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Objective: Brain atrophy is an important imaging characteristic of cerebral small vascular

disease (CSVD). Our study explores the linear measurement application on CT images

of CSVD patients and develops a fully automatic brain atrophy classification model.

The second aim was to compare it with the end-to-end Convolutional Neural Networks

(CNNs) model.

Methods: A total of 385 subjects such as 107 no-atrophy brain, 185 mild atrophy,

and 93 severe atrophy were collected and randomly separated into training set (n =

308) and test set (n = 77). Key slices for linear measurement were manually identified

and used to annotate nine linear measurements and a binary classification of cerebral

sulci widening. A linear-measurement-based pipeline (2D model) was constructed for

two-types (existence/non-existence brain atrophy) or three-types classification (no/mild

atrophy/severe atrophy). For comparison, an end-to-end CNN model (3D-deep learning

model) for brain atrophy classification was also developed. Furthermore, age and gender

were integrated to the 2D and 3D models. The sensitivity, specificity, accuracy, average

F1 score, receiver operating characteristics (ROC) curves for two-type classification and

weighed kappa for three-type classification of the two models were compared.

Results: Automated measurement of linear measurements and cerebral sulci widening

achieved moderate to almost perfect agreement with manual annotation. In two-type

atrophy classification, area under the curves (AUCs) of the 2D model and 3D model were

0.953 and 0.941 with no significant difference (p = 0.250). The Weighted kappa of the

2D model and 3D model were 0.727 and 0.607 according to standard classification

they displayed, mild atrophy and severe atrophy, respectively. Applying patient age and

gender information improved classification performances of both 2D and 3D models in

two-type and three-type classification of brain atrophy.

Conclusion: We provide a model composed of different modules that can classify

CSVD-related brain atrophy on CT images automatically, using linear measurement. It
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has similar performance and better interpretability than the end-to-end CNNs model and

may prove advantageous in the clinical setting.

Keywords: brain atrophy, linear measurement, automated classification, convolutional neural networks, cerebral

small vessel disease, computed tomography, deep learning

INTRODUCTION

Cerebral small vessel disease (CSVD), a disorder of cerebral
microvessels, is an expanding epidemic all over the world. CSVD
causes approximately a quarter of ischemic strokes and most
hemorrhagic strokes. It is the most common cause of vascular
dementia, and worsens the resulting cognitive impairment,
thus contributing to about 50% of dementias worldwide, a
massive health burden in reality (1, 2). In the context of
CSVD, brain atrophy is one of the important radiological
descriptions, according to the standards for reporting vascular
changes on neuroimaging (STRIVE) (3). The neuropathological
basis includes neuron loss, cortical thinning, subcortical
vascular disease with white matter thinning and contraction,
arteriolar sclerosis, venous collagen degeneration, and secondary
neurodegenerative changes (4). Brain atrophy usually appears
with other signs of CSVD, and it is an important measure in
imaging studies that are done to assess the burden of vascular
damage in the brain (5–7). The path analyses show that the
impact of CSVD-related lesions on the clinical status is partly due
to brain atrophy and changes in cortical morphology (8). Atrophy
is thought to mediate, at least partially, the effects of vascular
lesions on cognition, and is mainly observed in patients with
accelerating cognitive decline (9, 10). Brain atrophy is suggested
to impair the potential for functional recovery after stroke. Severe
atrophy thus has lower brain reserve, making it less resilient to
ischemic injury (11, 12).

Non-contrast computed tomography (NCCT) has the

advantages of broader acceptability, lower cost, and faster

scanning speed (less motion artifacts) compared to magnetic

resonance imaging (MRI), and it plays a fundamental role in

neuroimaging (13). Brain atrophy, such as cortical atrophy and

central atrophy, has characteristic findings on NCCT images.

