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Abstract
Objectives: Both nano silver and neomycin have wound healing properties. Silver nanoparticles have been used as main
compounds for therapeutic drug delivery systems against various ailments. The present study aimed to prepare a neomycin
silver nano-composite gel easily, rapidly, and cheaply method to improve wound healing.
Methods: Forty-five Wistar rats (150–200 g) divided into nine groups: wound untreated, wound fusidic acid treated,
wound neomycin treated, three groups with wound and neomycin silver nano-composite gel at 1:1, 1:2, and 1:3 con-
centrations, respectively, and three groups wound treated silver nano gel at the previous concentrations, respectively.
Percentages of wound healing and histopathological examination of the wound area were assessed in all groups.
Results: Atomic force microscopy (AFM) and transmission electron microscopy (TEM) images demonstrated the
spherical shape of neomycin silver nano-composite gel without aggregation but homogenous dispersion in a gel matrix.
Dynamic light scattering (DLS) showed a 4 nm size of nano silver, which agrees with AFM image data analysis but not with
TEM image due to the good coating of the gel matrix to silver nanoparticles. Dynamic light scattering Zeta potential was
�21 mV, illustrating the high bioactivity of the neomycin silver nano-composite. The groups receiving neomycin silver
nano-composite gel showed a significantly higher and dose dependent wound healing compared to other treatment groups.
Conclusion: The present work confirmed the potential wound healing activity of neomycin silver nano-composite gel
compared to either alone.
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Introduction

Born around 1974, nanotechnology is a quickly developing
field for assembling novel materials from 1 to 100 nm1–3

with applications in numerous fields including science,
agriculture, and anti-infection treatment.4

Nanoparticles have physicochemical characteristics
superior to bulk materials due to their enormous surface to
volume proportion, higher reactivity, stability, bioactivity,
bioavailability, controlled particle size, controlled release
of loaded drugs, and site-specific targeting.5–8

Furthermore, nanoparticles have an incredible potential
for medication delivery due to their capacity to enter cells,
tissues, and organs, improving on the poor bio-accessibility
and high toxicity of present drugs.9 Drugs might be in-
corporated inside the nanoparticles or attached to their
surface.10 That allows not only overcoming issues asso-
ciated with current medicines, but also provides new av-
enues of treatment for various ongoing issues.8,11

Nano medicines are based on the use of different ap-
paratuses dependent on nanotechnology to widen snappier
and additional responses for scientific issues or infection
control.

The economy of most nations is reliant on animals. In
spite of the rise of numerous illnesses new indicative and
helpful tools are created by time to recognize and treat
animal sicknesses with the end goal of expanded protein
supply for human nourishment. Nanotechnology has an
incredible potential role in the improvement of drug
delivery9,12,13 in veterinary medicine.

Newly synthetic atoms can provide new medicinal
drugs against certain diseases, protecting animals/humans
from viral or bacterial diseases and improving wound
healing. Furthermore, a combination with nanoparticles
could transport drugs into cells for successful
treatment.14–16 Nano-theragnostics is considered a treat-
ment strategy combining medications and diagnostics; it
aims to monitor the treatment response and increase drug
efficacy and safety. In addition, it allows to design and
develop combination agents, allowing the delivery of
therapeutics and the detection modality that used before
and throughout the treatment regimen.17

Wounds pose highly complicated issues to medical care
due to their high susceptibility to microbial infection.
Moreover, fast and satisfactory wound healing with less
undesirable scarring is needed. Nanoparticles allow a wide
range of biomedical applications that provide advanced
treatment for several kinds of wounds.18

Silver nanoparticles (Ag-NPs) are synthesized by dif-
ferent methods as precipitation, sonochemical, and sol-
vothermal methods.19,20 They are effective on bacteria such
as E. coli, S.aureus, Klebsiella, and Pseudomonas. While
attacking their respiratory chain and cell division resulting

in cell death, at low concentrations they are nontoxic for
humans.21,22

Neomycin is a poorly absorbed bactericidal amino-
glycoside antibiotic. Neomycin is hydrophilic while silver
nanoparticles are hydrophobic. Thereby, silver
nanoparticle–bound antibiotics can be easily delivered to
cells.23 The present study aimed toward preparation,
characterization, and investigation of the wound healing
activity of a neomycin silver nano-composite gel compared
to neomycin or silver nano gel alone.

