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Abstract

Motivation: Protein-coding genetic alterations are frequently observed in Clinical Genetics, but the high yield of
variants of uncertain significance remains a limitation in decision making. RAS-family GTPases are cancer drivers,
but only 54 variants, across all family members, fall within well-known hotspots. However, extensive sequencing
has identified 881 non-hotspot variants for which significance remains to be investigated.

Results: Here, we evaluate 935 missense variants from seven RAS genes, observed in cancer, RASopathies and the
healthy adult population. We characterized hotspot variants, previously studied experimentally, using 63 sequence-
and 3D structure-based scores, chosen by their breadth of biophysical properties. Applying scores that display best
correlation with experimental measures, we report new valuable mechanistic inferences for both hot-spot and non-
hotspot variants. Moreover, we demonstrate that 3D scores have little-to-no correlation with those based on DNA se-
quence, which are commonly used in Clinical Genetics. Thus, combined, these new knowledge bear significant
relevance.

Availability and implementation: All genomic and 3D scores, and markdown for generating figures, are provided in
our supplemental data.

Contact: mtzimmermann@mcw.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genetic variants activating Rat Sarcoma (RAS) genes are among the
most recurrent somatic alterations in human cancers, affecting up to
25% of solid tumors (Hobbs et al., 2016). Their somatic hotspots
have been extensively studied, yet mechanistic understanding for the
experimentally measured differences among certain hotspot variants
is lacking, and non-hotspot variation, while collectively common,
has not been studied. RAS is thus a protein of high biomedical
importance that also highlights a current challenge in translational
genomics, which is the functional interpretation of mutations
(Andreoletti et al., 2019; Hu et al., 2019). We designed and

described herein a systematic approach to scoring the effects of
protein-coding genomic variants by accounting for a wide array of
sequence- and structure-based effects, in order to identify mechanis-
tic and testable hypotheses for the effects of hotspot and
non-hotspot RAS variants. Therefore, the current study focuses on
RAS as a demonstration of the scalability of our approach and the
importance to integrate a broad range of computational biophysical
scores because each provides unique information for functional
interpretation.

To interpret genomic variants, current clinical genomics guide-
lines rely on recurrent observations in disease cases or tumors, com-
pared to the general healthy population, and inferred impact on the
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encoded protein (Karbassi et al., 2016; Richards et al., 2015).
However, in our view, the gene product itself must take center stage,
either using bioinformatics, functional validation or both. The
fundamental concept underlying this idea is that protein structure
and dynamics play a key role in determining whether a missense
variation can be tolerated or becomes pathogenic. Further, current
approaches aim to directly predict pathogenicity resulting in
different levels of predictive performance (Hart et al., 2019;
Karchin et al., 2007; Ponzoni and Bahar, 2018). We believe that
this type of operation bypasses the necessary step of determining the
molecular mechanism of dysfunction. Thus, the wide adoption of
protein 3D structural biology is of paramount importance since the
mechanistic interpretation of novel genetic variants will ultimately
be inferred from the study of the gene product.

The RAS family of small GTPases that cycle between a guano-
sine triphosphate (GTP)-bound (active) and guanosine diphosphate
(GDP)-bound (inactive) form, (Milburn et al., 1990) has 31 mem-
bers and all act as signal transducers influencing cellular growth and
differentiation. Genetic variants in RAS proteins, when present in
the germline, are responsible for rare congenital diseases known as
RASopathies (Grant et al., 2018; Simanshu et al., 2017; Tidyman
and Rauen, 2009), such as Noonan (RRAS) and Costello (HRAS)
Syndromes. The most clinically relevant proteins, due to their com-
mon oncogenic mutation, are KRAS, HRAS and NRAS (Rauen,
2013), discovered from the study of oncogenic viruses and neuro-
blastomas (Cox and Der, 2010). Additional family members have
been identified through sequencing of tumors (MRAS), RASopathy
patients and neural transformation (e.g. RERG and RRAS2). In can-
cer, there are two highly recurrent RAS activating variant sites,
referred to as hotspots, but many genetic alterations are observed
outside of the hotspot sites somatically in cancer, in RASopathies
and in the currently healthy adult population. This genetic spectrum
differs for each member of the RAS family. A growing body of
experimental data indicates that each type of alteration at the hot-
spots can lead to different downstream effects including different
GTPase activities, nucleotide exchange rates, effector preference,
cellular morphologies and neoplastic potential (Angeles et al., 2019;
Bandaru et al., 2017; Burd et al., 2014; Cirstea et al., 2013; Ihle
et al., 2012; Munoz-Maldonado et al., 2019; Seeburg et al., 1984;
Smith et al., 2013). However, hotspot variants have not been uni-
formly assessed by the same experimental assays, making interpret-
ation of many hotspot variants uncertain. Further, non-hotspot
variants may not alter the protein in the same way as hotspot muta-
tions and therefore may not have the same implications for clinical
management. Thus, better methods to evaluate how genetic vari-
ation affects RAS, within and outside of the hotspots, are needed in
order to interpret their potential functional effects.

