
Advanced brain ageing in Parkinson’s disease
is related to disease duration and individual
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Machine learning can reliably predict individual age from MRI data, revealing that patients with neurodegenerative disorders show

an elevated biological age. A surprising gap in the literature, however, pertains to Parkinson’s disease. Here, we evaluate brain age

in two cohorts of Parkinson’s patients and investigated the relationship between individual brain age and clinical characteristics.

We assessed 372 patients with idiopathic Parkinson’s disease, newly diagnosed cases from the Parkinson’s Progression Marker

Initiative database and a more chronic local sample, as well as age- and sex-matched healthy controls. Following morphometric

preprocessing and atlas-based compression, individual brain age was predicted using a multivariate machine learning model trained

on an independent, multi-site reference sample. Across cohorts, healthy controls were well predicted with a mean error of 4.4 years.

In turn, Parkinson’s patients showed a significant (controlling for age, gender and site) increase in brain age of �3 years. While this

effect was already present in the newly diagnosed sample, advanced biological age was significantly related to disease duration as

well as worse cognitive and motor impairment. While biological age is increased in patients with Parkinson’s disease, the effect is

at the lower end of what is found for other neurological and psychiatric disorders. We argue that this may reflect a heterochronic-

ity between forebrain atrophy and small but behaviourally salient midbrain pathology. Finally, we point to the need to disentangle

physiological ageing trajectories, lifestyle effects and core pathological changes.

1 Institute of Neuroscience and Medicine (INM-1, INM-7, INM-11), Jülich, Germany
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Introduction
Notwithstanding individual variability, the human brain

ages in a systematic fashion, allowing machine learning

models to robustly predict individual age from in-vivo
imaging data with an accuracy of 3–5 years [mean abso-

lute error (MAE)] for new subjects.1 The individual devi-

ation of the biological ‘brain age’ from chronological age,

the brain age gap (BAG), is now widely recognized as a

summary marker of brain health.2 A negative BAG

implies that a person’s brain appears younger than

expected given the chronological age. In turn, a positive

BAG, i.e. older appearing brains, are observed in patients

with mild cognitive impairment (MCI), Alzheimer’s dis-

ease3–5 or healthy subjects with poorer cognitive perform-

ance.6–8 A recent large-scale analysis of �11 000 patients

then showed elevated brain age in a broad range of

neuro-psychiatric disorders.9 This suggests that BAG may

be a sensitive albeit likely non-specific marker of not

only neurodegeneration but brain pathology per se.

A surprising gap in the literature, however, pertains to

the second most common neurodegenerative disorder10:

Parkinson’s disease, with the only available investigation

reporting a BAG of 1.5 years11 by a model that yielded a

BAG of >9 years for patients with Alzheimer’s disease.

While macroscopic brain atrophy in Parkinson’s disease

has been discussed controversially and is a criterion for

individual diagnosis,12 a recent meta-analysis of morpho-

metric studies provided evidence for robust atrophy in

Parkinson’s disease patients.13 Mirroring other neurodege-

nerative disorders, we would thus expect a positive BAG

and, considering the progressive nature of Parkinson’s

disease, a relationship to disease duration and severity.

In this study, we tested these hypotheses using a cohort

of 372 Parkinson’s disease patients stemming from two

sources, the Parkinson’s Progression Marker Initiative

(PPMI)14 and a local sample. This not only allows us to

test replicability of any findings, but also yields comple-

mentary insight. The PPMI provides a large multi-site

sample of recently diagnosed Parkinson’s disease patients,

which should provide a robust basis for generalized con-

clusions on potential brain age advancement in de-novo

Parkinson’s patients. In addition, the PPMI provides a

consistent set of clinical covariates across all subjects.

Yet, owing to the focus on early biomarkers, more

chronically ill patients are missing in this database.

Hence, we aimed to replicate and extend the findings
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obtained from the PPMI in a local dataset reflecting a

substantially broader range of progression.

We thus (i) assessed significant (univariate) differences

in local grey matter volume (GMV) between patients

with Parkinson’s disease and controls, (ii) predicted indi-

vidual brain age by a model trained on an independent

multi-site dataset and (iii) computed the BAG. The ensu-

ing scores were then (iv) compared between patients with

Parkinson’s disease and controls, and (v) correlated with

individual disease duration as well as motor [Unified

Parkinson’s Disease Rating Scale (UPDRS-III) motor

scores] and cognitive impairment [Montreal Cognitive

Assessment (MoCA)].