Material and methods

Chemical used for synthesis

Trisodium citrate (TSC), Carbopol 940, Trimethylamine,
and silver nitrate (AgNO3) were manufactured by Sigma
Chemical Co. (St Louis, MO, USA). Neomycin powder
was obtained from pharma-Swede company, Egypt as
neomycin sulfate in pure powdered form (65%). Fusidic
acid was used as fusidin cream 2%, produced by Mina-
pharm Company, Egypt under license of Leo Pharma-
ceutical Products Ballerup, Denmark.

Synthesis of neomycin silver nano-composite gel

The first step is the synthesis of silver nanoparticles by
precipitation with assistance of ultrasonication.22 Typi-
cally, 125 mL of 0.002 M AgNO3 was heated to boil; then,
10 mL of 1% trisodium citrate were added drop by drop.
Subsequently, the solution was subjected to ultrasonication
using Hielscher UP400S (400 W) at an amplitude of 73%
and a cycle of 0.81 for 15 min at 90°C until the color
changed to pale yellow. Then, the solution was cooled to
room temperature avoids light incidence. The following
equations illustrate the formation of silver nanoparticles:

4Agþ þ C6H5O7Na3 þ 2H2O → 4Ago

þ C6H5O7H3 þ 3Naþ þ Hþ þ O2↑

The second step is the preparation the neomycin silver
nano gel. Typically, 0.75 g of Carbopol 940 were dissolved
in 350 mL doubled deionized water, and added to 100 mL
of Silver nanoparticles (50 ppm) with neomycin (50 ppm)
and sonicated in a device by Hielscher Company for 400 s
with an amplitude of 71 and 91% cycle; then, 75 mL of
trimethylamine were added drop by drop with continuous
sonication until pale yellow gel formation.

Characterization

To this end, we characterized the physical and chemical
properties of the neomycin silver nano gel to evaluate its
wound healing capability. The microscopic
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characterization served to determine the shape and surface
topography of the neomycin silver nano gel and carried out
with an atomic force microscope (AFM) (5600LS, Agilent,
USA) and transmission electron microscope (TEM) (Jeol,
JEM-2100 high-resolution, Japan). Identification was
achieved by X-ray diffraction (XRD) with the Bruker D8
Discover to identify neomycin silver nano gel crystals and
adequate preparation without contamination from the
synthesis process. The index aimed to obtain information
about the ability to dispersion in solution by zeta potential
and size using dynamic light scattering (DLS; Malvern,
UK).

Experimental design

Animals. Forty-five adult healthy Wistar rats (150–200 g
each) were included in the present study. Animals were
housed for ≥2 days before and during the experiments
under hygienic conditions at a room temperature of 22°C
and 55% humidity with a 12 h light/12 h dark schedule.
The rats were fed standard rat pellets and water was
provided ad libitum. The study protocol was approved by
The Institutional Animal Care and Use Committee,
Faculty of Veterinary Medicine, Cairo University; all
animal experiments were carried out in accordance with
the ethical guidelines of animal welfare (Vet
CU08032022466).

Rats were anesthetized prior to and during wound
excision by intraperitoneal ketamine injection (5 mg/kg
body weight) and xylazine (5 mg/kg body weight). The
dorsal fur of all animals was shaved using an electric
clipper and disinfected with 70% alcohol. A uniform
circular wound of approximately 100 mm2 was carefully
excised on the dorsal side of each rat to avoid injuring the
muscle layer as described.24 The wounding day is con-
sidered as day zero. Animals were divided into nine
groups (W, St, N, NS1, NS2, NS3, S1, S2, S3) till the
wounds were completely healed; the percentage of wound
contraction was assessed at days 0, 3, 6, 9, 12, and 15 post
wounding.