Recurrent cancer variants such as KRAS G12D and G12V have
been extensively studied by laboratory experimental and computation-
al methods (Ioannidis et al., 2016) and found to be distinct from other
RAS hotspot variants, even at the same codon (Burd et al., 2014;
Munoz-Maldonado et al., 2019). However, the full spectrum of rare
disease and cancer variants has not been evaluated with the same rigor.
Therefore, the goal of this study is to help fill the gap in knowledge by
evaluating a more comprehensive series of 3D scores, integrated with
DNA and protein sequence-based scores (Fig. 1), for interpreting the
most likely underlying mechanisms of hotspot alteration by genetic
variants in members of the RAS family of proteins, and assessing the
potential for non-hotspot variants to have similar effects. Our results
show that no single score is likely to capture enough detail to fully in-
terpret the effects of RAS genomic variants. Rather, different scores in-
dicate alterations of specific functional properties that are not available
from DNA annotations, especially among 3D protein structure-based
scores. Combined, these results demonstrate that when carefully para-
meterized, 3D scoring methods from structural bioinformatics are su-
perior in mechanistic information than the conventional DNA-based
which are currently widely used in Clinical Genetics. Thus, this new in-
formation extends not only our understanding of RAS proteins, which
is of paramount medical importance but also increases the arsenal of
analytic methods available to medical genomics.

2 Materials and methods

2.1. Selection of RAS family proteins and molecular

modeling
We surveyed the PDB (Berman, 2000) for experimental structures of
the most commonly altered RAS family proteins in cancer and germ-
line RASopathies. We identified that for RRAS, RRAS2 and RERG
only a single experimental structure was available, which is the
GDP-bound structure. Thus, for consistency, GDP-bound structures
were used for all the RAS proteins in this study (Supplementary
Table S1). We included the three most altered RAS proteins in can-
cer, and four additional RAS members that are most known in
RASopathies. To model the missing loops in NRAS (residue 61–71)
and RRAS2 (residue 71–74 in chain A), we used the ModLoop web
server for automated modeling of loops in protein structures (Fiser
et al., 2000; Fiser and Sali, 2003). The mapping between amino
acids of the seven RAS-family proteins used in this study was defined
by their protein sequence based on multiple sequence alignment
(MSA), shown in Supplementary Figure S1.

We included the GTP-bound or GppNHp (non-hydrolyzable
GTP analog)-bound RAS structures for KRAS, HRAS and NRAS in
an analysis of the sensitivity of structure-based scores to the input
3D conformation. As a proof of concept, we compared 3D scores
between the WT GDP and GppNHp-bound 3D structures of KRAS,
HRAS and NRAS (Supplementary Table S1). We found strong cor-
relations among the 3D scores for the GDP and GppNHp bound
structures. Nonetheless, some local differences were observed at the
residue level (see the Section 3.4). However, such differences are a
key advantage of structure-based scores, as well as a challenge since

Fig. 1. Our process for integrating computational scores from multiple molecular

levels with experimental data to interpret hotspot molecular mechanisms of genom-

ic variants. (A) Multiple distinct molecules carry relevant information for directly

interpreting the effects of genomic variants: the DNA itself, the encoded mRNA, the

linear protein and the 3D folded protein. (B) Schematic of GTP hydrolysis kinetics

and nucleotide exchange kinetics are shown for RAS GTPase. (C) Our long-term

goal is to predict altered mechanisms. In this study, we take the first step of aggre-

gating multiple and diverse scores across molecular levels and correlating them with

experimental measures of activity. (D) We have assembled 63 computational scores

for how genomic variants may alter sequence or structure and analyzed their interre-

lationships, with the number of scores from each molecular level (DNA sequence,

protein sequence and 3D structure) shown in parentheses. (E) Measurements of in-

trinsic GTP hydrolysis rate of RAS hotspot variants shown as a heatmap in descend-

ing order indicating low and high rates relative to the WT RAS (left panel) (Hunter

et al., 2015). Assessment of underlying molecular mechanism of RAS hotspot var-

iants shown as a heatmap by correlating experimental measurements (or scores) and

computational scores (right panel) for Spearman correlation, jRSpearmanj3 0.6

(Supplementary Table S5) indicated below the dendrogram. The heatmap colors

correspond to the z-scores, high (red) and low (blue) while blue and light red den-

drogram at the top of the heatmap represent positive and negative RSpearman,

respectively
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context matters. Thus, our approach is based on a defined context
and mechanistic conclusions should be interpreted appropriately.

2.2. Genomic variant annotation
We defined the GTPase domains of seven RAS family proteins in 3D
and identified their corresponding DNA coding regions in the
human genome (GRCh38) for UniProt isoforms (Supplementary
Table S1 and Supplementary Fig. S1). We used COSMIC (Forbes
et al., 2011) to identify genetic variants previously observed somat-
ically in human cancers. We used ClinVar (Landrum et al., 2014)
and HGMD (Stenson et al., 2017) to identify genomic variants re-
sponsible for congenital diseases and RASopathies. We identified
variants observed in the currently healthy adult population, and
their corresponding global minor allele frequency (MAF), from
gnomAD (Karczewski et al., 2019). Annotations for DNA sequence-
based scores were gathered from dbNSFP v4.0 (Liu et al., 2011).
We used the BioR v5.0.0 (Kocher et al., 2014) system for handling
genomic data resources with custom scripts in the R programming
language (Ihaka and Gentleman, 1996) for analysis. See
Supplementary Materials for additional details. Because of codon
degeneracy, multiple DNA changes could result in the same amino
acid change. In these cases, protein scores are the same, but DNA
sequence-based scores may differ from each other. Therefore, to be
conservative, we chose the most severe score of the variants
observed within each codon.

2.3. Protein variant scoring
For RAS missense variants, we combined scores at different molecu-
lar levels based on sequence (DNA and protein) and 3D protein
structure using several available tools. At each level, we chose a sub-
set of scores that each provide information about a different type of
property (Supplementary Fig. S2A). These multiple molecular levels
each carry information about the effect of a genomic variant but
have not been used in combination. Because RAS is a GTPase, we
note that these tools do not explicitly include ligand-protein interac-
tions; we use them to focus on evaluation of the naturally occurring
amino acids.

