean ± SEM. n = 4 (A and B), n = 3 (D) *p<0.05, **p< 0.01.

doi:10.1371/journal.pone.0122707.g002
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EVTs transfected with miR-517a/b (p<0.001) and miR-517c (p<0.001) showed a significant
increase in the release of sFLT1 (Fig. 4A). Further, there were no significant differences ob-
served in VEGF or PLGF in EVTs transfected with miR-517a/b or miR-517c (Figs. 4B and 4C).

miR-517a/b and miR-517c increase TNFSF15 expression
Due to the finding that miR-517a/b and miR-517c overexpression resulted in an increase in
sFLT1, we further investigated other potential upstream regulators linking miR-517a/b and
miR-517c to alternative sFLT1 splicing. As the tumor necrosis factor super family 15
(TNFSF15) pathway has recently been implicated in sFLT1 regulation [14, 44] we focused on
the effects of miR-517a/b and miR-517c on TNFSF15, Jumonji domain-containing protein 6
(JMJD6) and the splicing factor U2 small nuclear RNA auxiliary factor 2 (U2AF2). TNFSF15
expression was significantly increased by both miR-517a/b (p = 0.0009) and miR-517c
(p = 0.0024) (Fig. 5). However, JMJD6 and U2AF2 were not changed by the overexpression of
either of these miRNAs (Table 2). Additionally, we included JMJD8, a known predicted target
of miR-517a/b and miR-517c, as a positive control which was, as expected, significantly de-
creased with miR-517a/b (p = 0.0186) and miR-517c (p = 0.0036) transfection (Table 2).

Fig 3. miR-517a/b andmiR-517c regulates trophoblast invasion. Bar graph results from invasion assays of EVT cells transfected with (A) miR-517a/b/c
mimics or or (B) miR-517a/b/c inhibitors. Associated light microscopy photographs of invaded cells transfected with (C) miR-517a/b/c mimics or (D) miR-
517a/b/c inhibitors. Values in (A) and (B) are expressed as a percent of control (miR-negative or anti-miR-negative transfected cells). n = 3. *p<0.001

doi:10.1371/journal.pone.0122707.g003
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Fig 4. miR-517a/b andmiR-517c increases the release of sFLT1 from trophoblast cells. sFtl1 (A), VEGF (B) and PLGF (C) levels in cell culture media
after extravillous trophoblast cell transfection with miR-negative control, miR-517a/b and miR-517c. VEGF and PLGF levels were unchanged by miR-517a
and miR-517c transfection. Values are mean ± SEM. n = 4 *p<0.001.

doi:10.1371/journal.pone.0122707.g004

Fig 5. miR-517a/b andmiR-517c increases TNFSF15 expression in trophoblast cells. TNFSF15
expression in extravillous trophoblast cells transfected with miR-negative control, miR-517a/b and miR-517c.
Values are mean ± SEM. n = 5 *p<0.001.

doi:10.1371/journal.pone.0122707.g005
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Discussion
Here, we report that miR-517a/b and miR-517c may contribute to the development of pre-
eclampsia by altering first trimester extravillous trophoblast function. First, we demonstrated
that an increased placental expression of miR-517a/b and miR-517c at term is associated with
preeclampsia suggesting a role for these miRNAs in placental function. Second, in first trimes-
ter trophoblasts we found that hypoxia results in increased miR-517a/b and miR-517c expres-
sion indicating that the abnormally hypoxic placental environment, known to be associated
with preeclampsia, could induce these miRNAs. Third, in first trimester EVTs, increased ex-
pression of miR-517a/b and miR-517c results in decreased trophoblast invasion, increased pro-
duction of the anti-angiogenic cytokine, TNFSF15, and increased production of sFLT1 but not
VEGF or PLGF. In preeclampsia, both TNFSF15 and sFLT1 act as anti-angiogenic proteins
contributing to placental dysfunction. This may provide insight into a possible functional
mechanism for the actions of these miRNAs in the placenta. Collectively, these data not only
give new insight into the level of gene regulation occurring within the placenta, but also, pro-
vides a plausible pathological mechanism for the role of these miRNAs in preeclampsia.