The typical sign of central atrophy is the enlargement of the

ventricular system. Correspondingly, enlarged Sylvian fissures,

widened sulci, and narrowed gyrus are markers of cortical
atrophy (14). The visual assessment of these discoveries of
brain atrophy is simple and convenient (15), but its accuracy
depends on the higher professional knowledge and rich clinical
experience of raters. Although some scales based on visual
findings have been developed, it is relatively coarse, subjective,
and might be prone to floor and ceiling effects. In view of the low
tissue contrast on NCCT images, accurate tissue segmentation
and volume calculation are still imperfect and are constantly
being improved (16). The challenge is believed to be tougher
for some CSVD patients (17). The presence of white matter
hypoattenuation or white matter hypodensities on NCCT further
reduces tissue contrast. One-dimensional linear measurement,
a mature and reliable way to assess the brain atrophy, has been
widely used in clinical practice (18–20). Previous studies have

shown that one-dimensional linear measurement and three-
dimensional measurement results have achieved substantial
correlation (21, 22). It does not have high requirements for tissue
contrast and can be used on either MRI or NCCT.

A significant progress has been made in the development of
fully automated structural image analysis and computer-aided
diagnosis technology (23). The fully automatic method provides
several advantages, including the ability to complete the set tasks
independently without manual operation, and the measurement
results can be quantified and further analyzed. This method
has been beneficially applied to patients with CSVD (24). As a
branch of machine learning, deep learning can extract hidden
features within big data automatically and has achieved advanced
performance across various fields (25). On the one hand, the
underlying mechanism of deep learning is still a black box
(26), and some researchers are focused on visualization and are
dedicated to improving the interpretability of the algorithms
(27). Building the model pipeline following the human medical
approach rather than generating an end-to-end model is also a
potentially advantageous protocol in relation to certain tasks. Yet,
for the brain atrophy of CSVD patients, automatic analysis is
mostly performed onMRI. The establishment of a fully automatic
evaluation model on NCCT images is a useful supplement with
clinical value.

In this study, we aimed to develop a fully automated brain
atrophy classification model based on NCCT images for CSVD
subjects, using one-dimensional line measurements to overcome
the limitations of low tissue contrast. Several clinical information
such as age and gender, were also included in the model to
improve the accuracy of the model (2D-integrated model). For
performance comparison, an end-to-end model (3D model and
3D-integrated model) has also been developed based on a pre-
trained 3D CNN algorithm.

MATERIALS AND METHODS

Study Populations
An observational study based on a cohort of outpatients and
inpatients was conducted at the Stroke Center of the First
Affiliated Hospital of Zhejiang University, from March 1, 2019
to April 1, 2020. This retrospective study was approved by
the ethics committee of the first affiliated hospital of Zhejiang
University (approval number: 2019.1511). A total of 385 eligible
patients were enrolled in this study. The inclusion criteria were
set as follows: (1) Patients who have been clinically diagnosed
as CSVD, and at least one of the following neuroimaging
markers on MRI images: white matter hyperintensities, recent
small subcortical infarcts, lacunes, enlarged perivascular spaces,
cortical microinfarcts, cerebral microbleeds, and brain atrophy
(8). (2) The both MRI and NCCT head/brain scans of patients
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FIGURE 1 | Flowchart of patient enrollment and strategy of training and testing for brain atrophy classification.

were used to make a set of MRI–NCCT pairs for accurate
training preparations, and the time interval between theMRI and
NCCT scans were required to be <3 months to avoid differences
in brain structures due to possible disease progression. (3)
Age equal to or >40 years. The following patients were
excluded: (1) cognitive impairment diagnosed with clear etiology,
such as poisoning, infection, degeneration diseases (Parkinson’s
disease, multiple system atrophy, corticobasal degeneration, and
dementia with Lewy bodies, etc.), and immune demyelination
(multiple sclerosis, Balo’s concentric sclerosis, etc.); (2) patients
with any indications that may affect the linear measurement,
such as of intracranial mass effect and local mass effect,
ventricular effacement, midline shift, and herniation; (3) partial
defect of brain tissue after surgery; (4) failed imaging scans or
various artifacts that affect reading; and (5) symptomatic or
asymptomatic brain injury. The study flowchart is shown in
Figure 1.

Computed Tomography Image Dataset
All CT scans were performed using 64-rows helical CT
scanners(Brilliance 64, Philips; LightSpeed VCT, GE Medical

System) with a tube voltage of 20 kVp and a tube current of
180–200 mAs. The raw data of the Minimum slice thickness in
the Z axis direction were 0.625mm, and the reconstruction slice
thickness was 5mm with an image matrix of 512× 512 pixels.