2.3.1. Variant sequence-based scoring

We selected 12 DNA sequence-based scores, including those that are
the most frequently used in clinical genomics workflows, as well as
some of the newest scores developed using data integration and ma-
chine learning that have the best overall predictive performance
from large-scale assessments (Hart et al., 2019; Ioannidis et al.,
2016; Liu et al., 2015; Rentzsch et al., 2019). See Supplementary
Materials for additional details. We selected nine protein sequence-
based scores by their breadth of physicochemical properties covered,
low mutual correlations, and being commonly used in protein sci-
ence, as described in depth in our Supplementary Materials.

2.3.2. Variant structure-based scoring

We selected 42 3D structure-based scores. Protein 3D properties
have been studied in basic sciences for more than a century, but due
to in part to their diversity of properties and low familiarity among
geneticists, they have not been standardized and parameterized for
use in clinical genomics workflows. Therefore, we gathered a diver-
sity of 3D scores, including those that are highly established in basic
science fields and recently developed novel 3D scores, to assess their
similarity with the information available from DNA sequence-based
scores. For example, we estimated the change in protein stability
upon amino-acid substitution by calculating the change in folding
free-energy, DDGfold using FoldX (Schymkowitz et al., 2005) for
each variant. We also computed ‘local energetic frustration’ for each
RAS variant using the Ferreiro-Wolynes algorithm (Ferreiro et al.,
2007; Jenik et al., 2012; Parra et al., 2016) and estimated how fa-
vorable a specific contact (or an amino-acid residue) is relative to
the set of all possible contacts (or an amino-acid residue) in that lo-
cation compared to the energies of a set of ‘decoy’ states represent-
ing the molten globule configurations. To characterize the difference

in regional folding cooperativity between the WT RAS and each
variant, we employed a residue-specific implementation of
structure-energy-equivalence-of-domains (SEED) algorithm (Porter
and Rose, 2012). SEED parses proteins of known structure into their
constituent thermodynamically cooperative components using
residue-specific water fi 1 M urea-group transfer free energies
(Zimmermann et al., 2015) to define thermodynamic subdomains of
protein structures consistent with experimentally determined
equilibrium folding intermediates. See Supplementary Materials for
additional details.

All the 63 computational scores used in this study for the 935
missense variants from 7 RAS are included in the Supplementary
Table S2.

2.4. Grouping variants by similarity across scores
Correlation among all 63 scores that we selected for consideration
in our combined approach is shown in Supplementary Figure S2A.
Using their mutual correlations, we selected 31 scores that were
largely distinct representatives from the 63 (Supplementary Fig.
S2B).

Analysis using t-distributed stochastic neighbor embedding (t-
SNE) constructs a low-dimensional 2D embedding of high-
dimensional data using the distances between variants and using our
combined set of computational scores. We used the Rtsne package
v0.15 (Krijthe et al., 2018) based on optimized threshold estimate
for a trade-off between speed and accuracy in a Barnes-Hut imple-
mentation of t-SNE using Euclidian distances (Van Der Maaten,
2014), a perplexity factor of 80, and theta set to 0.3. We also com-
bined scores for comparing among variants using PHATE (Potential
of Heat-diffusion for Affinity-based Trajectory Embedding), which
is another newly developed dimensionality reduction technique.
PHATE generates a low-dimensional embedding, in a way that
attempts to preserve local and global similarities, generating clusters
and branches within the data, to enhance interpretability of the
data’s underlying structure (Moon et al., 2019), which in this study
is the similarities among different types of computational scores’ val-
ues for RAS variants. We generated heatmap plots to identify the
patterns of the computational scores among the hotspot variants
using the pheatmap v1.0.12 package (Kolde and Kolde, 2015) and
the complete hierarchical approach using Euclidean distances after
scaling each score to z-scores.

3 Results

We aim to better understand molecular mechanisms that underlie
alterations caused by genetic variation in RAS members, at hotspots
but, more importantly, for the entire landscape of missense human
variation in RAS identified to date, defined by integrating across
leading databases in clinical genetics, cancer and the healthy popula-
tion (see Section 2). To draw comparison with methods currently
used by genomic analysts, we computed distinct scores that account
for data from DNA and protein sequence, as well as 3D protein
structural levels (Fig. 1A). We also assessed the available experimen-
tal data for RAS hotspot variants (Fig. 1B and Supplementary Table
S3). Thus, using those well-studied variants, we identified computa-
tional scores that have the strongest associations with damaging ef-
fect on the encoded protein, as surrogates for their underlying
mechanisms of dysfunction (Fig. 1C). Then, we assess all 935 var-
iants observed in RAS, to quantify the relationships among the
scores, as well as to score the non-hotspot variants.

