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Abstract

Recent genome sequencing studies with large sample sizes in humans have discovered a vast quantity of low-frequency variants, providing
an important source of information to analyze how selection is acting on human genetic variation. In order to estimate the strength of natu-
ral selection acting on low-frequency variants, we have developed a likelihood-based method that uses the lengths of pairwise identity-by-
state between haplotypes carrying low-frequency variants. We show that in some nonequilibrium populations (such as those that have
had recent population expansions) it is possible to distinguish between positive or negative selection acting on a set of variants. With our
new framework, one can infer a fixed selection intensity acting on a set of variants at a particular frequency, or a distribution of selection
coefficients for standing variants and new mutations. We show an application of our method to the UK10K phased haplotype dataset
of individuals.
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Introduction
The distribution of fitness effects of new mutations, DFE, is a

probability distribution that quantifies the proportion of new
mutations having a certain selection coefficient s, where s can
take positive or negative values depending on whether the new

allele is under positive or negative selection. The DFE has a direct
impact on current levels of genetic variation, since the frequen-
cies of the alleles depend on their selection coefficient (Sawyer

and Hartl 1992; Hartl et al. 1994; Bustamante et al. 2001), and
alleles under selection change the genetic variation at linked sites

due to the effects of linked selection (Smith and Haigh 1974;
Charlesworth et al. 1993). Moreover, the DFE is a key feature in
the evolution of complex phenotypic traits (Simons et al. 2014;

Lohmueller 2014a; Mancuso et al. 2016), since the association be-
tween the selection coefficients and the effect of mutations on a
complex trait is an important determinant of the genetic archi-

tecture of a trait (Eyre-Walker 2010). Due to the impact of the DFE
on levels of genetic and phenotypic variation, properly inferring
the DFE is essential to many fundamental problems such as vali-

dating predictions of the nearly neutral theory (Kimura and Crow
1964; Crow 1972; Ohta 1992), understanding changes in the dele-
terious segregating variation observed in different populations

(Gazave et al. 2013; Lohmueller 2014b; Henn et al. 2015; Brandvain

and Wright 2016; Gravel 2016; Simons and Sella 2016; Koch and
Novembre 2017), elucidating the factors that influence changes
on the DFE between species (Martin and Lenormand 2006;
Charlesworth and Eyre-Walker 2007; Serohijos and Shakhnovich
2014; Tenaillon 2014; Rice et al. 2015; Huber et al. 2017), and infer-
ring the amount of adaptive evolution between species
(Gossmann et al. 2012; Galtier 2016; Zhen et al. 2018).

Broadly, 2 lines of research have been developed to infer a
DFE. One is based on experimental approaches and the other one
is based on the analysis of population genetic variation at puta-
tively neutral and deleterious sites. The main experimental
approaches taken with viruses, bacteria, and yeast are site-
directed mutagenesis experiments in target regions (Bataillon
and Bailey 2014) and mutation–accumulation experiments
(Halligan and Keightley 2009). Advantageous mutations tend to
be rare or not found in results from experimental approaches
(Halligan and Keightley 2009; Lind et al. 2010; Jacquier et al. 2013;
Bataillon and Bailey 2014) with some exceptions (Sanjuán et al.
2004; Dickinson 2008; Böndel et al. 2019). Due to this, some stud-
ies have focused on inferring the distributional form for the DFE
taking neutral and deleterious mutations. The types of probabil-
ity distributions that have provided a good fit to the DFE of neu-
tral and deleterious mutations in site-directed mutagenesis
experiments are a gamma distribution (Domingo-Calap et al.
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2009; Lind et al. 2010; Jacquier et al. 2013), a unimodal distribution
with a similar shape to a gamma distribution (Sanjuán et al. 2004;
Domingo-Calap et al. 2009; Peris et al. 2010), and a bimodal distri-
bution with one part of the probability mass on nearly neutral
mutations and the other one on the highly deleterious mutations
(Hietpas et al. 2011).

The other main approach is to use population genetic varia-
tion data to estimate the DFE with information from the site fre-
quency spectrum ( SFS) on putatively neutral and deleterious
sites (Sawyer and Hartl 1992; Williamson et al. 2005; Keightley
and Eyre-Walker 2007; Boyko et al. 2008; Gutenkunst et al. 2009;
Kim et al. 2017). The first step in these approaches is to infer the
demographic scenario that fits the SFS at putatively neutral sites,
which typically are chosen to be variants at synonymous sites.
The DFE is then inferred from putatively deleterious sites of inter-
est, typically nonsynonymous sites, while taking the demo-
graphic scenario into account. An interesting extension has
recently been developed to take SFS information and divergence
data from an outgroup to infer the DFE from the population
where the SFS data were taken along with the rate of adaptive
molecular evolution based on the divergence data (Tataru et al.
2017). Two other extensions have been taken to model the corre-
lation between the fitness effects of multiple nonsynonymous
alleles at a particular position (Ragsdale et al. 2016) and to calcu-
late the joint DFE between pairs of populations (Fortier et al.
2019). Some species where these approaches have been applied
to infer the DFE include humans (Eyre-Walker et al. 2006; Boyko
et al. 2008; Li et al. 2010; Huber et al. 2017; Kim et al. 2017), mice
(Halligan et al. 2013; Kousathanas and Keightley 2013), and
Drosophila melanogaster ( Kousathanas and Keightley 2013; Huber
et al. 2017). Studies that compare the fit of different probability
distributions argue in favor of a DFE of deleterious nonsynony-
mous mutations in humans that follows either (1) a gamma dis-
tribution (Boyko et al. 2008; Kim et al. 2017) or (2) a combination of
a point mass at neutrality plus a gamma distribution (Kim et al.
2017). Those 2 studies infer a leptokurtic DFE with a proportion of
nearly neutral mutations (s < 10�5) of 18.3–26.3%, and moderate
to strong deleterious mutations (s > 10�3) of 46.6–57.4%.

One drawback of the majority of current methods that esti-
mate the DFE using population genetic variation is that they ig-
nore all linkage information. To our knowledge, the only
exception is a recent study using an approximate Bayesian com-
putation approach that includes linkage disequilibrium statistics
in the analysis (Johri et al. 2020). The lack of studies exploiting the
information from linked genetic variation to estimate the DFE is
surprising given the fact that many studies have analyzed how
both deleterious (Charlesworth et al. 1993, 1995; Hudson and
Kaplan 1995; Nordborg et al. 1996; Nicolaisen and Desai 2013;
Cvijovi�c et al. 2018) and advantageous variants (Smith and Haigh
1974; Kaplan et al. 1989; Braverman et al. 1995; Nielsen 2005) de-
crease linked genetic variation. Further, linked genetic variation
has been effectively used to infer the age of particular variants
(Slatkin and Rannala 1997; Tishkoff et al. 2007; Chen and Slatkin
2013; Mathieson and McVean 2014; Chen et al. 2015; Nakagome
et al. 2016; Ormond et al. 2016; Albers and McVean 2018), the coa-
lescent time between rare-variant carrying chromosomes with
chromosomes not carrying the rare-variant (Platt et al. 2019), the
time to the common ancestor of a positively selected allele
(Smith et al. 2018), the time since fixation of an advantageous al-
lele (Przeworski 2003), the selection coefficient of an allele
(Slatkin 2001, 2008; Coop and Griffiths 2004; Tishkoff et al. 2007;
Chen and Slatkin 2013; Chen et al. 2015; Ormond et al. 2016), and
to detect loci under positive selection (Kim and Stephan 2002;

Sabeti et al. 2002, 2007; Voight et al. 2006; Wang et al. 2006; Tang
et al. 2007; Williamson et al. 2007; Pavlidis et al. 2010; Li 2011;
Ferrer-Admetlla et al. 2014; Garud et al. 2015; Field et al. 2016;
Huber et al. 2016). Since there has been so much progress in un-
derstanding how selection changes the linked variation around
individual variants, it should be feasible to pool the haplotype in-
formation from many variants putatively under selection at a
certain frequency f to infer the DFE and the distribution of fitness
effects of variants at a frequency, which we will call DFEf .

Here, we propose a new approach to infer DFEf . We note that
DFEf is different from the distribution of fitness effects of new
mutations entering the population, which we call the DFE. For
instance, natural selection can act to increase the frequency of
advantageous variants and to decrease the frequency of deleteri-
ous variants, causing a difference between DFE and DFEf . The
relationship between DFEf and DFE is one of the topics we will
address in this study.

Recent large population genomic datasets such as the UK10K
(Walter et al. 2015), the Netherlands Genome Project (Francioli
et al. 2014), the Haplotype Reference Consortium (McCarthy et al.
2016), and the NHLBI TOPMed Program (Taliun et al. 2019) provide
an unprecedented source of haplotype information to quantify
both the DFEf and the DFE. These datasets have started to be
exploited to understand the impact of selection on variants at a
certain frequency. For example, Kiezun et al. (2013) found that,
conditioning on the variants having a certain frequency f in the
population, nonsynonymous variants have more extended link-
age disequilibrium with neighboring neutral variation compared
with synonymous variants in data from the Netherlands Genome
Project. This is in line with Takeo Maruyama’s results showing
that deleterious variants at a certain frequency have a younger
age compared with neutral variants (Maruyama 1974), implying
that there is less variation on haplotypes carrying deleterious
variants.

Building on previous work to estimate the strength of selection
acting on advantageous variants (Slatkin 2001; Chen and Slatkin
2013), we propose an approach to provide a point estimate of the
population-scaled selection coefficient or a distribution of fitness
effects acting on a set of variants at a particular frequency f
(DFEf ). We infer the strength of natural selection using pairwise
haplotypic identity-by-state lengths (the length in one direction
along a pair of haplotypes carrying a focal allele to the first differ-
ence between the pair of haplotypes). For each pair j of haplo-
types we define the observed length as Lj. The length can be
measured in both directions along the chromosome extending
outward from the focal allele. We show that these lengths can be
used to distinguish between alleles under positive and negative
selection in some nonequilibrium demographic scenarios.
Further, we show how the DFEf can be used to infer the DFE. The
resulting method can help improve the understanding of how se-
lection is influencing, for instance, the low-frequency variants
present in a population. Finally, we show an application of our
method to the UK10K dataset.

Materials and methods
A method for inference of the population-scaled
selection coefficient based on haplotype variation
Our analysis is based on a set of ‘ haplotype pairs carrying a de-
rived focal allele at a sample allele frequency f in a focal site
(see Supplementary Table 1 for the notation used in this study).
The information from haplotypes carrying the ancestral allele
is ignored in our method following methods that infer the
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impact of natural selection based on the genealogical patterns
of haplotypes carrying a derived allele (Slatkin and Rannala
1997; Slatkin 2001). Haplotypes with the ancestral allele con-
tain information that could be useful to infer the impact of nat-
ural selection because their diversity patterns are dependent
on the strength of natural selection acting on a derived allele.
However, information provided by haplotypes carrying the an-
cestral allele would greatly increase the computation time of
our method since it would require the analysis of the haplo-
types containing the ancestral allele. That information is also
partly redundant since the frequency changes of the derived
allele directly change the frequency of the ancestral allele.

We compute the pairwise identity by state length Lj for every
haplotype pair, which is defined as the distance from the derived
allele at a focal site to the first difference between a pair of haplo-
types. For computational simplicity, we bin the chromosome un-
der analysis into a set of M discrete nonoverlapping windows
W ¼ fw1;w2; . . . ; wMg that extend to the side of the derived allele
at a focal site. Thus, for a set of ‘ haplotype pairs carrying an al-
lele, our analysis is based on which window the first difference
appears in for each haplotype pair (L ¼ fL1 2 wm1 ; L2 2 wm2 ;

L3 2 wm3 ; . . . ; L‘ 2 wm‘
g). We define m1; . . . ;m‘ as integers be-

tween 1 and M indicating the windows in which each length falls.
The majority of the analysis in this paper use M ¼ 6 discrete non-
overlapping windows as seen in Fig. 1. When M is different, we
note it in that particular analysis. We can calculate a length Lj for

all possible pairwise comparisons of n haplotypes containing the

derived allele to obtain ‘ ¼ n
2

� �
values of L. This procedure can

be done going upstream and downstream to obtain ‘ ¼ 2� n
2

� �

values of L. Further, if we take a number A of loci where the

derived focal allele has a frequency f , we will observe a total

number ‘ ¼ 2� A� n
2

� �
of L length values.