Data Pre-Processing
Each image was normalized to the same intensity range 0–255
(WW = 80 HU, WL = 40 HU) and when deemed necessary the
brain midline was rotated vertically. For 2D model training, all
images were resampled to 224 × 224 pixels to reduce the GPU
memory usage.

Model Training and Testing
All NCCT scans were randomly separated into a training set (n
= 308) and a test set (n = 77) for both two-type and three-type
classification tasks. At first, all images were corrected by rotation
on the X–Y plane, asserting the brains were perpendicular
to the horizontal edges of image in each sample. A series
of common data augmentation approaches were performed to
increase training data diversity and size, such as random rotation
(from −5 to 5 degrees), random shift, random zoom, left–right
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TABLE 1 | Demographic information of the study subjects.

No atrophy

(n = 107)

Mild atrophy

(n = 185)

Severe atrophy

(n = 93)

Age (year) 48 (40 67) 74 (44 94) 81 (60 99)

Gender (male:

female)

48:59 96:89 51:72

Age presented as median (range).

flipping, and adding Gaussian noise. We applied five-fold cross
validation in the training set (the training set was randomly split
into five subsets. A model was trained using the first four subsets,
and then validated on the remaining subset. Five iterations were
performed using each subset as validation set to optimize model
parameters and to avoid overfitting. All models were trained
only on the training set, and the testing set was reserved for
performance evaluation of our models.

Ground Truth Label (Reference for Model
Training)
A neuroscientist and a radiologist, both with more than 20 years
of personal experience, will reach a consensus on MRI–NCCT
image pairs. The CSVD-related brain atrophy is labeled by the
visual assessment onMRI (28). No enlargement of the ventricular
system (third and fourth ventricles) and no enlargement of the
sulci and lateral fissure is defined as no brain atrophy (n =

107). The significant enlargement of the ventricular system, along
with significantly widened parietal lobe sulci (at least 2 sulci
were >5mm in width), and a significantly widened lateral fissure
cistern is defined as severe atrophy (n = 93). The rest did not
meet the above conditions and were regarded as having mild
atrophy (n = 185). The high atrophy ratio was retained in the
dataset to ensure sufficient positive samples for the effective
learning process and evaluation of 3-classification algorithms.
The demographic characteristics of the dataset are shown in
Table 1.

Manual Annotation on NCCT
The one-dimensional linear measurement was independently
completed by another neuroradiologist on the four key slices
of the NCCT images with ITK-SNAP software (US National
Institutes of Health). This researcher was unaware of the
label and clinical information of each subject. Results of the
annotation were reviewed by the aforementioned two experts and
a consensus was reached (Figure 2). Nine linear measurements
included maximal frontal horn width (A), minimal intercaudate
distance (B), maximal width of third ventricle (C), the choroid
plexuses distance (D) on basal ganglion slice showing most
prominently the heads of the caudate nuclei (key slice 1), minimal
ventricular body width (E), maximal transversal intracranial
width (F), and maximal transversal extracranial width (G) on
a slice displaying most of the body of the lateral ventricle (key
slice 2). The maximal width of Sylvian fissures (HR/HL) on the
slice where measurement was most clearly visualized (key slice
3) (20, 29–31). It needs to be emphasized that enlargement of

the parietal lobe sulci (at least 2 sulci being >5mm in width) is
a binary classification, implemented on the third slice above the
top of the lateral ventricle (key slice 4), and still based on expert
consensus as the ground truth.

Overview of Pipeline Modules of Brain
Atrophy Classification Model
The pipeline of the classification model consists of four modules:
(1) key slice detection module, (2) automatic measurement
module, (3) identification module of cerebral sulci widening,
and (4) classifier module (Figure 3A). Key slice detectors,
linear measurement calculators and cerebral sulci enlargement
identifiers were developed based on CNN algorithms, while
the atrophy classifier was implemented by a logistic regression
model. All included CT images after pre-processing were input
into the pipeline: key slices were identified first, and then linear
measurements and cerebral sulci information were automatically
identified. Seven linear measurements such as the Huckman
Number (A + B), ventricle index (D/A), lateral ventricular
body index (F/E), width of lateral ventricular body index (G/E),
ventricle forefoot index (G/A), maximumwidth of third ventricle
(C), average width of Sylvian fissures ([HL+HR]/2) (20, 30, 31),
along with cerebral sulci enlargement information were used to
identify whether the subject had cerebral atrophy or not in the
two-class classification, and no atrophy, mild atrophy, or severe
atrophy in the three-class classification.