Materials and methods

Study participants

We analysed structural, T1 weighted MRI scans (standard

MPRAGE, 3 T scanners) from 372 patients with idiopath-

ic Parkinson’s disease (304 from PPMI and 68 from local

samples) and 172 age- and sex-matched healthy controls

(HCs, 101 from PPMI and 71 local) as summarized in

Table 1. All patients were examined by an experienced

movement disorders specialist. Diagnosis of idiopathic

Parkinson’s disease was based on the UK Parkinson’s

Disease Society Brain Bank Clinical Diagnostic Criteria15

following a thorough diagnostic work-up, including

neurological examination, medical history and family an-

amnesis, neuropsychiatric assessment and positive levo-

dopa response. In turn, non-idiopathic Parkinsonism was

an exclusion criterion. Patients from the local sample

were under their long-term dopaminergic treatment with

individual drug regimens optimized by the attending

neurologist. In turn, PPMI patients were unmedicated

and not expected to require Parkinson’s disease medica-

tion within at least 6 months per the study protocol.

Exclusion criteria for all subjects (patients and controls)

were clinical dementia, major depression as well as any

other physical, psychological, or medical condition that

would interfere with the conduction of the study. Finally,

standard contraindications for MRI such as pacemakers,

metal implants, pregnancy, extreme obesity or claustro-

phobia likewise applied to all subjects. All subjects gave

informed consent after approval of the study by the local

ethics committees. Joint reanalysis was approved by the

ethics committee of the University of Düsseldorf.

Data availability statement

The PPMI dataset may be downloaded following applica-

tion for access under http://PPMI-info.org/. The local data

cannot be openly shared due to ethical restrictions and

missing consent for sharing from the participants.

Table 1 Demographic and clinical summary data

PD HC P (PD vs HC)

Age All 62.7 6 8.4 62.8 6 8.3 0.861

PPMI 62.4 6 8.2 63.6 6 8.7 0.202

Local 63.9 6 9.0 61.7 6 7.7 0.118

P (PPMI vs Local) 0.191 0.124

M/F All 243/129 108/64 0.566

PPMI 199/105 70/31 0.478

Local 44/24 38/33 0.180

P (PPMI vs Local) 0.954 0.108

Disease duration (years) All 1.75 6 3.39

PPMI 0.55 6 0.54

Local 7.30 6 5.09

P (PPMI vs Local) <0.001

Hoehn and Yahr stage All 1.71 6 0.67

PPMI 1.58 6 0.51

Local 2.28 6 0.97

P (PPMI vs Local) <0.001

MoCA (adjusted for education) All 26.88 6 2.44

PPMI 27.15 6 2.19

Local 24.51 6 3.14

P (PPMI vs Local) <0.001

UPDRS-III All 20.34 6 8.75

PPMI 20.75 6 8.53

Local 18.19 6 9.59

P (PPMI vs Local) 0.041

LED PPMI None

Local 679 6 488

LED, Levodopa-equivalent dose; MoCA, montreal cognitive assessment; PD: Parkinson’s disease; UPDRS, Unified Parkinson’s Disease Rating Scale.

Motor scores were assessed in the pharmacological ‘ON’ state with patients on their regular medication. Disease duration corresponds to time since diagnosis. Data shown are

number of subjects or mean 6 standard deviation, respectively. For relationships between clinical covariates and chronological age, please refer to Supplementary Table 1.
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Data processing and representation

Structural MRI imaging for the local sample was per-

formed using a T1-weighted MPRAGE sequence (3 T

Siemens Trio scanner; TR ¼ 2.3 s, TE ¼ 2.96 ms, TI ¼
900 ms, flip-angle ¼ 9�, FoV ¼ 240 � 256 mm2 sagittal

plane, slices ¼ 160, voxel size ¼ 1� 1 � 1 mm3). The

parameters for the local sample were thus in line with

the PPMI protocol requiring an isotropic in-plane reso-

lution of 1 � 1 mm3 and a maximum slice-thickness of

1.2 mm without gap while other parameters including

repetition and echo time should follow the manufac-

turer’s recommendations for a T1-weighted, 3D sequence

at each site.