For our inference procedure, we will consider each Lj indepen-
dently and so we momentarily refer generically to a single ob-
served length as L. The parameter we wish to infer is the
population scaled selection coefficient 4Ns. For the moment, we
assume that all the derived alleles in the A loci share the same
selection coefficient 4Ns. That parameter is defined in terms of
the effective population size N from the most ancient epoch in
the demographic scenario D. It is also possible to define the popu-
lation scaled selection coefficient in terms of the most recent ep-
och. If the population size of the most recent epoch is NR and we
continue with our definition of the effective population size in
the most ancient epoch as N, then the population scaled selection
coefficient in the most recent time is equal to 4NRs.

The likelihood of a particular population scaled selection coef-
ficient, 4Ns, conditioned on the frequency f of a derived allele at a
focal site and a demographic scenario D with a single observed
length L that falls in a window wj can be expressed as:

Lð4Ns; f ;DjL 2 wjÞ ¼ PðL 2 wjj4Ns; f ;DÞ

¼
ð

P L 2 wjj4Ns; f ; D;Hk
� �

P Hkj4Ns; f ; D
� �

dHk

¼
ð

P L 2 wjj D;Hk
� �

P Hkj4Ns; f ; D
� �

dHk

(1)

where Hk is a particular allele frequency trajectory of the set of
all possible allele frequency trajectories H. Hk is a vector listing
the number of derived alleles at a focal site per generation since
the emergence of the allele until the present. A sample of chro-
mosomes is taken from the present and the allele frequency of
the derived allele in that sample is equal to f while the number of
chromosomes containing the derived allele will be equal to n.
Note that P L 2 wjj4Ns; f ; D; Hk

� �
¼ P L 2 wjj D; Hk

� �
in this equa-

tion. The interpretation of this equality is that the distribution of
L values is just dependent on Hk and D even when we have addi-
tional information on 4Ns and f . In the right hand of the equa-
tion, we are performing an integration over the space of allele
frequency trajectories Hk. We can compute P L 2 wjjD;Hk

� �
via

Monte–Carlo simulations done using mssel (Kindly provided by
Richard Hudson), which simulates haplotypes containing a de-
rived allele whose frequency trajectory is determined by Hk under
the demographic scenario D (Hudson and Kaplan 1988; Kaplan
et al. 1988). To do this, we used mssel to simulate 100 sets of n hap-
lotypes for each realization of Hk (see below for sampling of Hk)
under the demographic scenario D with the derived allele loci
located at the left end of the simulated region as shown in Fig. 1.

We computed ‘ ¼ n
2

� �
values of L for each set of n simulated

haplotypes by estimating L in all the possible comparisons of
haplotype pairs containing the derived allele. We used n ¼ 40
haplotypes with the derived allele for all scenarios but the UK10K
scenario, where we used n ¼ 72 haplotypes to mimic the number
of haplotypes sampled when the derived allele has a 1% allele
frequency in the UK10K dataset. We pooled the collection of L val-
ues across the 100 sets of haplotypes to estimate the probability
P L 2 wjjD; Hk
� �

. It is important to appreciate that these Monte–
Carlo simulations of haplotypes must include information about
the recombination rate per base r and mutation rate per base u
present in the simulated region of length l. Using the appropriate
r and u values is important because those parameters determine
the values of L.

The integration over the space of allele frequency trajectories
Hk is challenging since we specifically need to sample trajectories
Hk where the derived allele has a frequency f in the present.
Here, we performed the integration over the space of allele fre-
quency trajectories using an importance sampling approach
where we only sample Hk that have a present-day frequency f
(see Appendix). The effectiveness of our importance sampling ap-
proach to evaluate Lð4Ns; f ;DjL 2 wjÞ is given, in part, by the ef-
fective sample size (ESS) which is an estimate of the sample size
used in a Monte–Carlo evaluation of Lð4Ns; f ;DjL 2 wjÞ that is
equivalent to the estimate we obtain using our importance sam-
pling approach. Higher values of the ESS are necessary, but not
sufficient to obtain more accurate estimates of Lð4Ns; f ;DjL 2 wjÞ.
More information on how to calculate the ESS is given in
Appendix.

w1 w2 w3 w4 w5 w6

L  w4 here

Windows of pairwise haplotypic 
identity by state lengths (L)

Fig. 1. Two haplotypes containing a derived allele, here represented as a
black dot, that has a frequency f. The physical distance near the allele at
a focal site is divided into 5 nonoverlapping equidistant windows of a
certain length, with an extra window w6 indicating that there are no
differences in any of the windows w1 to w5. The first difference between
the pairs of haplotypes is denoted by the green “x.”
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Finally, given a set of values of L ¼ L1 2 wm1 ; L2 2 wm2 ;f
L3 2 wm3 ; . . . ; L‘ 2 wm‘

g; we can estimate the composite
likelihood of having that set of L values as:

L 4Ns; f ;DjL
� �

¼
Y‘

j¼1
Lð4Ns; f ;DjLj 2 wmj Þ: (2)

An estimator of 4Ns can be obtained by maximizing this com-
posite likelihood function, which here we do simply by using a
grid search over a range of candidate 4Ns values going from �200
to 200. Note that in Equations (1) and (2) we have 3 parameters: f ,
D, and 4Ns. When we perform our grid approach to find a 4Ns es-
timate we set f and D as fixed parameters and we only try to esti-
mate the value of 4Ns.

We defined 6 nonoverlapping windows W ¼ fw1; w2; w3;

w4; w5; w6g¼ f(0, 50,000], (50,000, 100,000], (100,000, 150,000],
(150,000, 200,000], (200,000, 250,000], (250,000,1)g in the majority
of our analysis. We chose this particular window length after
inspecting the L distribution in the UK10K 1% 60.05% derived al-
lele frequency nonsynonymous variants. Choosing this particular
window length gave us more than 5% of the window lengths fall-
ing into each window wj. The probabilities of L falling on the win-
dows w1; w2; w3; w4; w5 and w6 are equal to 39.23%, 21.39%,
13.99%, 8.18%, 5.19%, and 12.03%, respectively. Each window was
potentially informative of the strength of selection because they
contained at least more than 5% of the haplotype lengths L falling
on them. The analysis where we used a different number of win-
dows or window length are noted in the caption of the figure re-
lated to each analysis.

Forward-in-time simulations to assess the impact
of selection on the allele frequency trajectories,
allele ages, pairwise coalescent times T2, and
and L values
We performed forward-in-time simulations using PReFerSim
(Ortega-Del Vecchyo et al. 2016) to build an understanding of the
inference problem and the method’s performance by assessing
the impact of selection on allele frequency trajectories, pairwise
coalescent times T2, and haplotype identity-by-state-lengths L.
PReFerSim performs simulations under the Poisson Random Field
model (Sawyer and Hartl 1992), where the number of new un-
linked independent mutations that enter the population each
generation follows a Poisson distribution with a mean equal to
h=2 ¼ ð4Njul=2Þ and their changes in allele frequency per genera-
tion are determined by a Wright–Fisher model with selection. Nj

is the population size in generation j, u is the mutation rate per
base, and l is the number of bases. All of our simulations were
done using a h value equal to 1,000 for the most ancestral epoch.
The allele frequency trajectory Hk of each allele can be obtained
in simulations done with PReFerSim.

We used PReFerSim to obtain 10,000 independent allele fre-
quency trajectories Hk of a derived allele with a 1% frequency f in
the present in a sample of 4,000 chromosomes for each value of
4Ns explored in the demographic scenarios analyzed but the
UK10K demographic scenario. The derived allele appears in the
focal site (see Fig. 1). Each Hk represents the frequency change of
an independent and different focal derived allele at a focal site.
In the case of the UK10K demographic scenario, we sampled
7,242 chromosomes and retained those trajectories where f ¼ 1%
6 0.05% to mimic the number of chromosomes and the allele fre-
quency of the sites we retained to perform inferences of selection.
The allele ages associated to each Hk were also recorded. We also

estimated the distribution of pairwise coalescent times T2 associ-
ated with each Hk using an analytical formula (Appendix).

We used the 10,000 Hk generated for each 4Ns value in each
demographic scenario to test our inferences of 4Ns. To do this, we

performed simulations where each simulation replicate has ‘ ¼

2� A� n
2

� �
values of L: A is equal to 300 and n ¼ 40 to obtain

‘ ¼ 2� 300� 40
2

� �
¼ 468; 000 values of L in each simulation rep-

licate but the ones performed under the UK10K demographic sce-
nario (Appendix). The value of A ¼ 300 was chosen to have a
similar A number to the f ¼ 1% 6 0.05% nonsynonymous var-
iants in the UK10K dataset A ¼ 275. The value of n (40) was cho-
sen to have a n value of the same order of magnitude to what is
observed in the UK10K dataset (69–76). We tested 100 simulation
replicates in each examined value of 4Ns per demographic sce-
nario. We used the following algorithm to obtain a simulation
replicate:

1) Sample a random trajectory Hk from the available allele fre-
quency trajectories (10,000 in the case of the estimation of
point population-scaled values of selection 4Ns).

2) Simulate n haplotypes with mssel that contain a derived al-
lele with a trajectory determined by Hk. The derived allele is
always set in the midpoint of the simulated haplotypic re-
gion. These simulations must be performed with a defined
average per base mutation rate u, an average per base re-
combination rate r and a specified length l for the simulated
region. We used u ¼ 1:2 X 10�8, r ¼ 1:0 X 10�8 and l ¼ 500
kp for almost all the simulations done under the constant
population size model and the population expansion model.
The analysis where we used a different value of u or r are
explicitly mentioned in the figure caption accompanying
each analysis.

3) Calculate ‘ ¼ 2� n
2

� �
values of L by performing all pair-

wise comparisons of haplotypes containing the derived
allele. Since the derived allele is located in the midpoint of
the simulated region, we can calculate the L values going
upstream and downstream of the loci containing the de-
rived allele.

4) Go back to 1) until you have simulated ‘ ¼ 2� A� n
2

� �
val-

ues of L, where A is the number of independent loci that
contain a derived allele at a frequency f.

Our analyses were focused mainly in 2 demographic models:
(1) a constant population size model with 10,000 individuals and
(2) a population expansion model where 100 generations ago the
population grew from 5,000 to 50,000 individuals. We chose to
analyze the constant population size model to investigate what
happens under a very simple demographic model where we have
analytical theory to explain the age of a particular allele as a
function of its frequency (Maruyama 1974). The population ex-
pansion model has a recent 10-fold population size growth, simi-
lar to documented population size changes on human
populations (Schiffels and Durbin 2014). We also include an
analysis under a population bottleneck where the population is
temporarily reduced from 5,000 to 1,000 individuals between
5,000 and 5,200 generations ago; 3 population expansion models
where the number of individuals grew from 5,000 to 50,000 indi-
viduals at a different number of generations ago (1,000, 10,000,
and 100,000); and 2 realistic demographic models (Schiffels and
Durbin 2014; Tennessen et al. 2012) from the Yoruba and African
population. Those analyses were added to test the performance
of our method to infer 4Ns under more demographic scenarios.
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The values of 4Ns analyzed in those scenarios were equal to 0, 50,
100, �50, and �100 for the constant population size and
population expansion scenario. The 4Ns values used for other
scenarios are noted in the caption of the figure associated to each
analysis.

A method for inference of the distribution of
fitness effects for variants found at a particular
frequency (“DFEf ”)
Our composite likelihood framework is extendible to find the dis-
tribution of fitness effects DFEf for a set of variants at a particular
frequency f . This distribution, which we denote as DFEf , is differ-
ent from the canonical DFE, which represents the distribution of
fitness effects of new mutations. To parameterize the DFEf we
use a discretized gamma distribution following studies that use a
gamma distribution (Boyko et al. 2008; Kim et al. 2017) under the
assumption that the DFEf is only composed of neutral or deleteri-
ous mutations. The values of 4Ns presented here will refer to the
effect of deleterious or neutral mutations. We parameterize the
gamma component with 2 parameters that represent the shape a

and scale b. We discretize the distribution to intervals centered
on the integer values of 4Ns, and then collapse the tail probability
of all values greater than a threshold fixed 4Ns value (which we
denote as s) to a single point mass. We denote the resulting
distribution as DFEf ða; bÞ.