Module 1: Key Slice Detection
The ResNet34, consisting of four convolutional-pooling blocks
and a fully connected layer, was used as the backbone model to
detect four defined key slices (32). To train the proposed CNN
model, momentum was applied as the optimizer to minimize the
cross entropy between annotated key slices and the prediction
outputs. The batch size was set to eight and the learning rate was
applied with piecewise-scheduled decay with warming starting.
We selected models for each key slice with the best accuracy in
the validation set to construct the detector for each slice.

Module 2: Automatic Measurement
Models for nine linear measurements in key slices 1, 2, and 3 were
developed based on the ResNet 18 backbone. As the structure
and morphology of the brain are very similar on adjacent slices
to the key slice, we fed the key slice and two adjacent slices into
three channels of the RGB color image and generated a three-
channel fused image to train the proposed model. We used the
mean square error (MSE) as the cost function and Adam as the
optimization algorithm. The batch size is 16, learning rate is
0.0001, and the value of decay is 0.8 with a decay step of 10,000.

Module 3: Cerebral Sulci of Parietal Lobe
Enlargement Identification
Model for cerebral sulci of parietal lobe enlargement
identification in key slice 4 was developed based on ResNet
18 backbone. Three channel fused image consisting of key slice
4 and adjacent slices was used to train the classification model.
We used cross entropy as the loss function and momentum
as the optimization algorithm. The batch size was 8 and the
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FIGURE 2 | Annotation of 9 linear measurements and cerebral sulci enlargement. (A–D) were four key slices defied for linear measurements and Cerebral sulci

enlargement identification. (A), A, B, C, and D were manually annotated on basal ganglion slice showing most prominently the heads of the caudate nuclei (Key slice

1); (B), E, F, and G were annotated on slice displaying most of the body of the lateral ventricle (key slice 2); (C). HL and HR were manually annotated on slice a that the

Sylvian fissures were most clearly visualized (key slice 3); (D), Binary classification of cerebral sulci widening on the third slice above the top of lateral ventricle was also

annotated (key slice 4).

FIGURE 3 | Illustration of 2D model and 3D model for brain atrophy classification. (A) 2D model was consisted of four modules, such as key slice detectors, linear

measurements calculators, cerebral sulci enlargement identifier, and atrophy classifier. Information of age and gender were integrated into the atrophy classifier of 2D

model to generate 2D-integrated model. (B) 3D model was developed based on a 3D CNN model. Information of age and gender were integrated into the full

connected layer to generate the 3D-integrated model.

Frontiers in Neurology | www.frontiersin.org 5 March 2022 | Volume 13 | Article 846348

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Wang et al. Automatic Classification of Brain Atrophy in CSVD

learning rate was applied with piecewise-scheduled decay with
warming starting.

Module 4: Brain Atrophy Classification
Seven linear measurements and cerebral sulci enlargement
information were used to train a logistic regression classifier for
no atrophy/atrophy two-class classification or no atrophy/mild
atrophy/severe atrophy three-class classification. Furthermore,
linear measurements, cerebral sulci of parietal lobe enlargement
information as well as age and gender were utilized to build
logistic regression as an integrated model.

These four modules had different outputs which were inter-
connected sequentially, and outputs from the last module were
used as training inputs to the next module. The outputs of key
slice detection module were the machine-selected four slices (key
slice 1–4) from each subject’s NCCT image set. The outputs of
the automatic measurement module were eight straight lines
automatically drawn by the machine and their length values (A-
G, HR/HL). For better visualization, these lines were displayed on
key slices in different colors. The sulcus enlargement recognition
module outputted an automatic judgment result, with or without
sulcus enlargement. The outputs of classifier module were
obtained by the machine after integrating all the information; it
could be binary classification (atrophy or no atrophy) or three
classifications (no atrophy, mild atrophy, or severe atrophy).