Our targeted analyses involved 63 selected scores that capture in-
formation present in genomic DNA annotations, protein sequence
properties and protein structural features (12 DNA sequence, 9 pro-
tein sequence and 42 3D structure-based scores, respectively)
(Fig. 1D and Supplementary Fig. S2A). These features were manual-
ly selected from many hundreds of candidate features using domain
knowledge and literature precedence for best-in-class and unique
measures of protein properties. Next, we examined the correlation
structure to further refine the set of granular scores. First, by choos-
ing a representative from pairs of scores that have a low absolute
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correlation (jRSpearmanj � 0.4). Second, we included 2 frustration-
based and 1 multi-body potential scores for their assessment of
unique biophysical properties that therefore most efficiently cover
the broadest diversity of RAS properties. Third, we included SIFT
and CADD because of their common use in the field; SIFT is highly
correlated with CADD (-0.66) and Evolutionary Trace (ET) (0.57)
(Mihalek et al., 2004) and CADD is highly correlated with DANN
(0.48) and ET (-0.44). This procedure resulted in a final filtered se-
lection of 31 granular scores (Supplementary Fig. S2B). To guide
our mechanistic characterization of the variants, we compared these
31 scores with direct experimental measurements, such as intrinsic
GTP hydrolysis rates (Khydrolysis) of the eight G12, G13 and Q61
hotspot variants (Fig. 1E). Noteworthy, we find that this method of
experiment-guided parameterization of the computational scores for
the hotspot variants (Fig. 1E) facilitates mechanistic interpretation
derived for the non-hotspot variants. This finding is important since,
although RAS hotspot variants are highly studied, they have been
assessed only in distinct RAS members and using different experi-
mental assays, making direct comparisons between them challenging
(Supplementary Table S3). Further, we find that the classic para-
digm that RAS hotspot mutations are activating, derived from early
studies that assessed the ability of variants to activate neoplastic po-
tential (Bos, 1989; Corominas et al., 1991; Kumar et al., 1990), is
clearly not the case for all variants, from an enzymatic perspective.
We chose the study of Hunter et al. (2015) as our experimental
measures for parameterizing structural bioinformatics scores be-
cause they evaluated a useful set of KRAS hotspot variants using
quantitative assays. Therefore, these experimental data provide a
useful tool for parameterizing our search for mechanistic associa-
tions via an integrated protein scoring procedure.

3.1. Combined scores explain mechanisms underlying

hotspot experimental findings
For explaining mechanisms by which hotspot variants disrupt RAS
function, we first employed four quantitative experimental measure-
ments (intrinsic hydrolysis rate (Khydrolysis)), GAP-stimulated
Khydrolysis, GDP and GTP exchange rates, and RAF affinity (Hunter
et al., 2015) for eight KRAS variants (G12C, G12D, G12A, G12V,
G12R, G13D, Q61L and Q61H), and compared to WT
(Supplementary Table S4). Next, we correlated these measurements
with our multi-tier computational scores (Supplementary Fig. S3
and Supplementary Table S5). We identified seven computational
scores (one DNA sequence, one protein sequence and five 3D-struc-
ture-based scores) that strongly correlate (jRSpearmanj � 0.6) with the
intrinsic Khydrolysis values (Supplementary Table S5 and
Supplementary Fig. S4A). Next, we represented these scores as a
heatmap to better visualize their relationship with intrinsic
Khydrolysis (Fig. 1E). In this manner, we grouped the KRAS hotspot
variants, one with high (G12C, G12D and G13D) and another with
low (G12V, G12R, G12A, Q61H and Q61L) intrinsic Khydrolysis.
When carefully analyzed, we find that the pattern of computational
scores further highlights the mechanistic differences among hotspot
variants. Importantly, we identified that changes in 3D scores repre-
senting average frustration, configurational energy and main-chain
solvent accessible surface area, and the protein sequence-based score
quantifying the change in electron-ion interaction potential, have
the strongest association with impaired intrinsic Khydrolysis by hot-
spot mutations (P �0.05) (Supplementary Table S5). Therefore, we
propose that these scores capture specific contributions to the under-
lying mechanism of altered RAS function. Knowing that RAS pro-
teins bind critical effectors, we investigated their association with
experimental measures of RAF affinity and identified six 3D
structure-based scores that strongly correlate (jRSpearmanj � 0.5;
Supplementary Fig. S4A and B). These scores indicate that changes
in local unfolding propensity, structural stability and hydrophobic
solvation energy, appear to be important contributors to the mech-
anism of impaired RAF affinity by hotspot mutations. Similar com-
parisons for the further two experimental measures of GAP-
stimulated Khydrolysis and nucleotide exchange rates are shown in
Supplementary Figure S4C and D, respectively. Therefore, using

multiple experimental measures as benchmarks and integration of
multiple structural scores, our analysis is able to identify mechanistic
scores that differentiate each hotspot variants’ effect at the molecu-
lar level.

3.2. Experiment-guided scores for hotspot variants

applied to non-hotspot variants for mechanistic

interpretation
Due to the limited availability of systematic and quantitative experi-
mental measurements of RAS variants in the literature, supervised
machine learning approach is not feasible in this study. As a result,
we specifically focused on the KRAS hotspot variants for which ex-
perimental measurements are available using unsupervised machine
learning methods. Patterns among experimental measurements dem-
onstrate the unique profile of each variant, and which computation-
al scores most closely associate with each (Supplementary Fig. S4).
We extended our mechanism investigation for all RAS variants using
an unsupervised dimensionality reduction method, PHATE (see
Section 2), that captures both local and global patterns using an
information-geometric distance (Moon et al., 2019). PHATE cap-
tures the similarity between nearby data points using non-linear
transformation by converting the Euclidean distances into ‘local
affinities’ and preserves the global similarities between data points
using data diffusion. Therefore, PHATE is especially suitable for
mechanism characterization of RAS hotspot versus non-hotspot var-
iants. First, we focused our 2D PHATE analysis using the computa-
tional scores that strongly correlates with the experimental data of
intrinsic Khydrolysis from the previous section (Fig. 1E and
Supplementary Fig. S4C). In particular, we analyzed all the 935 var-
iants from 7 RAS proteins and highlighted those 8 KRAS hotspot
variants for which intrinsic Khydrolysis data is available (Fig. 2A).
Additionally, showing 493 (54 hotspots and 439 non-hotspots) var-
iants from the three most recognized proto-oncogenic RAS (KRAS,
HRAS and NRAS) proteins separately, we again highlighted those
same KRAS hotspot variants (Fig. 2B). We note that in the 2D
PHATE space G12, G13 and Q61 variants are distinct in Figure 2A
and B further elucidating different mechanism impacting intrinsic
Khydrolysis at these hotspot sites. Interestingly, differences in
Khydrolysis among KRAS G12 variants are evident, such as between
G12A/R and G12C/D/V with lower and higher hydrolysis rates, re-
spectively. Though these variants are overall nearby each other in
the 2D PHATE space (Fig. 2A and B), our interpretation is that the
G12 position has a specific effect on KRAS structure when altered,
and computational scores identify this overall effect in addition to
how certain variants may have distinct effects from one another at
the same site. Next, we performed similar 2D PHATE analyses uti-
lizing the computational scores that strongly correlate with the
GAP-stimulated Khydrolysis (see Supplementary Fig. S4C) for all the
935 (from 7 RAS) and 493 (from HRAS, KRAS and NRAS) variants
(Fig. 2C and D, respectively). Unlike in the 2D PHATE space for
Khydrolysis, the hotspot variants in the 2D PHATE space for GAP-
stimulated Khydrolysis are more distinctly separated by the magnitude
of the impact relative to the WT GAP-stimulated Khydrolysis. We
identified similar patterns in the data for RAF affinity and GDP/
GTP exchange rates by PHATE analyses (Supplementary Fig. S5).
Therefore, we believe diverse computational scores across all three
molecular levels can be used to enhance the interpretation of pos-
ition- and variant-specific mechanistic effects.