Experimental groups

W: wound untreated group
St: wound group treated with fusidic acid cream
N: wound group treated with neomycin gel
NS1: wound group treated with neomycin silver nano-
composite gel 1: 1
NS2: wound group treated with neomycin silver nano-
composite gel 1: 2
NS3: wound group treated with neomycin silver nano-
composite gel 1: 3
S1: wound group treated with silver nano gel 1
S2: wound group treated with silver nano gel 2

S3: wound group treated with silver nano gel 3

Parameters for wound healing evaluation

1. Wound healing %
2. Histopathological examination
• (Re-epithelization, granulation tissue, inflammation,
and angiogenesis)
• Photomicrographs of wounded areas
• Photomicrographs of the dermal content of collagen
bundles

Wound healing (%)

The wound area was measured in each individual of each
group as previously described25 and calculated according
to the following equation:

100� ≤
�wound area at day n
wound area at day 0 × 100

�
, n indicate 3, 9, or 15

Histopathological examination

Wound skin samples were collected and preserved in 10%
neutral buffered formalin, then routinely processed,
stained, and examined under a light microscope. Histologic
lesion scoring was performed as described.26 Further tissue
slides were stained by Masson’s trichrome stain (MTC) for
evaluation of collagen fiber deposition in the dermal layer.
Collagen fibers were quantified and statistically analyzed
as area percentage.

Statistical analysis

Data were analyzed using IBM SPSS statistics 20 software
using one way analysis of variance followed by the Duncan
multiple comparisons test for post hoc analysis. A p < 0.05
was considered statistically significant.

Results

Characterization

The XRD pattern of the silver-neomycin nano gel illus-
trates the XRD fingerprint pattern for nano silver, ac-
cording to JCPDS file No. 04-0783, while the gel matrix
and neomycin do not show any peaks due to its amorphous
nature. Atomic force microscope and TEM images illus-
trate the spherical shape of silver and neomycin nano-
particles without aggregation, homogenously dispersed in
the gel matrix. Dynamic light scattering showed a 4 nm size
for nano silver particles, which agrees with AFM image
data analysis but not with TEM images, due to the good
coating of the gel matrix to silver nanoparticles. The zeta
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potential was �21 mV, illustrating the high bioactivity of
the silver-neomycin nano gel (Figure 1).

Wound healing

An absence of significant differences in wound healing (%)
was detected in all experimental groups at day 0. Topical

nano-composite application (NS1, NS2, and NS3) showed
higher wound healing than the control non-treated group
(W) and other treatment groups. Wound healing was sig-
nificantly faster in the group treated with a neomycin silver
nano-composite gel 1:3, (NS3 group) compared to other
groups. Meanwhile, a slower wound healing rate was
detected in the control non-treated group (W group) at 3-,

Figure 1. (A) Transmission electron microscopy (TEM), (B) Zeta potential, (C) Dynamic light scattering (DLS), (D) Atomic force
microscopy (AFM), and (E) X-ray diffraction (XRD) of neomycin silver nano-composite gel.
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9-, and 15-days post-induction in comparison with other
treatment groups (Table 1, Figure 2).

Histopathological examination

Poor wound healing was observed in theW group, showing
an uncovered wound surface associated with a persistent
necrotic serocellular crust containing numerous bacterial
colonies and intense neutrophilic infiltration. The filling
granulation tissue showed a haphazard arrangement with

excessive inflammatory cell infiltration and poor
vascularization.

Moderate wound closure was observed in the St and N
groups, displaying complete epidermal remodeling in
various individuals. Organized granulation tissue occupied
the wound gap with minimal inflammation.

Concerning the silver administrating groups (S1, S2,
and S3); minimal wound healing was observed in the S1
group. Meanwhile, wound healing was markedly enhanced
in the S2 and S3 groups. Perfect wound healing closure was

Table 1. Percent of wound healing in different studied groups on day 3, 9, and 15.

Figure 2. Photographs of wound repair at different time interval in excision wound model in rats in different studied groups. (W: wound
untreated group, St: wound group treated with fusidic acid cream, N: wound group treated with neomycin gel, NS1: wound group
treated with neomycin silver nano-composite gel 1: 1, NS2: wound group treated with neomycin silver nano-composite gel 1: 2, NS3:
wound group treated with neomycin silver nano-composite gel 1: 3, S1: wound group treated with silver nano gel 1, S2: wound group
treated with silver nano gel 2 and S3: wound group treated with silver nano gel 3).
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observed in the nano-composite groups (NS1, NS2, and
NS3) with the highest closure observed in the NS3 group,
which showed a marked decrease in wound area with
complete re-epithelization, evidence of keratinization, and
organized tissue filling in the wound gap, rich in collagen
bundles and little to no inflammatory cell infiltration
(Figure 3).