After visual inspection for quality assurance, T1 scans

were processed using the Computational Anatomy

Toolbox (CAT12.5, http://www.neuro.uni-jena.de/cat/),

including bias-field correction, noise removal and skull

stripping, normalization to MNI space and tissue segmen-

tation. Modulation by the amount of volume changes

needed to match the individual brain to the template by

non-linear registration then provided per-subject maps of

local GMV adjusted for head size. We note that our ap-

proach of using only the Jacobian of the non-linear

deformations for modulation is in effect very similar to

modulating by the affine and non-linear deformations

and subsequently adjusting for total intracranial volume

but may be more robust as it does not rely on a full and

correct estimation of the CSF component during segmen-

tation. One of the challenges for machine learning on

brain imaging is the high (nominal) dimensionality of

voxel-wise data yielding a poor feature-to-sample ratio.

Capitalizing on the topographic organization of the brain

into distinct areas,16 we thus followed an atlas-based

strategy for biologically informed compression based on

800 cortical,17 36 subcortical18 and 37 cerebellar19 grey

matter regions. For all analyses, individual grey matter

anatomy was hence represented by 873 features, each

reflecting the winsorized mean of the voxel-wise GMV

values for a given area.

Brain age prediction

Individual age was estimated using an ensemble of linear

support vector regression (SVR) with stratified subsam-

pling.20 An independent dataset consisting of 3960 sub-

jects (cf. Fig. 1) was compiled from several sources:

1000Brains,21 Cam-CAN,22 OpenfMRI,23 the Dallas

Lifespan Brain Study,24 CoRR,25 IXI (http://brain-develop

ment.org/ixi-dataset) and the NKI-Rockland sample.26 We

note that the age-range of the training dataset exceeds

that of the Parkinson’s disease patients and HC by al-

most 20 years on the younger and older side. The higher

sample size and broader age-range should provide a ro-

bust estimation of age-trajectories5 and increase stability

of the models due to a more favourable feature-to-sample

ratio.27 Given the imbalanced age- and sex-distribution

across datasets, we performed stratified subsampling20 to

ensure that the training set for each individual model

within the ensemble was balanced in terms of age, site

and sex distribution. At each iteration, 1562 subjects

were independently drawn in a stratified manner without

replacement and used to train an individual linear SVR

with feature selection, providing a weak learner for the

ensemble. Fitting of the SVR models was performed

using LibSVM toolbox (https://www.csie.ntu.edu.tw/

�cjlin/libsvm/). This process was repeated 25 000 times,

with all individual models being applied to the

Parkinson’s disease patients and HCs. The thereby pro-

vided predictions were averaged (‘bagging’) to yield the

final age-prediction, followed by a stacked model for

bias-adjustment without leakage.28,29 Finally, individual

BAGs were calculated as the difference between predicted

(biological) and chronological age.

Statistical analysis

All statistical analyses were performed independently for

(i) the PPMI dataset and (ii) the local cohort as well as

(iii) pooled across all patients. Differences between

Parkinson’s disease patients and controls were assessed

by an ANOVA including the factors ‘Diagnosis’ as well

as ‘Gender’, ‘Age’ and ‘Site’. Significance was tested in a

non-parametric (label-exchange) approach30 to accommo-

date the confound structure of the data without the need

for distributional assumptions.

First, we analysed the areal-wise GMV to characterize

the presence of regional brain atrophy accounting for

gender, age and site. Inference was performed at

p< 0.05, correcting for the false discovery rate (FDR)

across parcels. Next, we compared biological ageing as

reflected by the BAG (estimated—true age) between

Parkinson’s disease and controls using the same ap-

proach. While the analysis of (area-wise) GMV differen-

ces was corrected for the number of assessed brain areas,

no correction was necessary for the comparison of BAG

values between groups, as the BAG collapses the multi-

variate pattern of atrophy into a single number.

Finally, we investigated associations between

Parkinson’s disease patients’ BAG and individual disease

duration, Hoehn and Yahr stage, cognitive (MoCA

score) as well as motor (UPRDS-III score) affection using

Pearson correlation analysis, again separately by cohort

and in the overall sample. For these analyses, informa-

tion on disease duration was missing for 2/372 patients,

Hoehn and Yahr stage for 6/372, UPDRS-III scores for

10/372 and MoCA scores for 35/372. Given overlap

among missing values, at least one covariate was missing

for 40 patients, i.e. full information was available for

332. Individually for each analysis, i.e. covariate, cases

with missing data for this covariate were excluded from

the computation of the correlations, i.e. we did not per-

form any imputation.
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Figure 1 Prediction of individual ‘brain age’ by an ensemble predictor trained on a heterogeneous database of �4000 subjects. This approach