The likelihood of having a certain distribution of identity by
state lengths L given a demographic scenario D, a variant at a fre-
quency f and 2 parameters a and b is equal to:

L
�
a; b;D; f jL 2 wmj Þ ¼

Xs

4Ns¼0
P L 2 wmj j4Ns; f ;D
� �

Pð4Nsja; bÞ d4Ns

(3)

where P L 2 wmj j4Ns; f ;D
� �

¼ Lð4Ns; f ;DjL 2 wmj Þ and was intro-
duced in Equation (1). Pð4Nsja; bÞ is the probability of having
that discrete value of 4Ns given a discretized gamma distribution
with parameters a and b. That probability is equal to
F 4Nsþ 0:5ja; bð Þ � F maxð4Ns� 0:5; 0Þja; bð Þ for 4Ns values smaller
than s. F xja; bð Þ is the cumulative distribution function of a having
a value x given a gamma distribution with parameters a and b.
When 4Ns ¼ s, we use 1� F s� 0:5ja; bð Þ:

We obtain an estimate of the a and b parameters by doing a
grid search over a set of a and b candidate values. We find the
combination of a and b parameters that maximize the composite
likelihood function:

L a; b;D; f jL
� �

¼
Y‘

j¼1
Lða; b; f ;DjLj 2 wmj

Þ (4)

We tested the performance of our method using forward-in-time
simulations. To do this, we generated 10,000 allele frequency trajec-
tories Hk using PReFerSim of an allele with a 1% frequency f in the
present in a sample of 4,000 chromosomes. The simulations of Hk

were done under a combination of the 2 demographic models previ-
ously defined (constant population size model and a population ex-
pansion model) with 2 DFEs estimated in different species: 1 from
humans (shape ¼ 0.184; scale ¼ 319.8626; N ¼ 1,000) (Boyko et al.
2008) and another one from mice (shape ¼ 0.11; scale ¼ 8,636,364;
N ¼ 1,000,000) (Halligan et al. 2013). Then, we use 10,000 Hk

generated for each demographic scenario and DFE to obtain 100

simulation replicates with ‘ ¼ 2� A� n
2

� �
¼ 2� 300� 40

2

� �

values of L using the algorithm shown in the section Forward-in-time

simulations to assess the impact of selection on the allele frequency trajecto-
ries, allele ages, pairwise coalescent times T2, and L values.

Connecting the distribution of fitness effects of
variants at a particular frequency (DFEf) with the
distribution of fitness effects of new mutations
(DFE)
The distribution of fitness effects of new mutations DFE can be
broadly defined as a probability distribution that is a function
f ðwÞ dependent on j parameters whose values are equal to w ¼
fw1;w2;w3; . . . ; wjg. The distribution of fitness effects of variants
at a particular frequency DFEf in the population is related to the
DFE determined by j parameters w ¼ fw1;w2;w3; . . . ;wjg by the
following equation based on the Bayes’ theorem:

Pw f jsj;D
� �

¼
Pwðsjjf ;DÞ Pwðf jDÞ

Pw sjjD
� � (5)

where we can rearrange the above equation to obtain:

Pw sjjD
� �

¼
Pwðsjjf ;DÞ Pwðf jDÞ

Pwðf jsj;DÞ
(6)

where sj represents a continuous interval of 4Ns values
4Nsj�1; 4Nsj
� �

containing 4Ns values greater or equal than some
value “4Nsj�1” and 4Ns values smaller than some value “4Nsj:”

Pw sjjD
� �

defines the distribution of fitness effects of new muta-
tions over a set of discrete bins when using the information con-
tained across all nonoverlapping intervals r ¼ f[4Ns0, 4Ns1),
[4Ns1, 4Ns2), [4Ns2, 4Ns3). . . , [4Nsb�1, 4Nsb)g ¼ fs1; s2; s3; . . . ; sbg
covering all 4Ns values from 0 to infinite. We assume that the
values of 4Ns presented here represent deleterious or neutral
mutations. The selection coefficients s0; s1; . . . sb are ordered in an
ascending order starting from s0 ¼ 0. We defined the endpoints of
the first b� 1 intervals to be equal to 5ði� 1Þ and 5i, where i takes
values from 1 to b� 1. The last interval was set to be equal to
[5(b�1Þ;1). Since Pw sjjD

� �
is independent of the demographic sce-

nario D, then Pw sjjD
� �

¼ Pw sjð Þ because D does not impact the pro-
portion of new variants in a selection interval sj. Pw sjð Þ defines
the proportion of new mutations inside a sj interval (i.e. it is the
DFE over a set of discrete intervals). With this equality, we rear-
range Equation (6) to obtain:

Pw sjjD
� �

¼ Pw sjð Þ ¼
Pwðsjjf ;DÞ Pwðf jDÞ

Pwðf jsj;DÞ
(7)

We explain how to compute each of the probabilities
Pwðsjjf ;DÞ, Pwðf jDÞ and Pwðf jsj;DÞ to estimate Pw sjð Þ in Appendix.
Pw sjjf ;D
� �

is the probability of having variants with a value of se-
lection inside the interval sj given that the variants were sampled
at a frequency f under the demographic scenario D and that the
DFE follows a function f ðwÞ. Pwðf jDÞ is the probability of having
variants sampled at a frequency f given the demographic sce-
nario D and that the DFE follows a function f ðwÞ. Finally,
Pwðf jsj;DÞ is the probability of having variants sampled at a fre-
quency f given that the variants have a value of selection inside
the interval sj, we have a demographic scenario D and that the
DFE follows a function f ðwÞ. Pwðf jDÞ and Pwðf jsj;DÞ can be com-
puted via simulations (Appendix). We also tested Equation (7) us-
ing forward-in-time simulations with PReFerSim to calculate the
probabilities Pwðsjjf ;DÞ, Pwðf jDÞ, and Pwðf jsj;DÞ as explained in
Appendix.
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ABC-based inference of the demographic scenario
All of the analysis described so far assume that the demographic
scenario is known. There are different methods to perform demo-
graphic inferences based on different sources of data (Beichman
et al. 2018) such as the SFS (Gutenkunst et al. 2009; Excoffier et al.
2013; Kamm et al. 2018) or the linked patterns of heterozygous
and homozygous genotypes across the genome (Li and Durbin
2011; Schiffels and Durbin 2014). The demographic inferences
performed using different sources of information are not concor-
dant (Beichman et al. 2017) and this has motivated a discussion
among the scientific community to generate datasets evolving
under different demographic scenarios to test the inference per-
formance of different available methods (Adrion et al. 2020).
Therefore, the discussion on what summary statistics or data
should be used for demographic inferences is still open. Given
the discordances between the demographic inferences based on
the data used, we decided to estimate the demographic scenario
using the L values in a set of putatively neutral variants using an
ABC approach (see Appendix). Our approach is to infer the demo-
graphic scenario on a set of putatively neutral variants using the
L values to then evaluate the impact of selection on a set of var-
iants where natural selection could be acting also employing the
L values. We fix the demographic scenario and estimate the im-
pact of natural selection in a set of putatively functional sites [as
in Boyko et al. (2008) and Kim et al. (2017) where the same sum-
mary statistic is used to infer the demographic scenario and the
DFE�.

Assessing the robustness of the method
We assessed the impact of multiple factors on the estimates of
selection using our method. First, we analyzed the effect of an-
cestral state misidentification on our estimates of selection. We
also tested the robustness of our method to biases in SNP and ge-
notype calling in low frequency variants, haplotype phasing
errors, mutation rate misspecification and recombination rate
misspecification (see Appendix). We also tested the accuracy of
our inference method to the use of a different number (4, 6, 11,
51, and 101) of nonoverlapping equidistant windows W ¼
fw1;w2; . . . ; wMg that extend to the side of the derived allele at a
focal site. We also explored if our inferences could be improved
using 2 different Monte–Carlo strategies to compute
P L 2 wjj D;Hk
� �

from Equation (1) that require (1) Simulating 200

sets of n haplotypes for each realization of Hk (instead of 100 as

we have done previously) to obtain ‘ ¼ 200� n
2

� �
values of L for

each Hk; (2) performing simulations where the focal allele is

located on the center of the simulated haplotypes and we esti-
mate P L 2 wjj D;Hk

� �
by taking the distances going upstream and

downstream of the focal allele site (instead of calculating the val-
ues of L only going downstream of the focal allele). We also ex-
plored if the use of a different identity by state statistic L0 that
uses information from the upstream and downstream region of
the focal allele could improve our inferences (see Appendix).
Finally, we analyzed the performance of our method when each
simulation set had 150 variants with a recombination rate equal
to 0 and 150 variants had a recombination rate equal to 1� 10�8.
We also test a modification of our methodology to perform infer-
ences when the 300 variants had variable recombination rates
per base (see Appendix).

We also performed forward-in-time simulations using SLiM
(Haller and Messer 2019) to analyze the impact of linked selection
on our estimates of selection. We performed simulations that

mimic the arrangement of exonic elements (Harrow et al. 2012),
conserved noncoding elements (Siepel et al. 2005; Huber et al.
2017) and recombination rates (Kong et al. 2010) in the human ge-
nome. Our simulations were performed under a scaled popula-
tion expansion demographic model (see Appendix).

Application to the UK10K dataset
We inferred the distribution of fitness effects of the 1% 6 0.05%
frequency variants at non-CpG nonsynonymous sites that are
more than 5 Mb away from the centromere or telomeres in the
phased UK10K haplotype reference panel. The panel was statisti-
cally phased with Shapeit2 (Delaneau et al. 2013). We discarded a
set of related individuals along with other individuals with no
clear European ancestry from the haplotype panel, as previously
defined (Walter et al. 2015). In the end, we obtained a sample size
of 3,621 individuals (7,242 haplotypes) from the UK10K haplotype
panel.

We estimated the proportion of exonic sites, PhastCons ele-
ment sites (Siepel et al. 2005) and the average strength of back-
ground selection based on the B values (McVicker et al. 2009) in
the 250-kb regions upstream and downstream of the focal non-
CpG synonymous variants and nonsynonymous variants to
assess if there were differences on the proportion of those
functional elements that might suggest a differing effect of back-
ground selection surrounding those 2 categories of variants.

We used an ABC algorithm to infer the demographic scenario
that explains the distribution of L for the 142 non-CpG synony-
mous variants at a 1% 6 0.05% frequency that are more than
5 Mb away from the centromere or telomeres (see Appendix). CpG
sites were removed before estimating L around the non-CpG syn-
onymous sites following (McVicker et al. 2009). For computational
efficiency, in the ABC method we scaled the population size
down by a factor of 5 while increasing the mutation rate l, selec-
tion coefficient s and recombination rate r by the same factor of 5
to keep 4Ns, h ¼ 4Nu and q ¼ 4Nr constant. That same scaling
was used in all the simulations described in this section and in
our inference of selection in the UK10K data. We will refer to the
inferred scaled model as the “scaled UK10K model” and we will
refer to the model without the scaling as the “UK10K model.” We
performed forward-in-time simulations under the “scaled UK10K
model” to understand how changes in the 4Ns values impact the
allele frequency trajectories, allele ages, pairwise coalescent
times T2 and L values. The inferred demographic model was used
to perform the inferences of selection in the nonsynonymous
sites.

We performed simulations to analyze if the amount of infor-
mation present in the UK10K dataset was sufficient to infer se-
lection coefficients in 1%60:05% frequency variants under the
“scaled UK10K model.” Our approach takes into account the dif-
ferences in recombination rates on the regions surrounding
each variant on the genome in the UK10K data (see Appendix).
We performed 100 simulation replicates, where each replicate
mimics the amount of information present in the UK10K data-
set. We assessed the impact of ancestry misspecification, phas-
ing, mutation rate misidentification, and recombination rate
misspecification. We also tested how well our method could in-
fer the DFE with simulations performed under the Boyko distri-
bution of fitness effects with the “UK10K model” and the
“scaled UK10K model.”

Finally, we used the L values in the UK10K dataset to infer a
point 4Ns value for the nonsynonymous and synonymous
1%60:05% frequency variants. CpG sites were removed before es-
timating L around the non-CpG nonsynonymous sites (McVicker
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et al. 2009). Then we applied our method to infer the DFE of the
nonsynonymous variants and in 100 bootstrap replicates
(Appendix). We also provide information on how we estimated
Pwðf jDÞ in the Appendix.

Results
Evaluation of population-scaled selection
coefficient inference for constant population sizes
We investigated the performance of our method to estimate 4Ns
values using forward-in-time simulations. Specifically, we used
PReFerSim (Ortega-Del Vecchyo et al. 2016) to obtain 10,000 allele
frequency trajectories for an allele with a present-day sample al-
lele frequency of f ¼ 1% (n ¼ 40 chromosomes with the derived
allele in a sample of 4,000 chromosomes) for 5 different values of
selection (4Ns ¼ 0, �50, �100, 50, 100).