In recent years, the investigation into gene regulation by miRNAs in many pathological dis-
ease states including cancer, among many others, has increased significantly. However, re-
search focused on the role of miRNAs in adverse obstetrical outcomes, including preeclampsia,
is still in its infancy. A handful of studies have identified differences in both overall miRNA
profiles and specific miRNAs in preeclamptic placentas when compared to normal term deliv-
eries. Among them, two have identified miR-517 isoforms (miR-517c and miR-517�) as being
altered in preeclamptic placentas using large scale high throughput miRNA arrays [28, 30].
Using real time QPCR to focus on miR-517a/b and miR-517c specifically, our study confirms
that the expression of these miRNAs is increased in the preeclamptic placenta. Additionally,
placentas from women with preterm preeclampsia, a more severe form of the disease, appear
to have higher and less variable expression of both miR-517a/b and miR-517c suggesting that
expression of these miRNAs may be associated with pathological mechanisms contributing to
disease severity. Since it has been recently shown that miRNAs have the ability to be secreted
from the placenta/trophoblasts via exosomes [23], it is interesting to note that miR-517 iso-
forms (miR-517a and miR-517c) have been found in the circulation of pregnant women [45,
46]. While the functional significance of miRNAs in the maternal circulation is unknown, the
presence of miR-517 miRNAs in maternal blood may be simply a consequence of passive re-
lease from placental trophoblast or could suggest that these miRNAs may play a role in mater-
nal-fetal communication or maternal adaptation to the fetus [47]. Additionally, it provides
evidence for the possibility of miR-517 miRNAs to be used diagnostically as serum biomarkers
of preeclampsia.

While the regulation of miRNA expression in the human placenta is not completely under-
stood, several studies have found that oxygen tension within the placenta can have significant

Table 2. mRNA expression levels of TNFSF15 associated pathway genes involved in sFLT1 regulation in first trimester extravillious trophoblast
cells transfected with miR-517a/b andmiR-517c.

miR-517a/b miR-517c

Gene Fold Change P value Fold Change P value

JMJD6 1.18 0.0833 1.16 0.1214

U2AF2 1.04 0.7403 -1.02 0.8909

JMJD8 -1.36 0.0186 -1.63 0.0036

doi:10.1371/journal.pone.0122707.t002
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effects on miRNA expression [48, 49]. As the miR-517 family is most highly expressed in tro-
phoblast cells [24, 30], we used primary first trimester EVTs to investigate hypoxia as a poten-
tial regulator of miR-517a/b and miR-517c expression. The expression of miR-517a/b and
miR-517c was significantly increased by hypoxia suggesting that abnormal/pathological hyp-
oxia, known to be associated with preeclampsia in early pregnancy, could be a significant regu-
lator of trophoblast miR-517 expression. As there are no known studies to date that have
shown hypoxic regulation of miR-517, we can only hypothesize that hypoxia-mediated changes
in miR-517a/b and miR-517c are regulated by hypoxia- inducible transcription factors such as
hypoxia inducible factor-1 alpha (HIF1-a), as has been shown for other hypoxia-mediated
miRNAs such as miR-210 [50]. Interesting to note, the C19MC cluster of miRNAs (of which
miR-517a/b/c are members) has been shown to be epigenetically regulated, primarily by DNA
methylation. C19MC miRNAs are not readily detectable in most cell types outside of the pla-
centa; however, when cancer cells are treated with demethylating agents, their expression is
strongly increased [51]. A recent study, has shown that exposure to pathological hypoxia (<1%
oxygen) alters the epigenetic profile in human trophoblasts [52]. Taken together, these data
suggest that pathological placental hypoxia in early pregnancy could cause modifications of the
epigenetic regulation of miR-517 miRNAs resulting in downstream altered
trophoblast function.