yielded a mean absolute error (MAE) of 4.4 years for HCs and a BAG increase of about 3 years in Parkinson’s disease patients. The middle

plot shows the age-distribution of the training set for brain age prediction as a histogram (using 5-year age bins) stacked by site as denoted by

the colours and named above the bars. The top right panel shows a scatter-plot of chronological age (x-axis) versus ‘brain age’ (as predicted

from the model trained on the data summarized in the central panel) for the HCs from the PPMI cohort and the local sample. The mean

absolute error (MAE) is computed as the average of the absolute individual deviations between brain and chronological age, i.e. the mean

BAG ignoring the sign. The bottom right plot shows the distribution of the (signed) BAG for the Parkinson’s disease patients from both

samples. The pink line denotes the average BAG in that sample, the shaded pink box the mean 6 standard deviation.
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Results
Age of the HCs was well predicted in both cohorts (over-

all r¼ 0.84, MAE 4.4 years; PPMI r¼ 0.85/MAE 4.3 years,

local r¼ 0.81/MAE 4.5 years) using the SVR ensemble

(Fig. 1, cf. Supplementary Fig. 1). When biological age

was estimated by the same model for the Parkinson’s dis-

ease patients, we found an increased BAG of 2.9 years. In

more details, local patients were estimated on average

3.3 years older than their true age, while the early-stage

patients from the PPMI showed a mean advancement of

2.8 years (all p< 0.05 adjusting for age, sex and site).

Convergently, we found a correlation between disease dur-

ation and BAG (r¼ 0.14, p< 0.008) in the pooled sample,

mainly driven by the more chronic local patients (r¼ 0.26

/ p¼ 0.036 versus r¼ 0.04 / p¼ 0.52 in the PPMI).

Advanced biological relative to chronological age was

moreover related to clinical impairment (Fig. 2). There

was a trend towards a negative correlation with Hoehn

and Yahr stages in the pooled and local (chronic) sample,

though (presumably due to a lack of variance) not in the

PPMI data. More cognitively impaired patients showed

advanced brain ageing as evident by a negative correlation

between MoCA scores and BAG (r ¼ �0.19, p< 0.001)

in the overall sample as well as PPMI (r ¼ �0.15,

p< 0.01) and the local cohort (r ¼ �0.30, p¼ 0.085).

Likewise, patients with stronger Parkinson’s disease motor

symptoms as reflected by UPDRS-III scores featured a

higher BAG in the overall sample (r¼ 0.14, p< 0.006) and

PPMI (r¼ 0.17, p< 0.004), though not the local cohort

(r¼ 0.11, P¼ 0.43). In sum, we thus observed that individ-

ual BAG reflects disease duration, cognitive and motor

affection.

When testing for additional relationships between indi-

vidual BAG and further clinical covariates in the PPMI

sample as well as levodopa-equivalent doses (LEDs) in

the local sample (as the PPMI patients were unmedi-

cated), we found that higher BAG was associated with

compromised independence in daily life (Schwab and

England score), impaired smell (UPSIT scores) and more

pronounced autonomous dysfunction (SCOPA-AUT

scores). In turn, we found no significant correlation of

BAG with education, LED or depressivity (Fig. 3).

On the univariate level (P< 0.05, corrected for multiple

comparisons), Parkinson’s disease patients featured wide-

spread cortical atrophy, in particular in the right central

region, medial frontal but also the visual and temporal

cortices, as well as the thalamus and basal ganglia

(Fig. 4, left panel). Interestingly, there was only a moder-

ate (r¼ 0.22) correlation between the parcel-wise atrophy

estimates of the (early stage) PPMI cohort and the (more

advanced) local cohort, though both were represented

well by the overall analysis (pooled versus PPMI:

r¼ 0.85; pooled versus local r¼ 0.67). As illustrated in

Supplementary Fig. 2, the most pronounced difference be-

tween the cohorts was the stronger prefrontal atrophy in

the (chronically ill) local cohort as compared to the

early-stage PPMI patients. Finally, noting both positive

and negative BAG among the patients, we correlated the

individual BAG of the Parkinson’s disease patients with

the per-parcel GMV to explore, where atrophy was most

strongly related to increased brain age (Fig. 4, right

panel). Interestingly, the negative correlation between

BAG and GMV, i.e. association between increased brain

age and atrophy, was strongest in the Rolandic

Operculum, the cingulate cortex and visual areas, show-

ing a distinct pattern from the categorical differences be-

tween Parkinson’s disease patients and controls. We take

this finding as an indication that atrophy patterns in

Parkinson’s disease may only partially map onto differen-

ces in brain age, even though we must note that brain

age as a multivariate prediction will inevitably depend on

the entire pattern in the feature space rather than local

features in isolation.