Using the 10,000 recorded allele frequency trajectories for
each selection value 4Ns, we calculated the mean allele fre-
quency across many generations going backwards into the past
to obtain an average frequency trajectory for 1% frequency
alleles (Fig. 2a). As expected (Maruyama 1974), the average allele

frequency for neutral alleles (4Ns ¼ 0) is higher for a longer dura-
tion going backwards in time compared with alleles under natu-
ral selection. Furthermore, alleles under the same absolute
strength of selection have the same average allele frequency tra-
jectory, regardless of whether the allele is under positive or nega-
tive selection. The distribution of ages is shifted toward younger
values for higher absolute values of 4Ns and with increasingly
smaller standard deviation (Fig. 2b), and Maruyama’s theoretical
results accurately predict the mean age estimates observed in
the simulations (Supplementary Table 2).

We computed the distribution of pairwise coalescent times
T2 analytically across different values of 4Ns using the 10,000 al-
lele frequency trajectories. We found that alleles under higher
absolute values of 4Ns have a more recent average value of T2,
and their distribution of T2 has a smaller standard deviation
(Fig. 2c). We calculated the distribution of L for each 4Ns value us-
ing simulations assuming a constant population-scaled recombi-
nation rate q ¼ 4Nrl ¼ 200 and a constant population-scaled
mutation rate h ¼ 4Nul ¼ 240 for a region of l ¼ 500 kb with a per-
generation mutation rate u ¼ 1:2 � 10�8 and a per-generation
recombination rate ¼ 1 � 10�8. The focal site with the inspected
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Fig. 2. Properties of alleles sampled at a present-day frequency f ¼ 1% under different strengths of natural selection in a constant size population (N ¼
10; 000). We obtained 10,000 frequency trajectories for f ¼ 1% frequency alleles under different strengths of selection using forward-in-time simulations
under the PRF model. We used those frequency trajectories to calculate: a) the mean allele frequency at different times in the past, in units of
generations, to obtain an average frequency trajectory; b) the probability distribution of allele ages; c) the probability distribution of pairwise coalescent
times T2. Below b) and c), we show a dot with 2 whiskers extending at both sides of the dot. The dot represents the mean value of the distribution and
the 2 whiskers extend 1 SD below or above the mean. The whisker that extends 1 SD below the mean is constrained to extend until max(mean—SD, 0).
d) Probability distribution of PðL 2 wij4Ns; f ;DÞ. We define L by taking the physical distance in basepairs next to the focal allele across 5 nonoverlapping
equidistant windows of 50 kb, with an extra window w6 indicating that there are no differences in the 250-kb next to the allele. L is calculated both

upstream and downstream of the focal allele and uses A ¼ 30,000 independent sites with 40 haplotypes containing the derived allele in each site to get

l ¼ 2 � 30; 000 � 40
2

� �
¼ 46; 800; 000 values of L. In this demographic scenario, the alleles under a higher absolute strength of selection 4Ns have

younger ages and younger T2 on average. The fact that alleles under higher absolute strengths of selection have younger average T2 values implies that
those alleles tend to have larger L values as shown in d) and e). e) Impact of natural selection on the values of L due to the effect of natural selection on
the values of T2.
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derived allele is located in the center of the simulated haplotypes.
We found that alleles under the same absolute strength of selec-
tion have almost identical distributions of L (Fig. 2d). The results
in Fig. 2c-d are in line with the fact that T2 is younger in alleles
under stronger selection coefficients, implying that there will be
fewer mutations between haplotypes sharing the allele and,
therefore, higher average values of L (Fig. 2e).

We used the simulations to test our method’s ability to esti-
mate the strength of selection in this constant-size population
history. For each simulation replicate we used the values of L
obtained by simulating A ¼ 300 independent loci with a 1% fre-
quency variant. We sample n ¼ 40 chromosomes with the derived

allele in a sample of 4,000 chromosomes in each variant to get a

total number ‘ ¼ 2� A� n
2

� �
¼ 2� 300� 40

2

� �
¼ 468; 000 of

values of L. This number of 1% frequency variants is similar to
the number of nonsynonymous variants found in the UK10K
dataset, which is 275. We found that for alleles where, for in-
stance 4Ns is �50, the estimated values of selection tend to be
equally distributed around values of �50 or 50 (Fig. 3a). A similar
result is seen for the 4Ns values equal to 100 (Fig. 3a). When we
display the estimated absolute value of the strength of selection,
we see that our method produces nearly unbiased estimates
(Fig. 3b). These results show that in a constant size population
our method provides accurate estimates of the absolute strength
of natural selection, but cannot infer the sign of the selection co-
efficient.

Additionally, we decided to analyze 1% frequency variants
throughout all the manuscript based on the results from Fig. 3.
We took this decision based on the accuracy of our results to in-
fer the strength of natural selection given our simulations where
we have a similar number of independent 1% frequency variants
A to what is observed in the UK10K dataset. Maruyama (1974) ob-
served an approximate 8-fold difference in the allele age between
neutral alleles and alleles with a 4Ns ¼ 100. We hypothesized
that this difference is sufficient to drive changes on the values of
L (Fig. 2) that are informative of the strength of natural selection
as shown in Fig. 3.

Evaluation of inference performance for
nonequilibrium demographic scenarios
Following our analysis for constant-size populations, we next an-
alyzed the shape of the average allele frequency trajectory in a
population expansion scenario (Fig. 4a) for 1% frequency alleles
with different 4Ns values. The 4Ns values are calculated with re-
spect to the population before the expansion. All the 4Ns values
have a 10-fold increase after the population expansion taking
place 100 generations before the present. Unlike in the constant
population size scenario, we found distinct average allele fre-
quency trajectories for alleles under positive or negative selection
(Fig. 4b): alleles under positive selection on average had increased
in frequency moving forward in time, while alleles under nega-
tive selection on average had increased in frequency before the
expansion and then decreased after the expansion due to the in-
creased selection efficacy in the large population. The values of
4Ns increase 10-fold after the population expansion leading to a
higher efficacy of natural selection compared with drift driving
frequency differences in alleles under natural selection. The ages
of alleles under the strongest absolute values of selection tend to
be younger, and alleles with the same j4Nsj value but different
4Ns value differ in the mean and standard deviation of their allele
ages (Fig. 4c). The distributions of pairwise coalescent times for
allele carriers show concordant patterns (Fig. 4d) and alleles un-
der the stronger positive selection had, on average, younger T2

values than negatively selected alleles of the same magnitude.
Further, when we contrasted the T2 distribution of the negatively
selected alleles inspected (4Ns ¼ �50, �100), we saw that their
mean T2 value did not differ much, and their biggest difference
was due to a slightly smaller standard deviation in the most dele-
terious allele (Fig. 4d).

We next used our method to infer the strength of selection for
this expansion scenario and found that it can provide approxi-
mately unbiased estimates of the sign and strength of selection
(Fig. 5). We saw a wider distribution of the 4Ns estimates for dele-
terious variants compared with advantageous variants. This can
be explained by comparing the PðL 2 wjj4Ns; f ;DÞ distribution for
a set of focal 4Ns values with the distribution PðL 2 wjj4Ns; f ;DÞ of
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Fig. 3. Estimation of the strength of natural selection in a constant population size model using ‘ ¼ 2� 300 � 40
2

� �
¼ 468; 000 realized values of L for

each simulation replicate. Each simulation replicate contained 300 independent 1% frequency variants, where each variant had 40 haplotypes with the
derived allele. a) Estimated selection values. b) Estimated selection magnitudes (absolute values of s). “Real 4Ns values” refers to the 4Ns values used in
the simulations, while “Estimated 4Ns values” refers to the values estimated by our method. The dashed lines are placed on values that match 4Ns
values used in the simulations. The median value of the estimates of 4Ns is shown with a solid line. The green lines in a) and b) indicate estimated
values of 4Ns, where there are 100 estimated values in each of the for the 5 4Ns values inspected. Each estimated 4Ns value uses

l ¼ 2 � 300 � 40
2

� �
¼ 468; 000 values of L.
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other 4Ns values. We see that the distribution PðL 2 wjj4Ns; f ;DÞ
does not vary much between deleterious variants compared with
advantageous variants (Supplementary Fig. 1). The highest simi-
larity of the distribution PðL 2 wjj4Ns; f ;DÞ for the deleterious var-
iants produces 4Ns estimates with a higher variance than the
advantageous variants since the data used by our inference
method relies in the differences on the PðL 2 wjj4Ns; f ;DÞ distribu-
tion. More differences on the PðL 2 wjj4Ns; f ;DÞ distribution for
different 4Ns lead to estimates with a smaller variance. We got a
few very deleterious 4Ns estimates for the neutral variants, which
is consistent with the highest similarity of PðL 2 wjj4Ns ¼ 0; f ;DÞ
and the distribution PðL 2 wjj4Ns; f ;DÞ of very deleterious variants
in contrast with the distribution PðL 2 wjj4Ns; f ;DÞ of very advan-
tageous variants (Supplementary Fig. 1). Despite these

differences on the distribution of the 4Ns estimates for deleteri-
ous and advantageous variants, our 4Ns estimates appear to be
approximately unbiased based on the median of the 4Ns esti-
mates for neutral, advantageous and deleterious variants (Fig. 5).

The inference results under a population expansion model do
not imply that we can differentiate between positive and negative
selection in all nonequilibrium models. The power to do so will
be dependent on the parameters of the nonequilibrium demogra-
phy being studied. As an example, in an ancient bottleneck sce-
nario we find there are no significant differences in the
distribution of T2 between alleles that have the same absolute
strength of selection, indicating that we would not be able to dif-
ferentiate between alleles under positive or negative selection
under this demographic model (Supplementary Fig. 2).

We also evaluated the performance of our method when the
population expansion time took place at more ancient times of
1,000, 10,000, and 100,000 generations ago. Interestingly, we
found that our method provided 4Ns estimates that appear unbi-
ased under a population expansion that took place 1,000 genera-
tions ago. When the population expansion takes place 10,000 and
100,000 generations ago our method only provides nearly unbi-
ased estimates of j4Nsj but not 4Ns as in the estimates for the
constant population size scenario shown in Fig. 3 (see
Supplementary Fig. 3 for a more detailed explanation).

We also tested our method under 2 complex human demo-
graphic models that show the history of Africans (Tennessen et
al. 2012) and the YRI population (Schiffels and Durbin 2014). We
saw that our method produced nearly unbiased estimates of se-
lection for neutral and advantageous variants (Supplementary
Fig. 4). On the other hand, we had a slight overestimation for the
4Ns values in the case of deleterious alleles. However, the real es-
timate was always contained inside the 25th and 75th percentile
of the distribution of estimated values (Supplementary Fig. 4).

Testing the inference of the distribution of fitness
effects for variants found at a particular
frequency (“DFEf ”)
We tested if the distribution of haplotype lengths L can be used to
estimate the parameters that define the distribution of fitness

effects of variants at a particular frequency using Equation (4).

We used distributions of ‘ ¼ 2� A� n
2

� �
¼ 2 � 300 � 40

2

� �
¼

468; 000 L values from 1% frequency alleles in a sample of 4,000
chromosomes obtained via simulations under the constant popu-
lation size and population expansion demographic model from
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Fig. 4. Properties of alleles sampled at a 1% frequency under different strengths of selection in a population expansion scenario. a) Population expansion
model analyzed. b) Mean allele frequency at different times in the past, in units of generations, using 10,000 allele frequency trajectories. Note that alleles
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� �
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the past sections under 2 distributions of fitness effect of new
mutations estimated in different species: one from humans
(shape ¼ 0.184; scale ¼ 319.8626; N ¼ 1,000) (Boyko et al. 2008)
and another one from mice (shape ¼ 0.11; scale ¼ 8,636,364; N ¼
1,000,000) (Halligan et al. 2013).

We found that the estimated parameters of the shape (aÞ and
scale (bÞ on single replicates of the DFEf have considerable varia-
tion (Fig. 6, a and b). However, the estimated shape and scale of
the DFEf tend to imply the correct mean value of the DFEf on av-
erage, showing that the shape (aÞ and scale (bÞ are correctly esti-
mated as a product of those 2 parameters (estimates lie on
average approximately close to the red-dashed lines in Fig. 6).
This can be better seen in Fig. 6, e–h. We found that the estimated
DFEf parameters on constant population sizes define a DFEf with
a mean 4Ns value that, on average, is almost equal to the mean
4Ns value found across 50,000 simulated 1% frequency variants.
In a population expansion scenario (Fig. 6, c and d), the estimated
DFEf parameters imply a DFEf with a mean 4Ns value that is
slightly lower than the actual mean 4Ns value, and with consider-
ably higher variance in the estimated mean (Fig. 6, e–h).