To explore whether any non-hotspot KRAS variants demon-
strate similar effects in intrinsic Khydrolysis as compared with KRAS
hotspot variants, we identified the 11 non-hotspot KRAS variants
that are closest to the KRAS hotspot variants (N26Y and G138E
near G12A, N26I near G13D and M1I, T35I, A59V, S65I, M72I,
R123I, T124I and T127I near Q61L/H) in the 2D PHATE space
shown in Figure 2B. These 10 amnio-acid residues are colored and
projected based on their location in the P-loop, switch-I and switch-
II regions in the 3D structure of KRAS along with the hotspot resi-
dues (Fig. 2E and F). Interestingly, these non-hotspot variants occur
throughout the 3D structure indicating a need to functionally char-
acterize non-hotspot alterations. In particular, the variants T35I is
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from switch-I, S65I and M72I are from switch-II, and A59V is at the
nucleotide binding site (Fig. 2F). Other non-hotspot variants are just
below switch-I (N26I) and on the far end of a loop that forms the
nucleoside binding site and contains Noonan-associated germline
mutations (R123I and T124I). From their pattern in computational
scores that resembles hotspot variants, we believe these non-hotspot
variants might have impact on intrinsic hydrolysis. Thus, these
results emphasize the utility of more precise methods for interpreting
the likely mechanistic effect of genomic variants.

3.3. Scores across multiple molecular levels identify

which variants have similar effects
In the above sections, we focused on the computational scores that
had the greatest correlations with quantitative experimental meas-
ures for hotspot mutations. Therefore, in this section, we expanded
our analysis to consider patterns among 31 scores (Supplementary
Fig. S2B), selected to maximally represent score diversity, and

applied to all observed variants from seven RAS-family proteins. We
performed data driven integrated analysis using an unsupervised
non-linear dimensionality reduction process (t-SNE; see Section 2)
and compared variants in a representative 2D space (Fig. 3A–C).
The t-SNE-generated dimensions (t-SNE1 and t-SNE2 in Fig. 3A
and B) are optimized in such a way that the scores of the variants,
which are similar to one another in the raw high-dimensional data,
are close in the 2D-reduced space.

In this section, first we focused on understanding the similarities
and differences among the RAS hotspot variants and therefore t-
SNE analysis is particularly useful as it emphasizes local relation-
ships between the data points more than PHATE. We specifically
analyzed the G12, G13 and Q61 missense gain-of-function variants
in KRAS, HRAS and NRAS from within the large dataset. Notably,
we found that all variants affecting the G12 and G13 hotspot resi-
dues are relatively close to one another in the t-SNE space, irrespect-
ive of the RAS member analyzed (Fig. 3A and B). However, we also
find clear differences among hotspot variants. G12V and G12D,
which tightly clustered with each other and across RAS proteins,
while G12C, which was distinct from them also tightly clustered
across RAS proteins (Fig. 3A). In addition, amino acid substitutions
for alanine, serine or arginine at G12 and G13 are distinct from
other hotspot variants, but more variable between RAS proteins and
exhibited greater differences between G12 and G13 sites (Fig. 3A
and B). We further noticed that Q61 variants (Fig. 3C) are more

Fig. 2. KRAS non-hotspot variants computationally prioritized for effects on intrin-

sic and GAP-stimulated hydrolysis rates. We used the correlated computational

scores (see Supplementary Table S4) to assess all non-hotspot variants for their po-

tential to alter intrinsic and GAP-stimulated Khydrolysis, respectively similar to hot-

spot variants. Because we are specifically interested in global patterns among the

variants, we used PHATE for dimensionality reduction. (A, B) 2D PHATE analysis

was performed on 935 variants from 7 RAS in (A) and 493 variants from HRAS,

KRAS and NRAS in (B) consisting the five computational scores that correlate with

the intrinsic Khydrolysis of the KRAS hotspot variants (Fig. 1E). Eight hotspot somatic

variants of KRAS are colored based on the intrinsic Khydrolysis measurements relative

to the WT in the 2D PHATE plots in both (A) and (B). (C, D) Similar to (A) and (B)

2D PHATE analysis was performed on 935 (from 7 RAS) and 493 (from HRAS,

KRAS and NRAS) variants in (C) and (D), respectively using the seven computation-

al scores that correlate with the GAP-stimulated Khydrolysis (Supplementary

Fig. S4C). In both (C) and (D), eight hotspot somatic variants of KRAS are colored

based on the GAP-stimulated Khydrolysis measurements relative to the WT. High

(red) and low (blue) hydrolysis rates are indicated in the color bar. (E) 3D structure

of KRAS (PDB: 4OBE) showing the sensitive regions, phosphate-binding loop

(P-loop) (amino-acid 10-17), switch-I (amino-acid 30-40) and switch-II (amino-acid