Overview of End-To-End 3D CNN Model
To compare with the 2D model, an end-to-end deep learning
algorithm for two-class and three-class classification were trained
using Med3D, a heterogeneous three-dimensional network
pretrained on the 3DSeg-8 dataset was employed as the backbone
(Figure 3B). The batch size was set to four and the Adam
algorithm was utilized to optimize model parameters with
a learning rate of 0.0001 in the backbone and 0.001 in
fully connected layers. Optimization of model parameters was
considered to converge once the model’s performance on the
validation set stopped improving for 50 epochs. Age and gender
information were integrated into the fully connected layer to
generate the 3D-integrated model. The outputs of 3D model
or 3D-integrated model directly generated classification results,
either a binary classification (atrophy or no atrophy) or three
classifications (no atrophy, mild atrophy, or severe atrophy).

Statistical Analysis
Paired t-test and Pearson correlation test were used to
evaluate the performance of automatic linear measurements.
The consistency of the cerebral sulci dichotomy was assessed
on accuracy and Cohen’s kappa. The model performance of
two-class classification was evaluated by sensitivity, specificity,
accuracy, F1 score, and area under the curve (AUC) with 95%
CI. The 0.5 was set as the probability threshold of binarized class
labels. The differences between Receiver Operating characteristic
(ROC) curves were further analyzed using the DeLong test. For
three-type classification, the model performance was evaluated
based on accuracy, average F1 score, and weighted kappa. All
statistical analyses were performed using the R programming

language (version 3.6); the p < 0.05 was considered as
statistically significant.

RESULTS

Module Performance
The performance of three modules, key slice detection, linear
measurements, and cerebral sulci enlargement identification,
were evaluated in the test set. The detection accuracy for key slices
1, 2, 3, and 4 were 0.887, 0.558, 0.934, and 0.574, respectively,
and they were compared with the annotated ground truth.
The accuracy of the detected key slice and its two adjacent
slices reached 1 for all key slices (Supplementary Table S1).
The correlation results of nine linear measurements between
annotated ground truth and automated measurements were
listed in Table 2. In the test set, no significant difference was
found in the mean value of each linear measurement between
automated and manual annotations. Automated measurements
achieved a very good correlation with ground truth in the
minimal intercaudate distance, maximal transversal intracranial
width, and maximal transversal extracranial width (correlation
coefficient ≥ 0.8), a strong correlation in maximal width of the
third ventricle, minimal ventricular body width, and maximal
width of Sylvian fissures in left and right (correlation coefficient
≥ 0.6), and a moderate correlation in maximal frontal horn
width and the choroid plexuses distance (correlation coefficient
≥ 0.4). For the cerebral sulci dichotomy, the accuracy of the
deep learning algorithm was 0.818, and the Cohen’s kappa
was 0.636.

Performance of the Two-Type
Classification for Brain Atrophy With CSVD
The performance of four models for two-type classification in the
test set was assessed (Table 3 and Figure 4). The results showed
that the 2D-integrated model yielded the highest sensitivity
value (0.951), while the 3D-integrated model yielded the highest
specificity value (0.943), accuracy value (0.943), F1 score (0.951),
and AUC (0.981). Models with different strategies, all achieved
great AUCs for two-type classification (>0.94). Furthermore,
ROCs analysis showed the 2D model and 3D model, had no
significant differences in statistics. Integration of age and gender
information could significantly improve the model performance,
while AUCs of the 2D-integratedmodel and 3D-integratedmodel
had no significant differences (Supplementary Table S2). The
representative cases of misclassifications showed key slice 3
(∗in Figures 5A,B) detected by the 2D model was the adjacent
slice to the manually annotated slice (reference) in both cases,
which led to shorter H (long arrows) and might be the reason
for misclassifications.

Performance of the Three-Type
Classification for Brain Atrophy With CSVD
The performance of four models for three-class classification
tasks was shown (Table 4). In the test set, the 2D-integrated
model achieved the highest accuracy (0.808) and kappa (0.786),
while the 3D-integrated model showed the highest average F1
score. All models had a substantial agreement with experts
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TABLE 2 | Correlation analysis between automated measurement and manual ground truth for linear measurements.