Testing the inference of the distribution of fitness
effects of new mutations DFE from the distribution
of fitness effects of variants at a particular frequency
(DFEf)
We estimated the distribution of fitness effects of new muta-
tions, i.e. the DFE, in a population expansion scenario given
the distribution of fitness effects DFEf from a set of simulated
variants at a 1% frequency (Fig. 7—Boyko Human

DFE;Supplementary Fig. 5—Human DFE with a scale value that
is 20 times smaller). We see that the inferred and real Pw sjð Þ val-
ues match using Equation (7), with some slight discrepancies
that could be due to either using a sj bin that is not small
enough or small inaccuracies in the estimated probabilities of
Pwðsjjf ;DÞ; Pwðf jDÞ, or Pwðf jsj;DÞ. We also note that variants at a
1% frequency tend to be less deleterious compared with new
variants based on the comparison of the distributions Pwðsjjf ;DÞ
against Pw sjð Þ. We also find that the estimates of Pw sjð Þ under
the constant population size and the population expansion
model do not depend on the number of generations simulated
for the most ancient epoch of both models, as long as the simu-
lated generation number is large enough (>10N generations)
for the most ancient epoch to achieve mutation–selection bal-
ance (Supplementary Figs. 6, 7 and Tables 3 and 4).

We used our DFEf estimates from Fig. 6 to estimate Pw sjð Þ. The
Pw sjð Þ estimates appear to be unbiased, but display a larger vari-
ance under the population expansion scenario compared with
the constant size scenario (Supplementary Fig. 8). We also com-
pared our estimates of the DFE with the inferences obtained using
fitDadi (Kim et al. 2017). We generated data from the SFS using
PReFerSim that contained 300–500 1% variants in our comparisons
and we found that fitDadi gave very accurate estimates of the DFE
under a constant population size, and had very slight biases un-
der the population expansion model. On the other hand, our
method always contained the correct proportion of PwðsjÞ inside
the inferred 5% and 95% quantile of the estimated Pw sjð Þ values
but had a larger variance on the estimates compared with the
estimates obtained with fitDadi (Supplementary Fig. 8).
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Fig. 6. MLEs of the parameters that define the distribution of fitness effect for variants at a 1% frequency. a–d) We tested if our method was
capable of estimating the parameters of the DFEf of variants at a particular frequency in 2 demographic models and 2 DFEs. The shape (aÞ and

scale (bÞ parameters define the compound DFEf distribution using s ¼ 200 in Equation (3). Each simulation replicate contained

2 � A � n
2

� �
¼ 2 � 300 � 40

2

� �
¼ 468; 000 realized values of L. The number of simulation replicates estimated to have a particular combination

of a and b parameters is shown with a different color in each plot. The dotted red line represents a combination of shape and scale parameters

from the partially collapsed gamma distribution that gives a similar mean 4Ns value to the mean 4Ns value of the underlying DFEf . The grid of
scale parameters explored goes from (0.03, 0.06, . . ., 0.9) and the grid of shape parameters explored goes from (3, 6, . . . , 210) and then there is a
change in the grid of shape parameters explored, specified by the dotted line, and the grid takes values from (240, 270, . . ., 2,310). e–h) The
beanplots show the distribution of the estimated mean 4Ns values based on the DFEf estimated on the 100 simulation replicates. The red dots
show the actual mean 4Ns value in 50,000 1% frequency variants simulated using each particular DFE and demographic model D. The green lines
indicate estimated values of 4Ns across simulation replicates based on the DFEf estimates. The median value of the estimates of 4Ns is shown with
a solid line.
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Interestingly, only using 300–500 SNPs to perform inferences with
fitDadi gave biased results compared with the more accurate
results from our method using data from 300 1% frequency var-
iants (Supplementary Fig. 8).

ABC-based inference of the demographic scenario
All of our past analyses assume that the demographic scenario is
known. To address the more challenging scenario where demog-
raphy is unknown, we developed an ABC approach to infer the
demographic scenario using a set of L values that have the same
frequency f as the putative alleles under natural selection ana-
lyzed (see Appendix). We found that this approach gave reliable
estimates of the effective population size in the constant popula-
tion size scenario (Supplementary Fig. 9). The approach also pro-
vided accurate estimates of all the parameters in a population
expansion scenario, with just a 9.5% overestimation of the popu-
lation expansion time (Supplementary Fig. 10). Our ABC approach
provided similarly accurate estimates of the demographic param-
eters when the recombination rates on the haplotypes surround-
ing the variants were different under a population expansion
scenario (Supplementary Fig. 11) compared with a scenario where
all the variants had the same recombination rate
(Supplementary Fig. 10).

Assessing the robustness of the method
We assessed the impact of multiple factors on the estimates of se-
lection using our method (see Appendix for a more complete de-
scription of all the described tests). First, we analyzed the effect of
ancestral state misidentification on our estimates of selection, since
some of the 1% frequency focal alleles we inspected in the analyses
of the previous sections could be ancestral alleles instead of derived
alleles. We found that the ancestral state of deleterious alleles was
not misspecified under the constant population size model and the
population expansion model in simulations including more than
5,000 alleles with a 1% minor allele frequency. Neutral and advan-
tageous alleles with a 1% minor allele frequency could be wrongly
assigned a derived status with probabilities ranging from 0.014% to
1.18% (Supplementary Table 5, also see Appendix). However, we
found that this level of ancestral state misspecification did not

cause biases on the estimation of 4Ns for neutral alleles and the
strength of selection for advantageous alleles was slightly underes-
timated (Supplementary Fig. 12).

Biases in SNP and genotype calling are another source of con-
cern for the application of our method. Those biases can cause a
decrease or an increase on the number of called rare variants
depending on the pipeline used to do the SNP and genotype call-
ing. The impact of these biases is more dramatic for singleton
variants than other higher frequency variants (Han et al. 2014).
One way to mitigate these effects if to perform the calculations of
L and the estimation of selection without taking into account
very low frequency variants. We tested this idea by estimating L
in simulations after masking variants that only appear once in
each set of haplotypes with the derived variant. Those variants
were also masked before we performed the calculation of
Lð4Ns; f ;DjLÞ. We obtained accurate estimates of selection after
performing this procedure (Supplementary Fig. 13) indicating
that the masking of low-frequency alleles that could be incor-
rectly called does not bias the estimates of selection.

We next analyzed the impact of haplotype phasing errors due to
the use of statistical phasing software in estimates of selection us-
ing our method. We statistically phased simulated haplotypes using
ShapeIt2, which was also used to phase the UK10K dataset, and we
estimated L from those phased haplotypes. We found that the esti-
mates of L are not greatly biased by the use of the statistical phas-
ing software (Supplementary Fig. 14). We also found that the
haplotype phasing errors affect the variance of the estimates of se-
lection but overall do not cause biased estimates of selection in any
particular direction (Supplementary Fig. 15).

We also explored the impact of recombination rate misspecifi-
cation and mutation rate mis-specification in our estimates of se-
lection. To do this, we performed simulations where the values of
q or h were higher or smaller than the values used to calculate
Lð4Ns; f ;DjL 2 wmj

Þ and then perform the inferences using
Equation (2). We found an inverse relationship between the esti-
mated j4Nsj values and the q or h values used in the simulations
under a constant population size demographic model
(Supplementary Fig. 16). We saw broadly the same trend when
analyzing variants under a population expansion model
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Fig. 7. Inference of the distribution of fitness effects of new mutations from the distribution of fitness effects of variants at a certain frequency in
deleterious variants. The DFE follows a gamma distribution with shape and scale parameters equal to 0.184 and 1599.313, respectively. This is equal to
the gamma distribution inferred by Boyko et al. (2008) after adjusting the population sizes to the population expansion model used (Fig. 4a). “Real Pw sjð Þ”
refers to the probability of having a 4Ns value in a certain interval sj given the distribution of fitness effects of new mutations with parameters w.
“Pw ðsjjf ;DÞ” is the probability of having an 4Ns value in an interval sj given the distribution of fitness effects DFE with parameters w and the demographic
scenario D in f ¼ 1% frequency variants. We calculated Pw ðsjjf ;DÞ from a set of 62,412 4Ns 1% frequency variants obtained via forward-in-time PReFerSim
simulations under the Boyko et al. (2008) DFE and the population expansion scenario. “Inferred Pw sjð Þ” is an estimate of the probability of having a 4Ns
value in a certain interval sj given the distribution of fitness effects of new mutations with parameters w. This estimate is calculated using Pw ðsjjf ;DÞ,
Pw ðf jDÞ, Pw ðf jsj;DÞ and Equation (7) (see Appendix). The selection coefficient s refers exclusively to the action of deleterious variants in this plot.
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(Supplementary Fig. 17). We only obtained accurate estimates of
the j4Nsj values when the values of q or h used in the simulations
were similar to the values used in the estimation of
Lð4Ns; f ;DjL 2 wmj Þ under the 2 demographic models analyzed.

Our previous analysis used 5 nonoverlapping equidistant win-
dows at the left side of the inspected allele plus an extra window
denoting that there are no differences in the 5 defined windows.
We analyzed the impact of using a different number of windows
(4, 6, 11, 51, and 101) given we analyze the same number of base
pairs surrounding the focal allele (Supplementary Fig. 18).
Compared with using 6 windows, the median estimated value of
selection across the 100 simulations did not improve by more
than 7 units in the analyzed demographic models and values of
selection (Supplementary Fig. 18). The RMSE did not improve by
more than 25 in the constant population size and population ex-
pansion model for 5 different values of selection compared with
the analysis done with 6 windows (Supplementary Fig. 18). Using
a larger number of windows increases the memory required to
compute the likelihood equation shown in Equation (1). The
number of values that need to be stored to compute the likeli-
hood equation is equal to the number of allele frequency trajec-
tories Hk, which we set equal to 100,000 throughout all our
analysis, times the number of windows. We opted to use a mod-
est number of windows equal to 6 to avoid storing a very large set
of numbers to compute Equation (1).

Our estimates using Equation (1) use a Monte–Carlo strategy
to compute P L 2 wjj D;Hk

� �
where we simulate 100 sets of

haplotypes for each Hk that contain the focal allele in the left end

of the simulated haplotyped. Then we compute
n
2

� �
values of L

for each simulated set of haplotypes to obtain ‘ ¼ 100� n
2

� �
val-

ues of L for each Hk. We explored if our inferences could be im-

proved by using 2 alternative Monte–Carlo strategies: (1) 1 where

we simulate 200 sets of haplotypes to obtain ‘ ¼ 200� n
2

� �
val-

ues of L for each Hk and (2) another 1 where the focal allele is

located on the center of the simulated haplotypes and we esti-
mate P L 2 wjj D;Hk

� �
by taking the distances going upstream and

downstream of the focal allele site. We saw no significant im-
provement in our estimates by using the 2 alternative Monte–
Carlo strategies based on not having a decrease bigger than 5 on
the root mean square error of our 4Ns estimates and that the me-
dian of our 4Ns estimates across 100 simulation replicates did
not improve by a value bigger than 3 (Supplementary Fig. 19).
Additionally, the 2 alternative strategies require us to double the
computing time required to perform the Monte–Carlo simula-
tions since we are simulating either twice the set of simulated
haplotypes or a haplotype region that is 2 times bigger. In the
case of the constant population size this increases the fully paral-
lelizable computing time to obtain Equation (1) from approxi-
mately 100 to 200 h using an Intel E5-2680v4 @ 2.4 GHz CPU.

Therefore, we decided to maintain the Monte–Carlo strategy

where we simulate ‘ ¼ 100 � n
2

� �
values of L for each Hk with

the focal allele located in the left end for all the analysis pre-

sented in the manuscript.

We also added one additional analysis where we compare our

estimates of 4Ns taking: (1) the ‘ ¼ 2� A� n
2

� �
values of L as

detailed in Fig. 1; and (2) taking the information of the upstream

and downstream distances to construct a single statistic L0 that

measures pairwise identity by state lengths to obtain ‘ ¼
A� n

2

� �
values of L0 (Supplementary Fig. 20). We also did not

observe a significant difference by building a pairwise identity by
state statistic that jointly takes information from the upstream
and downstream region of the focal allele. The root mean square
error did not improve by more than 15 units and the median of
our 4Ns estimates across 100 simulation replicates was not im-
proved by a value bigger than 6 over 5 different values of selec-
tion in the constant population size and population expansion
scenario (Supplementary Fig. 20). The computational times to
compute Equation (1) doubles when using a pairwise identity by
state statistic that takes information from the upstream and
downstream region of the focal allele and does not lead to great
increases in accuracy. Due to those 2 reasons, we decided to stay
with the simple statistic depicted in Fig. 1.