Discussion
We investigated grey matter loss in two independent,

large cohorts of Parkinson’s patients and matched con-

trols. Mass-univariate comparison revealed distributed at-

rophy in fronto-occipito-temporal cortices of Parkinson’s

disease patients when controlling for age, gender and site.

Our results resonate well with findings from a recent

meta-analysis13 regarding effects in the basal ganglia as

well as superior and medial frontal cortex, but we note

that the current analysis also robustly highlighted ventral

occipital and temporal areas. In addition, the more exten-

sive frontal affection of the more chronic local patients

matches the increased prevalence of executive symptoms

with increased disease progression.31

Training and applying a multivariate model for individ-

ual age prediction then allowed the assessment of discrep-

ancies between biological and chronological age in

patients with Parkinsons’s disease and matched controls.

While the age of the HCs was expectedly well predicted,

we found brain ageing in Parkinson’s disease patients to

be advanced by about 3 years and related to disease dur-

ation as well as cognitive and motor affection.

The concept of ‘brain age’

To estimate a summary marker of individual neurodegen-

eration, we employed the ‘brain age’ concept.32 The ensu-

ing ‘BAG’ has the advantage of absorbing physiological

changes, rendering it conceptually independent from

chronological age. That is, given that the BAG reflects

the difference between estimated ‘brain age’ and chrono-

logical age, it should be comparable across the lifespan

as long as underfitting due to regression dilution and dis-

tribution imbalance are corrected for.29,33 Moreover,

from the current literature i appears that BAG dispersion

does not systematically change across the (adult) lifespan,

i.e. the distribution of BAG values seems to be similarly
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Figure 2 Relationship between individual brain age gap (BAG) and clinical covariates that were available for both cohorts. The BAG was

significantly related to disease duration in the local and pooled samples, though not in the PPMI dataset comprising only early-stage patients.

There was a significant negative relation to cognitive functioning (MoCA scores, lower values indicate stronger impairment) in the pooled and

PPMI data and a trend towards such association in the subsample of the local cohort. Finally, correlation with motor impairments (UPDRS-III

scores, higher values indicating stronger impairment) was evident in the PPMI and pooled sample. In turn, correlations between BAG and

Hoehn and Yahr stages were not statistically significant, though showed a trend towards a positive correlation in the local and pooled

samples.
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wide in younger and older adults. On the one hand, this

may be expected when balanced training sets are used, as

in that case, the model will be optimized to capture the

entire age-range represented in the training data equally

well (while often failing to extrapolate beyond the training

range). On the other hand, we would like to note that the

same BAG should represent the same relative (in terms of

years of further ageing) rather than an absolute deviation

(in terms of percent volume loss) of atrophy patterns

across the lifespan. Given that changes in brain structure

are much smaller in, e.g. the 30s are compared to the

60s,34,35 this implies that a similar BAG of 4 years would

correspond to more substantial absolute atrophy later in

life but a similar shift relative to the reference cohort.

We note that the MAE of 4.4 years for our HCs com-

pares well with the current literature reporting MAEs of

3–5 years for healthy subjects1,32 but acknowledge, that

the BAG should represent a mixture of true biological de-

viation and generalization error, i.e. noise. While their

relative contribution is unknowable, recent reports suggest

that even with massive training datasets and complex

models, the lower bound of prediction accuracy may be in

the range of 2–3 years, likely reflecting biological

variability. Deep learning on almost 12 000 subjects from

a multi-site dataset resulted in an MAE of 3.7 years in

cross-validation and 4.1 years for an independent test-sam-

ple.36 In turn, a deep learning ensemble trained on �13

000 subjects from the UKbiobank achieved an MAE of

2.14 years on held-out subjects from the same dataset.37

Comparison to other disorders

While we found a significantly elevated BAG in both

cohorts, the absolute increase of �3 years is rather moder-

ate relative to other neurodegenerative disorders.9,36,38 As

recently reviewed,2,32 BAGs of up to 10 years and Cohen’s

d values > 1 have been reported for Alzheimer’s disease.