60-76) (Johnson et al., 2017). (F) Amino-acid residues of the KRAS variants that are

nearby to the eight hotspot variants in the 2D PHATE space in (B) are shown pro-

jected onto the 3D structure. The amino-acid residues are colored according to the

sensitive regions in (E)

Fig. 3. All RAS variants assessed using our integrated scoring approach identify

functional groupings among hotspot variants and demonstrate differences among

non-hotspot variants. Having assessed global patterns by PHATE, we next charac-

terized more nuanced local patterns among the variants using 2D t-SNE.

Combinations of scores convey mechanistic differences in the effect of different hot-

spot variants. (A–C) Somatic hotspot variants of G12 (A), G13 (B) and Q61 (C)

from HRAS, KRAS and NRAS are shown in the 2D t-SNE space of all the 7 RAS

variants. Hotspot variants are labeled and colored by RAS protein. It is visually ap-

parent that some non-hotspot variants are nearby hotspot variants in t-SNE space,

indicating that they may have similar effects as hotspot variants, while other non-

hotspot variants are far from hotspot variants in the t-SNE space, indicating that

they either have no effect or a different effect from hotspot variants. (D) Heatmap

plot shows patterns of scores for the somatic hotspot variants shown in the 2D

t-SNE plots. The top ten scores (out of 31) are selected based on median absolute

deviation (MAD3 0.2). We separated the G12, G13 and Q61 variants in five clusters

in the heatmap plot denoted as (i)–(v). Heatmap plot with all the 31 scores are

shown in Supplementary Figure S6
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widely distributed in the t-SNE space compared to the G12 and G13
variants. This is especially true for the arginine, proline and glutamic
acid substitution at Q61. From these patterns among hotspots var-
iants, we hypothesize that certain hotspot variants affect the same
molecular mechanism across all RAS proteins, while others have a
more distinct mechanism.

Next, we identified the most variable scores across genetic var-
iants (median absolute deviation3 0.2), consisting of one DNA se-
quence, three protein sequence and six 3D structure-based scores,
for the G12, G13 and Q61 variants in KRAS, HRAS and NRAS. We
visualized the ten most variable scores to identify patterns among
hotspot variants for each RAS protein and from different RAS pro-
teins (Fig. 3D). We also represented all the 31 scores as a heatmap
for the G12, G13 and Q61 variants in KRAS, HRAS and NRAS
(Supplementary Fig. S6). This approach let us identify global pat-
terns that distinguish effects among G12, G13 and Q61 variants,
which were primarily driven by changes in mainchain entropy and
structural stability (DDGfold). These two structure-based metrics indi-
cate a different mechanism for G12, G13 and Q61 variants whereby
G13 variants have a stronger effect on stability (shown inside a rect-
angle in Fig. 3D). Especially, the G13 variants are highly destabiliz-
ing (Median 6 MAD; DDGfold ~ 3.56 0.6 kcal mol12), whereas G12
variants are either stabilizing or neutral (DDGfold ~ -0.156 0.22 kcal
mol12). On the other hand, Q61 variants are moderately destabiliz-
ing (DDGfold ~ 0.376 0.07 kcal mol12). In addition, we identified
RAS-specific clusters that display differences in Evolutionary Trace
(ET) scores for sequence conservation for G12 and G13 variants,
but interestingly similar differences in ET scores are not observed
for the RAS-specific Q61 variants. Moreover, we note that irrespect-
ive of the RAS gene all G12C variants are clustered together [indi-
cated as cluster ‘(i)’ in Fig. 3D], consistent with t-SNE visualization,
indicating that the alternate amino acid has similar effect in all three
proteins. Note that G13C KRAS and G13C NRAS cluster together
[cluster ‘(iii)’ in Fig. 3D] and show similar pattern in their scores,
while G13C HRAS clusters with the other three HRAS G13 variants
(G13A, G13D and G13S) (cluster ‘iii’ in Fig. 3D). Next, we consid-
ered the patterns among the five other variants (G12A, G12D,
G12R, G12S and G12V) at G12. These five G12 variants showed a
distinct pattern compared to G12C and clustered together [cluster
‘(ii)’ in Fig. 3D] for each RAS protein. Within these RAS-specific
G12 clusters, we identified that these five variants affect HRAS dif-
ferently than NRAS and KRAS, by displaying a markedly higher
change in 3D contact-level frustration, which is likely supported by
a more energetically favorable change for GDP-bound HRAS than
for GDP-bound NRAS or KRAS. When considering changes at the
G13 position, we find patterns among the scores that distinguish
HRAS in particularly from NRAS and KRAS (clusters ‘iii’ in
Fig. 3D). This finding indicates that the context given to G13 by the
HRAS intrinsic protein environment may differ for G13 compared
to KRAS or NRAS and is primarily driven by differences in solvent
accessible surface area and conformational frustration, similar to
G12 differences and the CADD scores. For Q61 we identified all the
variants from KRAS, HRAS and NRAS in cluster ‘iv’ except Q61L
from NRAS, which was identified as an independent cluster ‘v’.
Interestingly the cluster ‘iv’ variants are all at Q61 and have a dis-
tinct pattern reflecting changes in heat capacity and pK-a(RCOOH).
Thus, together, these results reveal distinct patterns of scores for the
G12, G13 and Q61 hotspot RAS variants, indicating that they may
have distinct functional effects, congruent with growing experimen-
tal evidence. Our findings not only elucidate the sensitivity of
structure-based scores but also demonstrate the potential gains by
integrating them with DNA sequence-based scores for interpreting
the impact of genomic variants on RAS function.