GT AI t p-Value PCC p-Value

A 35.999 ± 4.186 35.936 ± 2.686 0.363 0.717 0.584 <0.001

B 19.001 ± 4.151 18.808 ± 3.172 1.524 0.128 0.803 <0.001

C 8.215 ± 2.350 8.014 ± 1.536 1.867 0.063 0.618 <0.001

D 52.977 ± 5.858 52.970 ± 3.743 0.026 0.979 0.537 <0.001

E 34.223 ± 6.559 34.147 ± 4.452 −0.16 0.873 0.779 <0.001

F 142.290 ± 6.484 142.579 ± 5.642 −1.854 0.064 0.881 <0.001

G 123.591 ± 7.593 123.862 ± 6.810 −1.894 0.059 0.93 <0.001

HL 6.083 ± 3.078 6.365 ± 3.233 0.523 0.602 0.68 <0.001

HR 6.365 ± 3.229 6.159 ± 2.489 1.729 0.085 0.695 <0.001

GT, manual ground truth; AI, linear measurements achieved by 2D model; PCC, Pearson correlation coefficient.

TABLE 3 | Performance comparison for two-class classification of brain atrophy in test set, in terms of sensitivity, specificity, accuracy, F1 score, and area under the curve

(AUC).

Sensitivity Specificity Accuracy F1 Score AUC

2D model 0.931 0.854 0.899 0.916 0.953 (0.927–0.972)

2D integrated model 0.951 0.902 0.932 0.943 0.975 (0.954–0.988)

3D model 0.851 0.924 0.881 0.894 0.941 (0.912–0.962)

3D integrated model 0.943 0.943 0.943 0.951 0.981 (0.962–0.992)

AUC presented as the value of AUC (95% confident interval).

FIGURE 4 | Comparisons of receiver operating characteristics (ROC) curves

generated by brain atrophy models for two-type classification.

in diagnosing and classifying the degree of brain atrophy.
Furthermore, we evaluated the classification performance of
no atrophy, mild atrophy, and severe atrophy, respectively

(Supplementary Table S3). Consistent with the results of two-
type classification, the models all achieved a high performance
with the identification of no-atrophy subjects. The 2D-integrated
model was the best-performed model with an accuracy of
0.932, F1 score of 0.917, and AUC of 0.978 (0.959–0.991).
In mild and severe atrophy, the AUC of the 2D model was
consistently higher than that of the 3D model. Integration
of age and gender improved the AUC of the 2D model for
mild atrophy classification but showed no significant difference
from severe atrophy. Noticeably, all models achieved a low
sensitivity (<0.6) and a high specificity (>0.93) for severe
atrophy. The representative cases showed a longer H and were
achieved by the linear measurement of the 2D model in the no-
atrophy patient (Figure 6A short arrows). In the mild atrophy
case, a shorter D (short arrows in Figure 6A) was achieved
and the cerebral sulci on key slice 4 was misidentified as
normal while manually annotated as enlargement (Figure 6B∗).
In the severe atrophy case, shorter C and H (short arrows
in Figure 6C) were achieved, which might be the reason
for misclassification.

DISCUSSION

In this study, we developed and verified a new pipeline that
is different from end-to-end. It is applicable to brain atrophy
assessment, using linear measurement. On this basis, we provide
a fully automatic brain atrophy classification model, which
combines machine learning and deep learning, which can be
applied to CSVD patients. In addition, by integrating limited
clinical information and age and gender, the classification
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FIGURE 5 | Two representative examples of atrophy cases, which were misclassified. For each example, four key slices were presented from manual annotation (top)

and detection of 2D model (bottom). On key slice 1, the green line represented A, the blue line represented B, the red line represented C and the yellow line

represented D; On key slice 2, the green line represented E, the blue line represented F and the red line represented G; On key slice 3 (*in Figures 5A,B), the green

line represented HL (long arrows), while the blue line represented HR (long arrows). (A) Example case was misclassified by 2D model but was correctly predicted by

3D model, 2D-integrated model, and 3D-integrated model. (B). Example case was misclassified by both 2D model and 3D model but was correctly predicted by

2D-integrated model and 3D-integrated model.

TABLE 4 | Performance comparison for three-class classification of brain atrophy

in test set, in terms of accuracy, average F1 score, and Weighted kappa

coefficient.

Accuracy Average F1 score Kappa

2D model 0.761 0.716 0.727

2D integrated model 0.808 0.74 0.786

3D model 0.73 0.657 0.607

3D integrated model 0.795 0.774 0.742

performance of the model is improved. It may be incorporated
into clinical decision support tools in the future.