The statistical analysis of wound healing parameters
showed a significant decrease in re-epithelization, granu-
lation tissue, inflammation, and angiogenesis in the W
group compared to other groups. Meanwhile, a significant
increase in granulation tissue, inflammation, and angio-
genesis was recorded in NS3 group in comparison with all
other experimental groups (Figure 4).

The evaluation of collagen bundles deposition was
examined in MTC stained sections. Few collagen fibers

were deposited in the W group, exhibiting a significant
decrease compared to other groups. However, the highest
collagen bundle deposition was observed in the NS3 group,
which showed a significant increase in the area (%) of
collagen bundles in MTC stained sections compared to
other groups (Figure 5).

Discussion

Wound healing is a normal biological process. Wound
healing occurs in four successive and highly programmed
phases: hemostasis, inflammation, proliferation, and re-
modeling. Any factor interfering with ≥1 of these phases
leads to impaired wound healing.27 Tissue formation and
tissue remodeling consist of various sequential controlled
stages including angiogenesis, cellular proliferation, and

Figure 3. Photomicrograph of wounded areas of different studied groups on day 15 (H&E) (a) Wound untreated group showing
serocellular crust covering with inflamed granulation tissue filling the wound gap, (b) wound group treated with fusidic acid cream
showing abundant collagen bundles filling the wound gap, (c) wound group treated with neomycin gel showing complete epidermal
remodeling with fibrovascular tissue filling the wound gap, (d) wound group treated with silver nano gel 1 showing incomplete re-
epithelization with moderate inflamed granulation tissue, (e) wound group treated with silver nano gel 2, (f) wound group treated with
silver nano gel 3 showing enhanced wound healing, (g) wound group treated with neomycin silver nano-composite gel 1, (h) wound
group treated with neomycin silver nano-composite gel 1: 2 showing advanced wound healing with complete re-epithelization, and (i)
wound group treated with neomycin silver nano-composite gel 1: 3 showing marked wound closure with complete re-epithelization
and evidence of keratinization.
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collagen synthesis followed by formation of granulation
tissue and matrix degradation followed by collagen re-
placement, wound contraction, and scar tissue
formation.28–31

Wound healing is controlled by different factors, such as
cytokines, mitogens, and chemotactic factors including
platelet-derived growth factors, insulin like growth factors,
epidermal growth factors, and fibroblast growth factors.
These factors control cell migration and proliferation as

well as production of extracellular matrix proteins, es-
sential for granulation tissue formation.32–34

When the skin is injured, bacteria normally present on
the skin surface can access the underlying tissues. Both
bacteria and endotoxins can lead to elevated pro-
inflammatory cytokines, such as interleukin-1 and TNF-
α. At this point, the wound may enter a chronic state and
fail to heal.35 Nanoparticles can simultaneously kill mi-
croorganisms and stimulate skin regeneration. Among

Figure 4. Re-epithelization, granulation tissue, inflammation and angiogenesis of wound healing evaluation on day 15 in different groups
(W: wound untreated group, St: wound group treated with fusidic acid cream, N: wound group treated with neomycin gel, S1: wound
group treated with silver nano gel 1, S2: wound group treated with silver nano gel 2, S3: wound group treated with silver nano gel 3, NS:
wound group treated with neomycin silver nano-composite gel 1: 1, NS2: wound group treated with neomycin silver nano-composite gel
1: 2 and NS3: wound group treated with neomycin silver nano-composite gel 1: 3). (Data Expressed as means ± standard error.
Different letter indicates a significant difference at p ≤ 0.05 compared to wound of untreated group).
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various nanoparticles, Ag-NPs are one of the most efficient.
Their unique properties suggest that they can both effec-
tively prevent wound infections and improve the healing
process of the damaged tissues compared with traditional
topical treatments.36,37