3.4. Sequence- and structure-based scores provide dis-

tinct information from one another
In the analyses discussed above, we present a comparative analysis
of both sequence-based and structure-based scores for all 935
unique observed missense RAS variants (Fig. 1A), with the methodo-
logic goal of systematically assessing their individual and combined

utility for interpreting genomic variants. Thus, we next focused on
the information content among the scores, as applied to changes due
to all RAS variants. For this purpose, we explored the correlation
among scores from different molecular levels. We chose three illus-
trative examples of negative, neutral and positive associations
among scores from different molecular levels. First, we detect that
differences in protein sequence-based heat capacity is negatively cor-
related with differences in structure-based hydrophobic solvation
free energy (Fig. 4A). This finding shows that increased (decreased)
heat capacity of a variant associates with favorable (unfavorable)
changes in hydrophobic solvation free energy. Second, interestingly,
changes in local frustration index show no correlation with the
change in residue sidechain folding cooperativity (Fig. 4B) even
though both are structure-based scores, indicating that these scores
report on two independent properties. Third, we identified positive
correlation between the DNA and protein sequence-based SIFT and
ET scores (Fig. 4C), which is expected since conserved residues are
more likely deleterious than variants from non-conserved residues
and SIFT leverages conservation. Thus, scores between molecular
levels may be related to each other, but more importantly, they can
contain information that is not apparent at other molecular levels.

Subsequently, we computed the correlations among all 63 com-
putational scores from three molecular levels (Fig. 4D and
Supplementary Fig. S2A). We found that protein structure-based
scores have little-to-no correlation with the DNA sequence-based
scores, overall (also see Supplementary Fig. S7), indicating that they
represent an entirely different type of information about the effects
of genomic variants. Further, among structure-based scores, there is
a high diversity with some scores having little-to-no correlation with
each other because they assay different protein physicochemical
characteristics. This result indicates that, as performed above, a
more integrated approach is required to better interpret genomic
variants. We found that 3D scores used in this study, are robust to

Fig. 4. Correlation among computational scores from multiple molecular levels for

the 935 RAS variants demonstrates the distinct and underutilized value of 3D struc-

ture-based scores. (A–C) Spearman correlation (RSpearman) among pair of computa-

tional scores indicating negative (A), neutral (B) and positive correlation (C). These

three examples were chosen as exemplars for relationships between the scores from

different molecular levels. (D) We used total 63 individual scores for the 935 protein

variants to assess the differences among variants from 7 RAS proteins (KRAS,

HRAS, NRAS, MRAS, RRAS, RRAS2 and RERG) based on DNA sequence, protein

sequence and 3D structure of protein. Larger and labeled versions of the correlation

matrices are available in Supplementary Figure S2. We highlight two sections of

structure-based scores that have nearly no overlap with one another or with infor-

mation available in DNA annotations. (E) Using correlation patterns among scores,

we reduced the number of individual scores to the 31 that are most unique and

therefore most efficiently cover the broadest diversity of properties. The locations of

same three scores specifically named in (D) are indicated by arrows. In (D) and (E)

the size of each small square in the correlation matrix is proportional to the value of

absolute Spearman correlation jRSpearmanj. All 63 scores for 935 variants from 7

RAS genes are provided as Supporting Data (Supplementary Table S2)
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the input experimental structure (Supplementary Fig. S8A) with
mean RSpearman¼0.92 (Supplementary Fig. S8B). They also demon-
strate high specificity (Supplementary Fig. S8C). High specificity is
an advantageous feature, demonstrating the biophysical and mech-
anical detail of 3D scores—residues that are experimentally known
to differ between the GDP and GTP bound forms are those with
largest differences in 3D scores (Supplementary Fig. S8C). Finally,
we selected a subset of 31 scores based on the correlation structure
among scores (when individually applied to all variants), and their
assessment of different biophysical or biochemical properties, so
that they are unique and most efficiently cover the broadest diversity
of RAS properties (Fig. 4E and Supplementary Fig. S2B). Thus, we
propose that this set of scores represents an efficient coverage of
many unique dimensions of protein function and should serve as a
baseline for developing a more comprehensive system for interpret-
ing the effects of genomic variants.

In summary, DNA sequence-based information is the mainstay
of genomics data interpretation, but we have demonstrated in this
work that additional information relevant for interpreting genomic
variants and not currently available from the DNA sequence, can be
derived from computational study of the protein 3D structure. RAS
is a critically important proto-oncogene with a broad spectrum of
non-hotspot variation that we have assessed for similarity to experi-
mental enzymatic properties of hotspot mutations. There are mul-
tiple categories of 3D structural features that indicate different
properties of RAS proteins altered by genomic variants, and likely of
proteins in general. Therefore, assaying one type of feature is insuffi-
cient for genomics data interpretation. This study demonstrates the
potential that an integrated approach provides. A full suite of scores
that integrate across all biologic layers of molecular function is
required and must be considered in future improvements to the
guidelines for genomic data interpretation.