One of the motivations that drove our study is that brain
atrophy has become an important risk factor for brain health with
CSVD, and the effects of CSVD can be mediated through the
development of brain atrophy (33). The increased white matter

hypersignal burden undermines the integrity of the white matter
and causes the loss of volume. CSVD-related cortical atrophy
may result from secondary neurodegenerative processes elicited
by degeneration to the WM tracts that disrupt the functional
connections of the brain (8). In a longitudinal study, Jokinen
H et al. visually assessed the severity of brain atrophy on MRI
and confirmed that brain atrophy is independently related to
cognitive decline in small vessel diseases (10). Medial temporal
lobe atrophy (MTLA), subcortical and cortical atrophy increase
the impact of white matter lesions (WML) and lacunae on
cognitive decline. This evaluation conclusion was corroborated
in another MRI study that used automated brain volume
assessment (6). Brain atrophy is related to the adverse outcome
of acute ischemic stroke after reperfusion therapy (34). It
can be considered as an indicator of brain weakness and is
more susceptible to ischemia (35). A study of automatic CT
volume segmentation showed that brain atrophy reduces the
possibility of functional recovery after acute ischemic stroke in
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FIGURE 6 | Representative examples in no-atrophy, mild atrophy, and severe atrophy groups that were misclassified. For each example, 4 key slices were presented

from manual annotation (top) and results of 2D model (bottom). On key slice 1, the green line represented A, the blue line represented B, the red line represented C

and the yellow line represented D; On key slice 2, the green line represented E, the blue line represented F and the red line represented G; On key slice 3, the green

line represented HL, while the blue line represented HR. (A). Example case that was misclassified by 2D model but correctly predicted by 3D model, 2D-integrated

model and 3D-integrated model in the no-atrophy group. (B). Example case that was misclassified by 2D model, 3D model and 3D-integrated model but correctly

predicted by the 2D-integrated model in mild atrophy group. (C). Example case that was misclassified by all four models in severe atrophy group.

the anterior circulation (36). Our cross-sectional study of a group
of CSVD subjects supports that the automatic assessment of brain
atrophy is realistically achievable. Accurate clinical information

(presence/absence and severity) of brain atrophy can be obtained
through rapid and fully automatic linear measurement in NCCT.
In the test set, the classification performance of the 2D integration
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model reached a significant agreement with the expert consensus
(kappa = 0.786). This may be a friendly and effective assistant
for young clinicians, involving decision-making and prognosis
of CSVD.

Another important and original intention of our research is
to realize and verify the method of fully automatic assessment
of brain atrophy on NCCT images, which is also the reason why
other neuroimaging features of CSVD patients were not involved
in the study. As far as we know, this pilot study is the first
attempt to automate linear measurement for the assessment of
brain atrophy on NCCT. One-dimensional linear measurement
is an effective and economical method for evaluating brain
structure (29, 37). The linear index indirectly reflects the
structural information of different brain regions. Based on the
measured “Hackerman Number” and “ventricular index” data
can reflect the degree of central atrophy (37, 38). The width of
the Sylvian cistern and the sulci is related to the thickness of the
cerebral cortex (39, 40). Linearity measurement is also suitable
for evaluating patients with CSVD. Qin calculated the Sylvian
fissure ratio (SFR) on the MRI axial image (29). It was defined
as the average of the maximal Sylvian widths taken from the cut
showing the widest Sylvian fissure divided by the transperineal
coronal inner table diameter. In elderly patients with CSVD,
SFR has clinical value in screening cognitive decline. Our linear
measurement covers the lateral fissure cistern of the brain as well.
What’s more, we not only automate this linear measurement,
but also include more one-dimensional measurements reflecting
the brain structure, which will help improve the accuracy of
the evaluation and also facilitate its application in different
clinical scenarios.