The present results showed that daily topical application
of neomycin or a silver nano-composite together with
fucidin cream promoted wound healing compared to the
non-treatment group. Wound healing occurs in the healthy

skin surrounding the wounds which coats or covers the
naked area. These processes may be due to myofibroblasts,
while epithelialization or epithelial regeneration following
damage, require the proliferation and immigration of ep-
ithelial cells to the wound center.35 In addition, there is
significant concentration dependent promotion of
wound healing in the groups topically treated with a
silver nano-composite (S1, S2, and S3) compared with
untreated group and that treated with fucidin cream

Figure 5. Photomicrograph of dermal content of collagen bundles in different groups on day 15 (MTC) (a) W group (wound untreated
group), (b) St group (wound group treated with fusidic acid cream), (c) N group (wound group treated with neomycin gel), (d) S1 group (S1:
wound group treatedwith silver nano gel 1), (e) S2 group (wound group treatedwith silver nano gel 2), (f) S3 group (wound group treatedwith
silver nano gel 3), (g) NS1 group (wound group treated with neomycin silver nano-composite gel 1: 1), (h) NS2 group (wound group treated
with neomycin silver nano-composite gel 1: 2), and (i) NS3 group (wound group treatedwith neomycin silver nano-composite gel 1: 3). (Data
Expressed as means ± standard error. Different letter indicates a significant difference at p ≤ 0.05 compared to wound of untreated group).
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only. Silver nanoparticles could effectively inhibit and
kill the bacteria in a concentration and time dependent
manner.

Similarly, Zhang et al. (2016) and Agnihotri et al. (2014)
reported that the small size of Ag-NPs could cause more
toxicity to the bacteria, having a better bactericidal effect,
and killing multidrug resistant bacteria compared to larger
particles, as they have a larger surface area.38,39 The
healing of any wound depends on the wound itself, the
presence or absence of infection, age, dietary supply, and
health conditions. All induced wounds were performed by
the same surgeon in an identical way, and all other factors,
including age, health conditions, and daily dietary supply,
were the same.

Silver nanoparticles release silver ions that kill mi-
crobes.40 Due to their attraction and affinity to sulfur
proteins, silver ions adhere to the cell wall and cytoplasmic
membrane. The adhered ions enhance the permeability of
the cytoplasmic membrane and lead to bacterial envelope
disruption.41 Uptake of free silver ions into cells leads to
deactivation of respiratory enzymes and generation of
reactive oxygen species (ROS). ROS are a principal agent
in cell membrane disruption. As sulfur and phosphorus are
important DNA components, the interaction of silver ions
with the sulfur and phosphorus of DNA can interrupt DNA
replication, cell reproduction, or even death of the mi-
croorganisms. Moreover, silver ions can inhibit protein
synthesis by denaturing cytoplasmic ribosomes.42 In ad-
dition, some membrane proteins that regulate antibiotic
tolerance, ion binding, pore-forming, membrane stabili-
zation, and flagellum assembly are controlled by Ag-
NPs.43

Infections with antibiotic-resistant microorganisms can
result in healing failure and predicted mortality.44 Ag-NPs
can be an alternative to conventional chemical antimi-
crobial agents to overcome multidrug resistance microor-
ganisms, as bacteria are less likely to develop resistance to
metal nanoparticles compared to conventional antibiotics.45

The antimicrobial effects of Ag-NPs against resistant E.
coli,46 multidrug resistant strains of Pseudomonas aerugi-
nosa,47 methicillin-resistant S.taphylococcus aureus
(MRSA),48 and extended-spectrum β-lactam producing
bacteria49 have been described. Ag-NPs’ anti-inflammatory
role in burns and other wounds is due to reducing inflam-
matory cell infiltration and inhibiting the development of
inflammatory cytokines.50

The present results agree with Pyun et al. (2015), who
confirmed the role of Ag-NPs in the enhancement and
acceleration of wound healing18 and with Liang et al.
(2016) who found that Ag-NPs could accelerate wound
healing via enhancing re-epithelialization, granulation
tissue formation, cell proliferation, and controlling in-
flammatory responses.51 In addition, Masood et al. (2019)
reported that Ag-NP impregnated hydrogels of chitosan–

polyethylene glycol accelerated wound healing in diabetic
wounds in rabbits.52

In addition, Wasef et al. (2020) confirmed the healing
properties of Ag-NPs in burns induced in mouse model.53