We saw that our method provided approximately unbiased
estimates of selection when r ¼ 0 in 150 variants and r ¼
1 � 10�8 in the other 150 variants in each simulation replicate of
300 variants under a population expansion scenario
(Supplementary Fig. 21). We also obtained approximately unbi-
ased results using a methodology to estimate either a fixed selec-
tion coefficient (Supplementary Fig. 22) or the Boyko distribution
of fitness effects (Supplementary Fig. 23) under a population ex-
pansion model when each simulation replicate had 300 variants
where each variant had a recombination rate sampled from the
distribution of recombination rates seen on the 275 1% 60.05%
frequency nonsynonymous variants of the UK10K dataset. The
estimates obtained when the variants had variable recombina-
tion rates had a similar accuracy to those seen when the variants
had the same recombination rate (Figs. 5 and 6; Supplementary
Fig. 8).

Finally, we evaluated the impact of linked selection in our esti-
mates of selection. To do this, we performed forward-in-time
simulations of 20 Mb regions under the recombination rate and
arrangement of functional elements seen in the human genome.
We performed simulations where the nonsynonymous muta-
tions had a 4Ns value equal to 0, �50, or �100, or the DFE of those
variants was distributed as the human DFE. First we inferred the
demographic scenario using the L values from 1% frequency syn-
onymous variants present in our data. Then, we inferred the
value of selection using the L values from 1% nonsynonymous
variants. We found that neutral alleles were accurately estimated
as neutral. The median 4Ns estimate for simulations performed
with a 4Ns value equal to �50 and �100 was equal to �25 and
�200, respectively (Supplementary Fig. 24; also see Appendix).
The true estimate of 4Ns was always contained inside the 25th
and 75th percentile of the distribution of estimated values for the
3-point 4Ns values inspected. However, we caution that, based on
the inferred demographic scenario, sometimes the inferred esti-
mates of selection displayed a large variance and could show a
bimodal distribution of estimated selection coefficients (see
Supplementary Fig. 24 for a more detailed explanation) as shown
in other demographic scenarios (Supplementary Fig. 3).
Additionally, depending on the inferred demographic scenario
sometimes the neutral variants were not accurately predicted as
neutral and for the deleterious variants we observed that the me-
dian estimate of 4Ns span the edges of the grid of inspected 4Ns
values taking a value of �200 or 0 depending on the demographic
scenario. Therefore, the inferences of selection on these simula-
tions display a large variance and are dependent on the demo-
graphic scenario inferred.

We also report the estimates of the scale and shape parame-
ters of the DFEf in 10 simulation replicates (Supplementary Fig.
25). Based on these estimates, we performed estimates of the DFE
(Supplementary Fig. 26) based on the inferred scale and shape
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parameters. The estimated proportion of 4Ns values between 0–5
and 5–100 was underestimated. On the other hand, the propor-
tion of 4Ns values bigger than 100 was overestimated. However,
the true proportion of 4Ns values in the intervals 0–5, 5–100, and
bigger than 100 was always contained inside the 10th and 90th
percentile of the distribution of estimated values (Supplementary
Fig. 27).

Application: inference of the distribution of
fitness effects of 1% frequency variants in the
UK10K dataset
For this analysis, we used variants that were at 1% frequency
(60.05%) and excluded CpG sites, and sites within 5 Mb from the
centromeres or telomeres. We refer to these as the “focal” var-
iants. First, we estimated the demographic scenario that best
explains the distribution of L for the 142 focal synonymous
variants using an ABC algorithm (see Appendix; Supplementary
Fig. 28).

Before interpreting the results, we investigated whether linked
selection may be of similar strength for the 2 variant sets. We
find that in the upstream and downstream 250 kb regions sur-
rounding the 142 synonymous 1% frequency variants and the 275
nonsynonymous 1% frequency sites there is a similar proportion
of exonic sites (Mann–Whitney U test P-value ¼ 0.7677),
PhastCons element sites (Mann–Whitney U test P-value ¼ 0.601),
and the average strength of background selection (Mann–
Whitney U test P-value ¼ 0.9116) based on the B values (McVicker
et al. 2009). This result suggests that the demographic model we
inferred for the synonymous variants can be used to model the
evolution of the nonsynonymous variants since the reduction in
genetic variation due to background selection is similar on the
haplotypes surrounding both types of variants (Supplementary
Fig. 29). The approach of inferring the demographic model using
synonymous sites is also used in analyses that infer the DFE us-
ing the SFS to help control the effects of background selection
(Boyko et al. 2008; Huber et al. 2017; Kim et al. 2017; Tataru et al.
2017).

To assess power and robustness, we performed simulations
under the scaled UK10K demographic model inferred from the
ABC algorithm. We found that the frequency trajectories and al-
lele ages are significantly different between alleles under differ-
ent strengths of selection (Fig. 8). However, the distribution of T2

values is very similar for deleterious alleles that experience up to
a 2-fold difference in the amount of selection acting upon them.
This is important to note since the distribution of T2 values is one

of the most important factors, along with the mutation and re-
combination rate, determining the resolution of our approach to
infer selection.

We also performed simulations to analyze if the amount of in-
formation present in the UK10K dataset was sufficient to infer se-
lection coefficients in 1% frequency variants. Our approach takes
into account the differences in recombination rates on the
regions surrounding each variant on the genome in the UK10K
data (Appendix). We performed 100 simulation replicates, where
each replicate mimics the amount of information present in the
UK10K dataset. Each replicate contains 275 independent loci with
69–76 haplotypes containing the derived allele (where the sample
derived allele frequency f ¼ 1%6 0:05%; see Appendix for details
on how each simulation replicate is constructed). The recombina-
tion rates, both to the upstream and downstream of the loci,
were assigned based on the average per base recombination rate
in the 250-kb region surrounding each variant (see

Supplementary Fig. 30). We calculated L moving upstream and

downstream of the focal loci, obtaining approximately
72
2

� �
�

2� 275 L values for each simulation replicate. Using data simu-

lated under 5 different selection coefficients, we found that we
were able to obtain estimates of selection that appear unbiased
(Supplementary Fig. 31). We obtained similar results when the
simulated 275 loci shared the same recombination rate, although
with a more notable slight bias for variants simulated with 4Ns ¼
0 and 4Ns ¼ �25 (Supplementary Fig. 32). We compared these
results with those obtained when the number of haplotypes con-
taining the derived allele in the present is exactly equal to 72,
since the likelihood function Lð4Ns; f ;DjL 2 wjÞ used for all the
calculations across this section was built under the assumption
that there are exactly 72 haplotypes with the derived allele in the
present. We found few differences, in terms of the RMSE, on sim-
ulations performed with exactly 72 haplotypes with the derived
allele in the present against simulations where the sample
present-day derived allele frequency f takes values from f ¼
1%6 0:05% using a likelihood function Lð4Ns; f ;DjL 2 wjÞ built
under the assumption of having 72 haplotypes with the derived
allele in the present (Supplementary Fig. 32). This analysis shows
that our inference strategy does not lead to major biases due to
small changes in the derived allele frequency, where the variants
included in the analysis can take frequencies from 0.0095 to
0.0105, in this demographic scenario based on the simulation
results under different recombination rates (Supplementary
Fig. 32).
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Fig. 8. Properties of alleles sampled at a 1% frequency under different strengths of natural selection in the scaled UK10K model inferred in the UK10K
data. a) Population model inferred in the UK10K dataset. b) Mean allele frequency at different times in the past, in units of generations. c) Probability
distribution of allele ages and d) probability distribution of pairwise coalescent times T2. The dot and whiskers below c) and d) represent the mean value
of the distribution and the 2 whiskers extend at both sides of the mean until max (mean 6 SD, 0).
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We must note that there are fewer differences in the distribu-
tion of PðL 2 wijf ;D; 4NsÞ between variants under different
strengths of selection in this demographic scenario compared
with 2 other demographic scenarios we analyzed (Supplementary
Fig. 33). This smaller amount of differences in PðL 2 wijf ;D; 4NsÞ
makes the inferences of selection much more challenging in this
scenario. Additionally, the ESS are lower overall compared with
other demographic scenarios, making the estimates of
Lð4Ns; f ;DjL 2 wjÞ less accurate in this scenario compared with
other scenarios (see Appendix for an explanation of the ESS; also
see Supplementary Fig. 34). The ESS is an estimate of the sample
size used in a Monte–Carlo evaluation of Lð4Ns; f ;DjL 2 wjÞ that is
equivalent to the estimate we obtain using our importance sam-
pling approach. Increasing the ESS is a topic that deserves further
studies, since an improvement in our estimates of Lð4Ns; f ;DjL 2
wjÞ will increase the accuracy in our estimates of 4Ns
(Supplementary Fig. 35).

We also calculated the probability of ancestral misspecifica-
tion in the UK10K demographic scenario (Supplementary Table 6)
and the results suggest that ancestry misspecification should not
bias our estimates of selection (Supplementary Fig. 36). Phasing
errors are not expected cause a bias in any direction in the esti-
mates of 4Ns (Supplementary Fig. 37). Mutation rate and recom-
bination rate misspecification can bias our estimates of selection,
as seen in other demographic models (Supplementary Fig. 38).
We performed simulations using the Boyko distribution of fitness
effects under the scaled UK10K demographic model and the
UK10K demographic model and found that we obtained estimates
of Pw sjð Þ that appear unbiased on the sj intervals (Supplementary
Figs. 39, 40 and Tables 7, 8).

We performed bootstrap replicates of the L values from the
275 1% frequency nonsynonymous variants of the UK10K dataset
and the 142 1% frequency synonymous variants to evaluate the
variation in our estimates of 4Ns. The variation around the esti-
mates using bootstrap replicates is shown in Supplementary Fig.
41. The point estimates of 4Ns are equal to 3 for synonymous var-
iants, and �50 for the nonsynonymous variants.

We used the L values for the 275 nonsynonymous variants at
a 1% frequency to infer the parameters of the distribution of fit-
ness effects DFEf . We assume that no derived variants we observe
are under positive selection and that the DFEf follows a discre-
tized gamma distribution, as explained in A method for inference of
the distribution of fitness effects for variants found at a particular fre-
quency (“DFEf ”). When we solved the integral from Equation (3),
we used a value of s ¼ 75. We only explored 4Ns values from 0 to

75 because we had high resolution for those 4Ns values (as indi-
cated by ESS values bigger than 100), and values lower than �78
had low ESS values. We inferred a scale value of 0.06 and a shape
value of 75,000. Based on a set of bootstrap replicates, we found
that our estimates tend to cluster on the edges of the shape pa-
rameter values explored (Supplementary Fig. 42), indicating a
high variance in our estimates of the DFEf . This effect is specific
to the inferred demographic scenario for the UK10K dataset, since
we did not observe the same phenomenon in the simulations
done under the constant population size and population expan-
sion demographic scenarios we explored previously (Fig. 6). Based
on our estimates of the DFEf , we estimated Pw sjð Þ by employing
Equation (7) and using our estimate of Pwðf jDÞ [see Appendix for
an explanation of our calculation of Pwðf jDÞ]. We compared those
values with previously obtained estimates (Boyko et al. 2008; Kim
et al. 2017). The point estimates of Pw sjð Þ along with the 90% boot-
strap percentile intervals for other sj intervals are shown in Fig. 9
and Supplementary Fig. 43. We also show information for other
bootstrap percentile intervals in Supplementary Table 9. We find
that the upper limit of our 90% bootstrap percentile interval of
Pw sj 2 ½0; 5Þ
� �

and Pw sj 2 ½5; 50Þ
� �

is smaller than the estimates
computed by Kim et al. (2017) and bigger than the estimates com-
puted by Boyko et al. (2008). On the other hand, the lower limit of
our 90% bootstrap percentile interval of Pw sj 2 ½50;1Þ

� �
is bigger

than the estimates of Boyko et al. (2008) and Kim et al. (2017). The
probabilities of having a value of selection s over different orders
of magnitude are shown in Supplementary Table 10 and are com-
pared with the probabilities obtained by Boyko et al. (2008) and
Kim et al. (2017). We also computed P-values under the null hy-
pothesis that there is no difference between the estimated Pw sjð Þ
values from the data and the Pw sjð Þ from the Boyko distribution
of fitness effects (see Supplementary Fig. 44) and we cannot reject
the hypothesis that the distribution of fitness effects inferred us-
ing the L values is different to the distribution of fitness effects
estimated by Boyko et al. (2008) over the sj intervals [0,5), [5, 50)
and [50,1Þ inspected.