miR-517a/b and miR-517c are highly expressed in the trophoblast cells of the placenta and
are altered in preeclampsia, however, their role in regulating placental/trophoblast function is
largely unknown. In this study, overexpression of miR-517a/b and miR-517c resulted in a high-
ly significant decrease in trophoblast invasion suggesting that the increased miR-517a/b and
miR-517c seen in preeclamptic placentas may target genes known to regulate trophoblast func-
tion early in pregnancy. While this is one of the first studies to attribute a function to the pres-
ence of miR-517a/b and miR-517c in the placenta and studies in other tissues/cell types are
very limited, a recent study found that over expression of miR-517a and miR-517c inhibited
cell proliferation of hepatocellular carcinoma cells due to G2/M cell cycle arrest through PYK2
(PTK2B), a predicted target of miR-517a/c [53]. Furthermore, they showed that blocking en-
dogenous miR-517a and miR-517c resulted in aggressive cell growth and adhesion-dependent
colony formation [53]. While not focused on miR-517a/b and miR-517c specifically, a recent
study provided evidence that ectopic expression of C19MCmiRNAs resulted in decreased tro-
phoblast migration in HTR-8/SVneo cells [54]. Although invasion, migration and proliferation
are separate and distinct cellular functions, all are vital for normal trophoblast function and
may be regulated by miR-517 similarly. Of the 369 predicted targets (non-conserved) of miR-
517a/b/c (TargetScan, www.targetscan.org), several genes including HOXA5 [55], SEMA3A
[56], TFAP2B [57, 58] and PTK2B [59] have been shown to play a role in cellular invasion.
Therefore, further studies investigating these direct downstream targets of miR-157a/b/c are
necessary in order to fully understand the molecular mechanisms linking increased miR-517a/
b/c to decreased invasion.

One of the most commonly accepted theories describing the pathogenesis of preeclampsia
include the dysregulation or imbalance of placental angiogenic factors, including sFLT1, VEGF
and PLGF, released into the maternal circulation and contributing to the maternal symptoms
of this disease [60]. Additionally, sFLT1 expression has been shown to be significantly in-
creased in the preeclamptic placenta [60, 61]. While many studies have investigated mediators
of increased placental angiogenic factor production, including hypoxia, oxidative stress and ge-
netic factors, a direct link is still unclear. In our study, overexpression of miR-517a/b and miR-
517c in first trimester EVTs resulted in a significant increase in the release of sFLT1 with no
changes in VEGF or PLGF suggesting that miR-517a/b and miR-517c may be altering the an-
giogenic balance in the placenta. The increase in sFLT1 would shift the balance towards an
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anti-angiogenic state contributing to the development of preeclampsia. Interestingly, overex-
pression of miR-517a/b and miR-517c resulted in an increase in sFLT1 instead of the expected
gene repression seen with most miRNAs. This result would clearly suggest that sFLT1 is most
likely not a direct target of miR-517a/b or miR-517c but may instead be secondarily regulated
by other altered upstream targets. Additionally, neither VEGF nor PLGF are known direct or
predicted targets of miR-517a/b or miR-517c, however, it is well known that a single miRNA
has the ability to target multiple downstream transcripts and many transcripts can be regulated
by multiple miRNAs amplifying the scope of putative miRNA gene regulation.