Furthermore, Ag-NPs did not have cytotoxic effects on
human cells at <30 mg/L. Moreover, Katva et al. (2017)
reported that a 10–100 μg/mL concentration of Ag-NPs did
not induce hemolysis in erythrocytes.54 The present data
showed that the wounds of animals treated with neomycin
gel induced a significant wound healing (N group) com-
pared to those of untreated animals (W group), and non-
significant wound healing compared to wounds of the
standard group treated with fusidic acid 2%. A similar
finding was previously reported for neomycin sulfate-
loaded hydrogel.23 Our findings revealed the enhanced
wound healing of the combined gel of nano silver and
neomycin compared to groups treated with fusidic acid 2%
(ST group). In addition, wound healing was significantly
faster in the group treated with a combination of neomycin
silver nano-composite gel 1:3 (NS3 group) compared to
other groups and that treated with fusidic acid (ST group).

Nanoparticle-antibiotic combinations have numerous
benefits, including a reduction of the concentration used
and toxicity of both agents while increasing the antimi-
crobial properties.55 Such a combination may increase
antibiotic concentrations at the point of antibiotic-microbe
contact, promoting increased affectivity. Thus, synergistic
effects may occur because of effective drug transport of
Ag-NPs to the cell, as Ag-NPs may encourage extensive
damage to the cell wall and facilitates transfer of hydro-
philic antibiotics to the cell surface.56 The large surface
area of nanoparticles can facilitate the interaction with
active antibiotic groups, as hydroxyl and amine groups,
resulting in conjugation of both molecules (antibiotic-Ag-
NP complexes), thus increasing the antibiotic concentra-
tion at the injection site.57 Another potential mechanism
that may lead to increased antibiotic activity due to the
combination with Ag-NPs is the inhibition of bacterial
enzymes responsible for bacterial tolerance to antibiotics.58

The results of the present study agree with those of
Khalil et al. (2021), who reported that a combination of Ag-
NPs significantly improved the antibacterial efficacy of
neomycin as evidenced by an increase of up to eight times
in the inhibition zone diameter against multiple drug re-
sistance (MDR) of P. aeruginosa-infected burn wounds.58

Related research by Panáček et al. (2016) demonstrated a
synergism of Ag-NPs with ampicillin against multi-
resistant strains of P. aeruginosa, Enterobacter aero-
genes, and Methicillin-resistant Staphylococcus aureus
MRSA.59 Moreover, zinc–aluminum layered double hy-
droides (LDH), curcumin, and curcumin nanohybrids re-
vealed good tissue repair in acute and chronic wounds with
good biocompatibility and healing activity with collagen
formation, in addition to prolongation of the duration of
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action of the loaded materials or drugs with LDH nano-
material in a controlled release manner.60

Our results agree with the findings by Jamaran and Zarif
(2016) who investigated the synergistic wound healing
activity of neomycin and silver within the gel matrix.61

Kumar et al. (2016) reported that tetracycline conjugated
Ag-NPs increased the antibacterial action of tetracycline
due to enhanced Ag+ accumulation around bacterial cell
membranes.62 In addition, Katva et al. (2017) recorded the
synergistic antimicrobial activity of Ag-NPs with chlor-
amphenicol and gentamicin against MDR Enterococcus
faecalis compared to antibiotics alone.54 The nano silver
and neomycin gel caused both antibacterial and antibiofilm
movement against multiple bacterial strains especially for
Pseudomonas aeruginosa and Streptococcus mutans, two
opportunistic bacteria often related with human and animal
infections or diseases.62

Limitation

The main limitation of this study was the lack of a power
analysis to calculate the sample size selected for this study.

Conclusion

According to the present findings, a neomycin silver nano-
composite gel may be promising for woundmanagement. It
is cheap, nontoxic, and more effective than either silver
nanoparticles or neomycin alone. However, further re-
search is needed on human volunteers with skin wounds to
confirm the efficacy of Ag-NPs alone or in combination
with an antibiotic(s), especially after the demonstrated
success of Ag-NPs and that of their combination with
neomycin in the treatment of wounds in experimental
animal models.
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