Discussion
We have developed a composite likelihood method to estimate
the strength of natural selection acting on alleles at a certain fre-
quency in the population. Our method builds upon previous work
showing signatures of higher linkage disequilibrium for puta-
tively deleterious alleles in comparison with neutral alleles
(Kiezun et al. 2013). This result was shown to be in line with
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Fig. 9. Inferred distribution of fitness effects of new mutations and 1% frequency deleterious variants in the UK10K dataset. “Inferred Pw sjð Þ” refers to
the probability of having a 4Ns value in a particular interval sj given the distribution of fitness effects of new mutations DFE. We estimated Pw sjð Þ for the
sj interval ¼ [5, 50) by summing up the Pw sjð Þ probabilities over the intervals [5, 10), [10, 15), [15, 20), [20, 25), [25, 30), [30, 35), [35, 40), [40, 45), and [45,
50). The selection coefficient s refers exclusively to the action of deleterious variants in this plot. We compared our inferences with those of Boyko et al.
(2008) and Kim et al. (2017). The 2 triangles shown in each sj interval denote the upper and lower limit of the 90% bootstrap percentile interval across
100 bootstrap replicates. The asterisk signs are the mean values for the inferred probabilities Pw sjð Þ calculated from 100 bootstrap replicates.

14 | GENETICS, 2022, Vol. 220, No. 4

https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac002#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac002#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac002#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac002#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac002#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac002#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac002#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac002#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac002#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac002#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac002#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac002#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac002#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac002#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac002#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac002#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac002#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac002#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac002#supplementary-data


Takeo Maruyama’s work showing that deleterious alleles at a cer-
tain frequency tended to be younger than neutral alleles in con-
stant population sizes (Maruyama 1974). Here, we introduce a
method to estimate the strength of natural selection based on
linkage disequilibrium using the pairwise identity by state
lengths L.

In a constant population size scenario, we found that the dis-
tribution of L captures differences in the absolute strength of the
selection coefficient 4Ns in a constant population size scenario.
On the other hand, under some nonequilibrium demographic
scenarios we found that the distribution of L is sufficient to differ-
entiate between advantageous and deleterious alleles. This is en-
couraging, since most natural populations are very likely to have
evolved under a nonequilibrium demographic scenario and pre-
cisely in some of those scenarios we will be capable to differenti-
ate between deleterious and advantageous alleles.

Our simulations of allele frequency trajectories under several
demographic scenarios are useful to understand past fluctua-
tions in frequency and haplotypic patterns of selected alleles.
The mean allele frequency trajectories of deleterious alleles seg-
regating at a 1% frequency when the population is expanding are
particularly noteworthy. These alleles tend to have increased in
frequency when the population size is low. Then, they decrease
in frequency when the population expands due to a higher effi-
cacy of selection. This suggest that it is likely that, on average,
deleterious alleles would tend to come from higher frequencies
in the recent past in expanding populations. Recent work has an-
alyzed how different summaries of genetic variation change over
time in nonequilibrium scenarios (Peischl et al. 2013; Simons et al.
2014; Lohmueller 2014a; Balick et al. 2015; Do et al. 2015; Henn
et al. 2015; Brandvain and Wright 2016; Marsden et al. 2016; Koch
and Novembre 2017), and our work analyzing the behavior of fre-
quency trajectories is helpful to understand those changes.
Future work could also expand on the impact of selection in dom-
inant and recessive alleles in nonequilibrium scenarios since the
frequency trajectory of dominant or recessive alleles are different
to what is observed in codominant alleles even on scenarios with
constant population sizes (Mafessoni and Lachmann 2015).

In simulations, we find that our method can estimate parame-
ters of the DFEf such that the mean of the DFEf is recovered in
several scenarios. Under a constant population size, the scale
estimates of the DFEf are inversely correlated with the shape
parameters. Note that this curve decay causes the product of the
scale and shape parameters to have relatively similar values.
Under a population expansion model, the estimates of the shape
and scale show a wider variation around the curve than the con-
stant population size scenario (Fig. 6). Similarly, the pairwise coa-
lescent time T2 distribution between variants with different
negative selection coefficients appear more similar to each other
in a population expansion scenario when compared with a con-
stant population size scenario (Figs. 4d and 2c). Due to the greater
variation in the estimates of the parameters that define the DFEf

of variants at a 1% frequency, we also see a larger variation in the
mean 4Ns values estimated in a population expansion as com-
pared with a constant population size demographic scenario
based on the DFEf estimates (Fig. 6). Estimates of the mean 4Ns
values are more precise under a constant population size com-
pared with the population expansion scenario according to the
estimates obtained from the DFEf .

We developed an approach [via Equation (7)] to infer the DFE
from the DFEf (assuming stationarity of the DFEÞ. We tested our
equation in simulations that include different demographic sce-
narios and DFE’s. We found that it provides accurate estimates of

the DFE given the DFEf in a set sj of discrete bins of 4Ns (Fig. 7;
Supplementary Figs. 6 and 7). The implication of this result is
that an accurate estimate of the DFE can be obtained if we have
an accurate estimate of the demographic scenario and the DFEf .
The DFEf is different from the DFE because the joint action of
past demographic events and natural selection will not allow a
frequency increase in deleterious variants where the effect of
natural selection is stronger than that of genetic drift.
Characterizing the DFEf of variants that have a particular func-
tional category is of interest to understand how natural selection
is acting to keep deleterious variants at low frequencies in the
population. This information is of particular interest to debates
on how natural selection and past demographic history influen-
ces changes in the genetic load between populations via the fre-
quency decrease of deleterious alleles (Lohmueller 2014b;
Brandvain and Wright 2016).

We tested different potential sources of errors in our estimates
of selection. We found that ancestral state misspecification
does not bias the point estimates of selection 4Ns for neutral
and deleterious variants in 3 different demographic models
(Supplementary Tables 5 and 6 and Figs. 12, 36). In the case
of advantageous variants, we found that ancestral state
misspecification does not bias the estimates of 4Ns under a con-
stant population size demographic model but it causes an under-
estimation of the 4Ns estimate under a population expansion
model (Supplementary Fig. 12). We caution that the fact that an-
cestral misidentification is not a problem for the demographic
scenarios explored does not imply that it will never be problem-
atic. A higher mutation rate will increase the amount of homo-
plasies and will increase the probability of ancestral state
misidentification (Baudry and Depaulis 2003). If the ancestral
state is defined using an outgroup species, a higher divergence
from that species will also increase the probability of ancestral
state misidentification (Hernandez et al. 2007). Some strategies
have been proposed to estimate that particular probability
(Baudry and Depaulis 2003; Ragsdale et al. 2016). An increase on
the probability of ancestral state misidentification will create 2
different problems for the low frequency derived variants we use
in our analysis: (1) low frequency ancestral variants miscalled as
low frequency derived variants and (2) low frequency derived var-
iants miscalled as low frequency ancestral variants. The first
problem will bias the estimates of 4Ns because it will use L values
from low frequency ancestral variants. The second problem will
decrease the value of A and, in turn, reduce the number of L val-
ues to perform our inferences. This will decrease our precision of
our 4Ns estimates, since we will have a smaller amount of data,
L, to perform our inferences.

Biases in SNP and genotype calling can increase the apparent
number of low-frequency variants appearing in genomic data-
sets. One solution to mitigate the effect of such errors is to re-
move low-frequency variants from our data before performing
the inferences of selection. We tested that solution and found
that we could obtain accurate estimates of selection
(Supplementary Fig. 13). We also found that the statistical phas-
ing of haplotypes does not bias our point estimates of selection of
4Ns, although it increases the variance on our 4Ns estimates
(Supplementary Figs. 15 and 36). Our results also show that using
an accurate mutation rate and recombination rate is critical to
obtain unbiased estimates of selection (Supplementary Figs. 16
and 17). Finally, we perform forward-in-time simulations with
SLiM to evaluate the impact of linked selection in our estimates
of selection. We found that linked selection can bias the esti-
mates of 4Ns for nonsynonymous variants and that the estimates
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possess a large variance, though the true values of 4Ns were con-
tained inside the 25th and 75th percentile of the estimated 4Ns
values although the intervals can be large (Supplementary Fig.
27). The impact of linked selection on estimates of 4Ns and the
DFE is one topic that deserves further scrutiny for any proposed
method to infer the impact of selection. Current community
work in progress is standardizing forward-in-time simulations to
simulate whole genomes under different demographic scenarios
with the impact of selection incorporated on sites with a different
functional category annotation (Adrion et al. 2020). We hope that
all the developed methods to infer the impact of selection across
the genome are tested under that standardized framework.

All of the analysis presented in this paper use 1% frequency
variants. We decided to use variants at this particular frequency
based on 2 observations: (1) the allele age of 1% frequency
variants is approximately 8 times older for neutral variants
compared with variants under a strength of natural selection
equal to 4Ns ¼ 100 under a constant demographic scenario
(Supplementary Table 1). The difference in the allele ages implies
that there should be a significant difference in the values of T2

between neutral and strongly selected alleles, as was observed in
Fig. 2. This should also translate in significant differences in L
values for 1% frequency variants, which is the statistic that we
use for our inference. We showed that this was indeed the case
for a constant population size scenario and all the other demo-
graphic scenarios we explored. (2) The number of nonsynony-
mous 1% frequency variants in the UK10K dataset was in the
order of hundreds. We found that this number of variants was
sufficient to provide reasonable estimates of Pw sjð Þ in the demo-
graphic scenarios we explored. There is a tradeoff with the analy-
sis of variants at different frequencies. Variants at higher
frequencies than 1% should display higher differences in L values
when there are changes on the strength of natural selection act-
ing on those variants. However, there are fewer variants at those
higher frequencies. On the other hand, there are more variants at
frequencies lower than 1% but the differences in L values on
those variants should be lower. In the end, the best scenario
would be to combine the information from variants at different
frequencies. This is an avenue of research that should be fruitful
to explore in the future.

Changes on the DFE over time could lead to differences in the
inferred DFE from the SFS and the haplotypic data. DFE estimates
from the SFS data use information from variants that have
appeared across a broad range of time. On the other hand, the
haplotype data we used comes from 1% frequency variants that
have appeared recently.

The UK10K analysis we performed in this paper assume that
the synonymous mutations are neutral. We used this assump-
tion to be able to compare our DFE estimates for nonsynonymous
mutations to previous results (Boyko et al. 2008; Kim et al. 2017),
which also performed their analysis under the assumption that
synonymous mutations are neutral. However, synonymous sites
are under stronger natural selection than intergenic sites based
on SFS data from 797 French Canadians showing a higher propor-
tion of synonymous sites at lower frequencies compared with
intergenic variants (Ragsdale et al. 2018). Related to this point,
analysis based on the SFS have also shown that natural selection
is acting on codon usage bias in the human genome giving fur-
ther support to how natural selection acts on synonymous muta-
tions (Dhindsa et al. 2020). The availability of large-scale whole
genome sequencing data and ongoing efforts to perform whole-
genome simulations including annotations for different func-
tional genomic elements (Adrion et al. 2020) will allow us to have

a better definition of which mutations from different functional
elements will be a better proxy for neutral mutations depending
on the functional category of mutations where we wish to infer
the DFE. Apart from the strength of natural selection acting
on the putatively neutral sites, it would be important to deter-
mine the appropriate genetic distance in bp or cM from the puta-
tively neutral sites to the mutations where we wish to infer the
strength of natural selection to avoid biases in the estimation of the
DFE (Andolfatto 2008; Huang and Siepel 2019; Dhindsa et al. 2020).

Another biological phenomenon that could impact our DFE
estimates is the incompleteness of the demographic model fitted
to the data (Harris and Nielsen 2013; Garud et al. 2015; Beichman
et al. 2017). We are fitting a demographic model with one deme to
the UK10K dataset, and it is possible that fitting a model with
population structure could give a better fit to the haplotypic data
and to the SFS data (Harris and Nielsen 2013). We also are not
modeling noncrossover gene conversion (Andolfatto and
Nordborg 1998; Korunes and Noor 2017). Noncrossover gene con-
version events involve haplotype tracts of approximately 100–
1,000 bp and the probability that any site in the genome is in-
volved in a noncrossover gene conversion event is
u ¼ 5:9 � 10�6/bp/generation (Williams et al. 2015). Their impact
is to break down linkage disequilibrium, which in our model, for
a single variant would result in inferences that are biased to-
wards neutrality; however, in aggregate if it impacts linkage dis-
equilibrium around synonymous and nonsynonymous variants
equally, the effect on inferences may be minor. Nonetheless,
modeling noncrossover gene conversion could improve models of
the haplotype signatures of selection.