In an attempt to identify potential targets of miR-517a/b and miR-517c that may be regulat-
ing the observed increase in sFLT1, we focused on the TNFSF15 pathway. TNFSF15 (also
known as VEGI) is a well-known cytokine that has been previously shown to activate the NF-
kB and MAPK signaling pathways leading to increased apoptosis, an inhibition in endothelial
cell proliferation and, most importantly for this study, a decrease in angiogenesis [62, 63]. In a
recent study, TNFSF15 was identified as a regulator of VEGFR1 (FLT1) splicing and, hence,
has the ability to alter the expression of sFLT1 [14]. In endothelial progenitor cells, increased
TNFSF15, in association with the inhibition of JMJD6, resulted in an up-regulation of sFLT1
expression [14, 44]. Interestingly, we found that increased miR-517a/b and miR-517c expres-
sion resulted in an increased extravillous trophoblast expression of TNFSF15 but not JMJD6 or
U2AF2, the gene encoding U2AF65, a known splicing factor regulated by JMJD6 [64]. Al-
though TNFSF15 has been largely unstudied in the fields of pregnancy, preeclampsia and pla-
cental biology, these results provide some evidence that TNFSF15 may be contributing to the
regulation of sFLT1 in trophoblast cells. While 1) TNFSF15 is mostly thought to be an endo-
thelial cell secreted cytokine and 2) we found an increase in TNFSF15 and sFLT1 expression
without a change in JMJD6, it is interesting to speculate that autocrine and/or paracrine effects
between the trophoblast and vascular endothelial cells in the placenta may play a role in regu-
lating sFLT1 release into the maternal circulation. Similarly to sFLT1, TNFSF15 does not seem
to be a direct target of miR-517a/b or miR-517c due to an increase in gene expression as op-
posed to the expected gene repression seen with miRNAs. However, based on our previously
published study[65], we hypothesize that NF-kB signaling could be a possible link between in-
creased miR-517 and altered TNFSF15 expression. miR-517a and miR-517c activate NF-kB
signaling through down regulation of TNFAIP3 interacting protein 1 (TNIP1), a direct miR-
517a/b/c target. Interestingly, previous studies have shown that increased NF-kB signaling re-
sults in increased expression of TNFSF15, a secreted cytokine [66]. While further studies
would be needed in order to clearly elucidate the role of NF-kB signaling in TNFSF15 expres-
sion, our results do provide evidence of a link between increased miR-517a/b/c in the pre-
eclamptic placenta, activation of the TNFSF15 pathway and subsequent sFLT1 regulation
within the trophoblast cells.

The results from this study provide evidence that miR-517a/b and miR-517c expression is
dysregulated in the placenta of women with preeclampsia. Additionally, we have shown that
these miRNAs are important regulators of placental function, specifically, increased expression
of miR-517a/b and miR-517c results in decreased trophoblast invasion and increased
TNFSF15 expression and sFLT1 release. This study not only provides further insight into the
depth of molecular regulation occurring within the placenta during early pregnancy, but also
suggests a possible functional role for miRNAs in regulating trophoblast function. As abnormal
trophoblast function is a known pathological event associated with preeclampsia, altered pla-
cental expression of miR-517a/b/c, therefore, could potentially be a contributor to the develop-
ment of this disease. Given the results of this study, it could be hypothesized that abnormal
placental hypoxia resulting in an increased expression of miR-517a/b and miR-517c results in
1) decreased trophoblast invasion and 2) increased TNFSF15 which causes altered FLT1
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splicing leading to increased sFLT1 release (Fig. 6). Further studies are warranted in order to
clearly elucidate the direct downstream targets (possibly TNIP1 and NF-kB) regulating the
miR-517-mediated alterations in placental function. However, the results of this study provide
a clear starting point for future investigations into the role of these miRNAs in the pathogenesis
of preeclampsia.

Fig 6. Schematic of hypothesized molecular pathways contributing to preeclampsia. Based on the
results of this study, we provide evidence that abnormal pathologic placental hypoxia early in pregnancy
could lead to increased miR-517a/b and miR-517c expression resulting in alterations in trophoblast function
including 1) decreased trophoblast invasion and 2) increased TNFSF15 expression. Consequently,
TNFSF15 is able to mediate FLT1 splicing and increase sFLT1 expression leading to a decrease in placental
angiogenesis. Therefore, miR-517 mediated alterations in trophoblast function could propagate the placental
hypoxia and contribute to the development of preeclampsia.

doi:10.1371/journal.pone.0122707.g006
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