4 Discussion

Currently, there are no 3D structure-based methods that have been
standardized and parameterized for use in clinical genomics work-
flows, yet there is high potential for them to add value to the inter-
pretation of genomic variants and indicate altered molecular
mechanisms. To test this potential, we assessed KRAS hotspot var-
iants that have been experimentally measured (Fig. 1E) and showed
that mechanistic inferences can be made for why some variants alter
enzymatic properties and others do not (Fig. 2). We then applied the
computational scores that associate with enzymatic function to non-
hotspot variants to predict which of them may have similar effects
to hotspot mutation (Fig. 3). Next, we assessed a wide range of
structure-based scores and applied them to all 935 RAS hotspot and
non-hotspot variants (Fig. 4D and E), demonstrating first the signifi-
cant added information from structure-based scores, and second the
ability to scale these methods to large numbers of variants. We be-
lieve that the current paradigm in the field, of aiming to directly pre-
dict the pathogenicity of variants, skips the critical step of inferring,
with precision, molecular mechanisms of dysfunction. This study
integrates the broadest diversity of scores (by type and nature of the
scores) to date for mechanistic characterization of RAS non-hotspot
variants and provides a scalable framework for application to other
proteins with variants identified by high-throughput sequencing.

We have assembled a large and diverse group of scores from
DNA annotations, protein sequence properties and protein 3D prop-
erties and used it to show that 3D-scores enhances the information
available from the DNA, leading to greater specificity. As a first ex-
ample, several studies have shown that pair-wise energetic potentials
can reliably identify changes in DDGfold associated with genomic var-
iants (Cheng et al., 2005; De Baets et al., 2012; Yang et al., 2013).
Second, compared to pair-wise potentials, four-body contact poten-
tials were developed to identify the best 3D models from a set of
candidate models because they better capture the non-linear protein
fold as well as the many interactions between the protein backbone,
side chains and solvent (Feng et al., 2007). Thirdly, due to allosteric
transitions and biomolecular interaction sites, variants throughout
the protein can lead to local functional changes without being

destabilizing. In this context, local frustration quantifies the balance
(or imbalance) among energetically favorable and unfavorable inter-
actions (Ferreiro et al., 2007) and has been shown useful to inter-
preting the impact of genomic variants (Kumar et al., 2016). We
further quantified an experimentally parameterized thermodynamic
measure of local foldability using transfer free energies based on
residue-specific implementation of the SEED algorithm (Porter and
Rose, 2012), which parses proteins into their constituent thermo-
dynamically cooperative components (Zimmermann et al., 2015).
Finally, we integrated scores and generated topologic groups that
we believe may indicate different molecular mechanisms and thereby
probabilities of pathogenicity. Previous studies have shown the im-
portance of protein 3D structure (Berliner et al., 2014; Dixit et al.,
2009; Karchin et al., 2007; Kiel and Serrano, 2014) and dynamics
(Dixit and Verkhivker, 2014; Ponzoni and Bahar, 2018) in assessing
functional impact of missense variants, in general. Further, most of
the scores we combined have been individually tested against gen-
omic predictors or disease classification. However, no study, to our
knowledge, has combined the broad diversity of scores together,
with DNA annotations, for the interpretation of genomic variants.
By combining them, we identified that many of them are unique, po-
tentially assaying a different dimension of the protein and explaining
why they have modest performance on an individual basis. We also
assessed if transcripts from the seven RAS-family genes were of simi-
lar complexities to one another or if they were more diverse and
found that they span much of the proteome’s transcript-level local
complexity (Supplementary Fig. S9). Thus, our approach is innova-
tive, likely generalizable to other proteins, and has a high potential
to elucidate altered mechanisms.

The most well-studied RAS mechanism of dysregulation is acti-
vating hotspot mutation, which is commonly observed in human
cancers. A simple functional hypothesis is that all hotspot variants
are damaging to function and activating, but an increasing array of
evidence is indicating that different changes at the same hotspot resi-
due result in different amounts of dysregulation or even different
types of activation (Prior et al., 2012). For example, in our data,
G12C is more alike across RAS proteins than other G12 variants;
our approach indicates that G12C affects RAS differently than other
G12 variants. Recent experimental studies have shown that G12C is
unique among G12 variants for its ability to be specifically inhibited
(Lindsay and Blackhall, 2019). Functional genomics experiments
will be critical for completing our understanding of how mechanistic
changes to RAS lead to distinct cellular effects. Concordance be-
tween existing experiments and 3D scores highlights the potential
utility of our approach for identifying underlying mechanisms.

The primary aims of the current study were to quantify the dif-
ference in information content among DNA and 3D structure-based
scores, and to investigate if there were groups of RAS variants based
on how they alter the landscape of scores. We aim to define new
scores that more directly assess biologic mechanisms of dysfunction.
That is, to define energetic, parametric or molecular mechanic
scores that conveys an underlying biophysical landscape or mechan-
ism of alteration, even if they do not directly measure that land-
scape. Our long-term aim is to categorize variants into mechanistic
groups. Such mechanisms are the underpinnings for disease. Thus,
we aim to predict pathogenicity by first determining mechanism.

We have established our approach to protein structure-based
scores as an initiating point for a fuller description for how genetic
variants may affect protein function. Pilot studies on RAS proteins
(Clausen et al., 2015; Gorfe et al., 2008; Grant et al., 2009;
Ioannidis et al., 2016) and our own studies on other proteins
(Blackburn et al., 2017; Klee and Zimmermann, 2019; Long et al.,
2016; Zimmermann et al., 2018), have demonstrated the utility of
atomic molecular simulations to provide additional information
such as allosteric transitions and functional motion, but scalable
approaches using these tools remain to be developed. Also, more
quantitative groupings of the variants, generated by training against
a larger amount of experimental functional assays, are required for
a more definitive assessment. Our ongoing work will extend the
structure-based approach presented here, to include dynamics-based
scores, as well as scores derived from protein shape and surface
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properties. We will extend our application of protein scores to in-
clude the GTPase fold in general and further details for variants
determining RASopathies. We firmly believe that the approach we

have presented here is applicable to a broad range of the human
proteome and will become an important criterion in future versions

of guidelines for the interpretation of genomic variants.
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