MCI patients also show substantially increased brain ages,

though the findings are more variable (mean BAG: 3–

8 years, Cohen’s d: 0.4–0.7). Effects at the lower end of

that spectrum have been shown for schizophrenia and

psychotic disorders39–41 whereas BAG values of patients

with multiple sclerosis even exceed those for Alzheimer’s

disease.9 A mean BAG of �3 years (Cohen’s d � 0.4) thus

places Parkinson’s disease at the lower end of brain disor-

ders featuring broad impairments of mental functions.

Figure 3 Correlations between individual brain age gap (BAG) and covariates that were only available in one of the two cohorts (PPMI or local

sample). As shown, BAG showed a significant negative correlation to the individual Schwab & England and UPSIT scores (indicating an advanced

biological age in patients with compromised independence or sense of smell) and a positive correlation with the SCOPA-AUT indicating a higher

brain age in patients with more pronounced autonomous dysfunction. Importantly, we found no significant correlation of individual BAG with

education, levodopa-equivalent dose or depressivity, rendering it unlikely that these covariates may have driven the main effects in Fig. 1.
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We would hypothesize that this surprising observation

may reflect the usual time of diagnosis in the progression

of Parkinson’s disease. Clinical diagnosis is usually

attained in Braak stages 3/4,42 when the disease has

entered the substantia nigra and striatal function is dis-

turbed through loss of dopaminergic innervation. In turn,

substantial cortical atrophy corresponding to Braak-stages

5/6 may trail by several years.43 While the Braak hypoth-

esis has been questioned,44 it stands to reason that patients

recently diagnosed with Parkinson’s disease due to striatal

dysfunction may not yet feature substantial forebrain atro-

phy, resulting in a low BAG. In contrast, relevant cortical

atrophy in disorders like AD, MCI and schizophrenia

should precede the onset of the clinical symptoms, result-

ing in more substantial BAG increases for recently diag-

nosed patients. That is, in comparison to other disorders,

the behaviourally salient disturbance of striatal function in

Parkinson’s disease may prepone the time of diagnosis

relative to substantial forebrain degeneration.

Comparison to previous work on
brain age in Parkinson’s disease

The to date only existing study on brain age in

Parkinson’s disease,11 reported a BAG of 1.5 6 6.0 years

for PPMI patients based on a model using grey matter fea-

tures and 2.5 6 5.9 for one based on WM features. While

both the work by Beheshti and the current estimate of a

2.8 year BAG for the PPMI thus point to a only very

moderate increase in brain age compared to other disor-

ders, the two investigations differed in multiple aspects

that may explain the divergence in the reported BAG.

First, we not only included a second cohort in order to

replicate the findings from the PPMI data and extend

them to more chronically ill patients, but notably also al-

most twice as many patients from the PPMI dataset (304

versus 160). From the methodological perspective, the cur-

rent age-prediction model was trained on a substantially

larger training set, which allowed us to train each weak

(but unbiased) learner using more subjects than were avail-

able to Beheshti et al. Combined with the use of a bio-

logically informed data-compression by a state-of-the-art

brain atlas relative to low-resolution resampling, we would

argue that the current model should have a much higher

capacity for robust, unbiased and precise estimation of in-

dividual age. Yet, it may be noted that the age-prediction

in the PPMI controls was only slightly better using our

model (4.28 versus 4.38 year MAE). We would attribute

this observation to the fact that the current paper per-

formed a true out-of-sample validation, i.e. no PPMI

Figure 4 Left: Significant grey matter volume differences between Parkinson’s disease patients and HCs accounting for effects of age, sex and

site. Analyses were performed on the parcel level, i.e. using the same data that was used for brain age prediction. Values show percent

atrophy in PD relative to controls, solid coloured parcels survive statistical inference at p< 0.05 corrected for multiple comparisons by

controlling the False Discovery Rate (FDR). Right: Significant correlations between parcel-wise GMV and individual BAG in PD patients

accounting for the effects of age, site and sex. Values show Fisher-Z transformed correlation coefficients, solid coloured parcels survive

statistical inference at p< 0.05 corrected for multiple comparisons by controlling the False Discovery Rate (FDR).
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subject was part of the training set whereas Beheshti et al.

performed 10-fold cross-validation. Hence information on

the PPMI data, though not on the test-subjects themselves,

were available to the previous but not the current model.