Although the evaluation of CSVD relies on more advanced
neuroimaging, mainly MRI structural and functional imaging,
CT still plays an important role in primary healthcare centers.
Hanning U quantitatively assessed the leukoaraiosis on NCCT
images successfully (17). Subsequently, Chen and Pitkänen
used machine learning and convolutional networks to further
quantify white matter lesions on NCCT (41, 42). Recently,
Kaipainen completed the simultaneous assessment of white
matter lesions and brain atrophy, but the automated training is
very complicated and requires MRI as template mapping (43).
Moreover, the ventricular system has not been integrated. As one
of many attempts to automate the analysis of CT images, our
study can be a useful supplement to the automated evaluation
of CSVD. In view of the difference in imaging principles,
CT has a lower soft tissue contrast than MRI, and accurate
three-dimensional volume measurement is a huge challenge.
The presence of WM lesions affected segmentation-based brain
volume measurements on MRI (44). For patients with CSVD,
as the burden of white matter lesions increases, the density of
white matter around the ventricular system decreases, and the
segmentation and calculation of ventricle-white matter tissue
relying on the difference of the Hounsfield unit threshold brings
greater difficulties (17). On the subjects with CSVD, linear
measurement is assumed to avoid the interference of white
matter lesions. It has been proven that there is a correlation
between one-dimensional measurement and three-dimensional
measurement results.

Two different models of the underlying system design are
presented in this study, one is the end-to-end pipeline, which is
considered advanced, and the other is a pipeline composed of
several modules. Although the accuracy of key slices detectors
failed to reach 100%, the automatically detected key slice is the
adjacent slice of manual annotated one in the rest of the cases.
The cross-sectional anatomy on the adjacent CT slices of each key
slice is similar to the key slice of the ground truth Information
of measurements and cerebral sulci can also be obtained on
the adjacent slices. We fed three consecutive slices into three
channels of the RGB color image to ensure the features of defied
key slices can be acquired. Furthermore, three consecutive slices
would provide more anatomical information and contribute to
generate robust models for the measurement of ventricle indices.
The final results show that it is feasible to establish an atrophy
classification model based on different modules. For the binary
classification, the 2D model shows relatively higher sensitivity
and lower specificity than the 3D model. The AUC is 0.953
(0.927–0.972) and 0.941 (0.912–0.962), respectively. In the three-
classification task, the Kappa values of the two models were
0.727 and 0.607, respectively. Although both 2D and 3D models
have application value in the future, we believe that some of the
advantages of linear measurement modules are unique. Different
from end-to-end, it is considered a black box between input and
output, and the linear side measurement pipeline is artificially
divided into four modules. Each module has a specific function
and is visualized. This is closer to the thinking logic of human
medicine, and therefore, has a greater clinical interpretability. In
addition, this strategy improves the predictability of the model
output. Adding or reducing the corresponding modules flexibly
according to the specific clinical instructions is also easier to
achieve. This can also reflect the significance of this pilot study.

There are several limitations in this study. First, this is
a retrospective single-center study with a small sample size.
Insufficient data will lead to the overfitting problem of deep
learning algorithms and limit model performance. Although
we have adjusted the ratio of no-atrophy and brain atrophy,
the dataset is still imbalanced for a three-type task. Hence,
a large and standard dataset is needed to improve model
performance. Andmodel robustness should be verified on diverse
external datasets in future studies. Second, the present study
excluded the atrophy of the cerebellum and brain stem and
mainly focused on the assessment of cerebral atrophy, because
image artifacts often present in the posterior cranial fossa of
NCCT which may interfere with linear measurements and
mislead classification. Third, the collected clinical information
is limited. More demographic information, medical test results
and medical history may be integrated into present models.
Lastly, the lack of performance comparison between the
automated algorithms and physicians with different training
levels is also a limitation. The performance of physicians
should be investigated to further elucidate the usefulness of
our models.

In conclusion, we develop an end-to-end 3D CNN model
and an automatic pipeline by using deep learning and machine
learning algorithms to predict brain atrophy degree. The 2D
model yields equivalent high performance when compared
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with the 3D model in predicting the presence of brain
atrophy, while the 2D model is superior to the 3D model
in predicting the degree of brain atrophy. Integration of age
and gender can significantly improve the performance for
brain atrophy classification. Compared to the end-to-end 3D
CNN model, the 2D model follows the linear measurements
approach which is more comprehensible to clinicians. Therefore,
the application of our 2D linear measurement-based pipeline
has the potential to assist physicians to reduce variants and
improve efficiency.
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