Variance and specificity of the BAG
in Parkinson’s disease

While the BAG was significantly increased in both

Parkinson’s disease cohorts, we noted a substantial vari-

ability between individuals with about one-third of the

patients featuring negative BAG values, i.e. brains appear-

ing younger than their chronological age. While this may

be partially attributed to imperfect algorithm-generaliza-

tion, it must be remembered that a particular diagnosis

such as Parkinson’s disease is just one of many factors po-

tentially influencing ‘brain age’. To exemplify, effects on

BAG have been reported for education and physical activ-

ity,45 obesity46 and metabolic syndrome,46,47 childbirth,48

meditation practice,49 negative life events50 as well as alco-

hol and nicotine consumption.51 The observed variance

could thus reflect influences of such factors. In turn,

recording (during data collection) and accommodating

(during analysis) more lifestyle and health related informa-

tion will be a critical step in the further development of

‘brain age’ approaches. Ultimately, we would then envision

an ‘adjusted’ BAG reflecting the part of the deviation be-

tween biological and chronological age that is not attribut-

able to known influences.

Whether such adjustment would lead to an increase or

decrease in the mean BAG, however, is up for conjecture,

as unmeasured and hence unknown confounds may bias

results either way. To illustrate, most neurological and

psychiatric conditions entail a reduced physical activ-

ity.52,53 Advanced brain age may hence partially reflect

general patterns of involution due to a more reclusive

lifestyle rather than true neurodegeneration. In turn,

adjusting may unmask differences that are obscured by

confounding lifestyle and physical health factors.

This leads to a final but critical consideration that also

relates back to the rather small BAG advancement in

Parkinson’s disease. As noted, brain age models describe the

multivariate patterns of physiological changes in the brain,

i.e. the normative trajectory of age-related changes.1 The

observation that the BAG is increased in patients with neu-

rodegenerative disorders has hence been conceptualized as

an ‘acceleration’ of normal ageing.54 This view, however, is

at odds with observations of distinct disease-related patterns

for Alzheimer’s and Parkinson’s disease, Schizophrenia, mul-

tiple sclerosis, etc.; each confirmed by meta-analysis.13,55–57

In the current brain age framework, multivariate patterns of

atrophy due to neurodegenerative disorders that differ from

physiological changes would then be projected onto the nor-

mal trajectory. Consequently, a disorder featuring atrophy

patterns that closely resemble physiological changes would

result in a higher BAG than one evoking atrophy that

strongly differs from normal age-related involution. In sum-

mary, we would argue that the brain age concept offers a

unique opportunity to objectively quantify the deviation of

high-dimensional morphometric patterns from their age-

related norm in a single number. Yet, further work is

needed to disentangle the effects of lifestyle features and the

alignment between physiological and pathological patterns

from raw BAG scores to obtain sensitive, specific and clinic-

ally useful58 biomarkers of neurodegeneration and their pro-

gression, understand patient heterogeneity and finally

develop tools for individual prognosis.

Limitations

This study investigated ‘brain age’ in Parkinson’s disease

based on two well-sized cohorts of de-novo and chronic

patients (304 and 68 patients, respectively) using a large,

heterogeneous training database and true out-of-sample

predictions. Yet, we need to acknowledge that a deeper,

more consistent clinical and neurocognitive phenotyping

may have allowed further insight into the behavioural

correlates of inter-individual differences in BAG across

patients. Most importantly, only core clinical features

(disease duration and HY stage as well as MoCA and

UPDRS-III scores) were available for both the PPMI co-

hort as well as the local sample. This limited analysis of

covariates such as the Geriatric Depression Scale, UPSIT,

Modified Schwab and England scale, SCOPA-AUT and

unfortunately also education (which was used in the local

sample to correct the MoCA scores but not systematically

recorded for further analysis) to the PPMI lacking more

chronically ill patients. There is hope, however, that fu-

ture releases of the PPMI will allow to track the relation

of these variables to brain ageing, while we encourage

the design of future cohorts to include a more detailed

cognitive and affective test battery.

Conclusions and outlook
We demonstrated that Parkinson’s disease leads to a

moderate but replicable increase in predicted brain age

that reflects both disease duration and severity. These

findings are well in line with the neurodegenerative na-

ture of Parkinson’s disease. However, more longitudinal

work on populations with detailed social and medical

history is needed to disentangle physiological ageing tra-

jectories, lifestyle effects and core pathological changes.
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Supplementary material is available at Brain

Communications online.
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