One technical aspect from our methodology that could be sub-
ject to future improvement is to increase the ESS values. We only
calculated the likelihood function of point estimates of 4Ns
shown in Equation (2) in 4Ns values where we had high ESS, big-
ger than 100. In the case of the estimation of the DFEf , the value
of s from equation was chosen to cover a set of values where we
had ESS values bigger than 100. In the case of the UK10K dataset,
the ESS values are smaller than 100 in 4Ns values smaller than
�78 (Supplementary Fig. 34). To increase the values of the ESS, 1
possible improvement of our method is to make better proposals
for the allele frequency trajectories going backwards in time.
That is, to improve our choice of the importance sampling distri-
bution. Future work will be devoted to make improvements in
this issue, particularly in populations undergoing recent large
expansions. One possibility is to expand the theory of Wright–
Fisher bridges to select trajectories that end at a certain fre-
quency f in the present under nonequilibrium scenarios
(Schraiber et al. 2013). We did not find the same pattern of low
ESS values in the other 2 demographic scenarios we analyzed
(Fig. 2 and 4), where the population sizes did not experience
changes in population size of the same magnitude as in the de-
mographic model inferred in the UK10K data (Supplementary Fig.
34). Also, the values of L show fewer differences between differ-
ent values of selection under the UK10K model compared with
the 2 other demographic models analyzed (Supplementary Fig.
33) leading to estimates of selection with a larger variance under
the UK10K model compared with the 2 other models (Figs. 3 and
5; Supplementary Figs. 31 and 32).

The accuracy of our inference method in dependent on the de-
mographic model analyzed, along with the recombination rate
and mutation rate on the regions surrounding the focal variants
used in our analysis. We strongly recommend to perform simula-
tions (as seen in the section Forward-in-time simulations to assess
the impact of selection on the allele frequency trajectories, allele ages,
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pairwise coalescent times T2, and L values) to explore if there is suffi-

cient information to detect differences in L values given the par-

ticular demographic scenario, mutation rate and recombination

rate used. Then, we recommend testing our inference method to

see if the ESS are sufficiently high (at least bigger than 100) to

perform inferences under that demographic model. The recombi-

nation rates have large variations across the genome (Kong et al.

2010) and this must be taken into account when performing

inferences. We propose a strategy to take into account local vari-

ation in recombination rates in the UK10K dataset (Appendix)

that gave DFE inferences that appear unbiased (Supplementary

Figs. 39 and 40). We also suggest to test the DFEf and DFE infer-

ences using this strategy via simulations under the particular in-

ferred demography, mutation rates and recombination rates of

the studied population.
Here we analyzed the distribution of fitness effects of non-

synonymous variants at a certain frequency. However, it is

possible to determine the distribution of fitness effects of var-

iants from other specific functional categories, such as var-

iants that are predicted to be more deleterious based on the

Fitcons (Gulko et al. 2015), SIFT (Sim et al. 2012), Polyphen

(Adzhubei et al. 2010), or C-scores (Kircher et al. 2014; Racimo

and Schraiber 2014). It is also be possible to estimate the

strength of selection in a set of alleles that have a particular

collection of genomic features (Huang and Siepel 2019). This

can help us to obtain genome-wide estimates of the selection

coefficient of variants based on their predicted functional cate-

gory. This is of particular interest to genome-wide association

studies, due to the interest in understanding the association

between associated variants and their selection coefficients on

different complex traits. Additionally, the use of the newly de-

veloped tree-sequence framework (Kelleher et al. 2018; Haller

et al. 2019) for simulations should also help to speed up the cal-

culation of the likelihood of different values of selection in the

part of our method that depends on Monte–Carlo simulations.

Another future avenue of research is to infer the distribution of

selection coefficients of mutations acting at different frequen-

cies in the population. Additionally, the differences in pairwise

identity by state lengths between alleles under positive and

negative selection under some demographic scenarios indicate

that it could be possible to use the haplotypic information to

infer the distribution of fitness effects including both advanta-

geous and negative selection. The method presented here

could be extended to infer the distribution of fitness effects in-

cluding mutations under negative and positive selection that

better explains the distribution of pairwise identity by state

lengths. Broadly, we hope that the haplotype patterns are more

exploited in future studies to infer the distribution of fitness

effects of new mutations.
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O, Vilà C, Marques-Bonet T, Schnabel RD, Wayne RK, Lohmueller

KE. Bottlenecks and selective sweeps during domestication have

increased deleterious genetic variation in dogs. Proc Natl Acad

Sci U S A. 2016;113(1):152–157. doi:10.1073/pnas.1512501113.

Martin G, Lenormand T. A general multivariate extension of Fisher ’

s geometrical model and the distribution of mutation fitness

effects across species. Evolution. 2006;60(5):893–907.

Maruyama T. The age of an allele in a finite population. Genet Res.

1974;23(2):137–143.

Mathieson I, McVean G. Demography and the age of rare variants.

PLoS Genet. 2014;10(8):e1004528.doi:10.1371/journal.p-

gen.1004528.

Smith JM, Haigh J. The hitch-hiking effect of a favourable gene.

Genet Res. 1974;23(1):23–35. doi:10.1017/S0016672308009579.

McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer

A, Kang HM, Fuchsberger C, Danecek P, Sharp K, et al.; Haplotype

Reference Consortium. A reference panel of 64,976 haplotypes

for genotype imputation. Nat Genet. 2016;48(10):1279–1283. doi:

10.1038/ng.3643.

McVicker G, Gordon D, Davis C, Green P. Widespread genomic signa-

tures of natural selection in hominid evolution. PLoS Genet. 2009;

5(5):e1000471.doi:10.1371/journal.pgen.1000471.

Nakagome S, Alkorta-Aranburu G, Amato R, Howie B, Peter BM,

Hudson RR, Di Rienzo A. Estimating the ages of selection signals

from different epochs in human history. Mol Biol Evol. 2016;33(3):

657–669. doi:10.1093/molbev/msv256.

Nicolaisen LE, Desai MM. Distortions in genealogies due to purifying

selection and recombination. Genetics. 2013;195(1):221–230. doi:

10.1534/genetics.113.152983.

Nielsen R. Molecular signatures of natural selection. Annu Rev

Genet. 2005;39:197–218. doi:10.1146/annurev.ge-

net.39.073003.112420.

Nordborg M, Charlesworth B, Charlesworth D. The effect of recombi-

nation on background selection. Genet Res. 1996;67(2):159–174.

Ohta T. The nearly neutral theory of molecular evolution. Annu Rev

Ecol Syst. 1992;23(1):263–286.

Ormond L, Foll M, Ewing GB, Pfeifer SP, Jensen JD. Inferring the age of

a fixed beneficial allele. Mol Ecol. 2016;25(1):157–169. doi:

10.1111/mec.13478.

Ortega-Del Vecchyo D, Marsden CD, Lohmueller KE. PReFerSim: fast

simulation of demography and selection under the Poisson ran-

dom field model. Bioinformatics. 2016;32(22):3516–3518. doi:

10.1093/bioinformatics/btw478.

Pavlidis P, Jensen JD, Stephan W. Searching for footprints of positive

selection in whole-genome SNP data from nonequilibrium popu-

lations. Genetics. 2010;185(3):907–922. doi:10.1534/genet-

ics.110.116459.

Peischl S, Dupanloup I, Kirkpatrick M, Excoffier L. On the accumula-

tion of deleterious mutations during range expansions. Mol Ecol.

2013;22(24):5972–5982. doi:10.1111/mec.12524.

Peris JB, Davis P, Cuevas JM, Nebot MR, Sanjuan R. Distribution of fit-

ness effects caused by single-nucleotide substitutions in bacteri-

ophage f1. Genetics. 2010;185(2):603–609. doi:

10.1534/genetics.110.115162.

Platt A, Pivirotto A, Knoblauch J, Hey J. An estimator of first coales-

cent time reveals selection on young variants and large heteroge-

neity in rare allele ages among human populations. PLoS Genet.

2019;15(8):e1008340.doi:10.1371/journal.pgen.1008340.

Przeworski M. Estimating the time since the fixation of a beneficial

allele. Genetics. 2003;164(4):1667–1676.

Racimo F, Schraiber JG. Approximation to the distribution of fitness

effects across functional categories in human segregating poly-

morphisms. PLoS Genet. 2014;10(11):e1004697.doi:10.1371/jour-

nal.pgen.1004697.

Ragsdale AP, Coffman AJ, Hsieh P, Struck TJ, Gutenkunst RN.

Triallelic population genomics for inferring correlated fitness

effects of same site nonsynonymous mutations. Genetics. 2016;

203(1):513–523. doi:10.1534/genetics.115.184812.

Ragsdale AP, Moreau C, Gravel S. Genomic inference using diffusion

models and the allele frequency spectrum. Curr Opin Genet Dev.

2018;53:140–147. doi:10.1016/j.gde.2018.10.001.

Rice DP, Good BH, Desai MM. The evolutionarily stable distribution

of fitness effects. Genetics. 2015;200(1):321–329. doi:10.1534/ge-

netics.114.173815.

Sabeti PC, Reich DE, Higgins JM, Levine HZP, Richter DJ, Schaffner SF,

Gabriel SB, Platko JV, Patterson NJ, McDonald GJ, et al. Detecting

recent positive selection in the human genome from haplotype

structure. Nature. 2002;419(6909):832–837. doi:10.1038/na-

ture01140.

Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie

X, Byrne EH, McCarroll SA, Gaudet R, et al.; International HapMap

Consortium. Genome-wide detection and characterization of

positive selection in human populations. Nature. 2007;449(7164):

913–918. doi:10.1038/nature06250.

Sanjuan R, Moya A, Elena SF. The distribution of fitness effects

caused by single-nucleotide substitutions in an RNA virus. Proc

Natl Acad Sci U S A. 2004;101(22):8396–8401. doi:

10.1073/pnas.0400146101.

Sawyer SA, Hartl DL. Population genetics of polymorphism and di-

vergence. Genetics. 1992;132(4):1161–1176.

Schiffels S, Durbin R. Inferring human population size and separa-

tion history from multiple genome sequences. Nat Genet. 2014;

46(8):919–925. doi:10.1038/ng.3015.

Schraiber JG, Griffiths RC, Evans SN. Analysis and rejection sampling

of Wright-Fisher diffusion bridges. Theor Popul Biol. 2013;89:

64–74. doi:10.1016/j.tpb.2013.08.005.

S�egurel L, Wyman MJ, Przeworski M. Determinants of mutation rate

variation in the human germline. Annu Rev Genomics Hum

Genet. 2014;15:47–70. doi:10.1146/annurev-ge-

nom-031714-125740.

Serohijos AWR, Shakhnovich EI. Contribution of selection for protein

folding stability in shaping the patterns of polymorphisms in cod-

ing regions. Mol Biol Evol. 2014;31(1):165–176. doi:10.1093/mol-

bev/mst189.

Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom

K, Clawson H, Spieth J, Hillier LW, Richards S, et al. Evolutionarily

conserved elements in vertebrate, insect, worm, and yeast

genomes. Genome Res. 2005;15(8):1034–1050. doi:

10.1101/gr.3715005.

20 | GENETICS, 2022, Vol. 220, No. 4



Sim N-L, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web

server: predicting effects of amino acid substitutions on proteins.

Nucleic Acids Res. 2012;40(Web Server Issue):W452–W457. doi:

10.1093/nar/gks539.

Simons YB, Turchin MC, Pritchard JK, Sella G. The deleterious muta-

tion load is insensitive to recent population history. Nat Genet.

2014;46(3):220–224. doi:10.1038/ng.2896.

Simons YB, Sella G. The impact of recent population history on the

deleterious mutation load in humans and close evolutionary rel-

atives. Curr Opin Genet Dev. 2016;41:150–158. doi:

10.1016/j.gde.2016.09.006.

Slatkin M, Rannala B. Estimating the age of alleles by use of intraal-

lelic variability. Am J Hum Genet. 1997;60:447–458.

Slatkin M. Simulating genealogies of selected alleles in a population

of variable size. Genet Res. 2001;78(1):49–57.

Slatkin M. A Bayesian method for jointly estimating allele age and

selection intensity. Genet Res (Camb). 2008;90(1):129–137. doi:

10.1017/S0016672307008944.

Smith J, Coop G, Stephens M, Novembre J. Estimating time to the

common ancestor for a beneficial allele. Mol Biol Evol. 2018;35(4):

1003–1017. doi:10.1093/molbev/msy006.

Taliun D, Harris DN, Kessler MD, Carlson J, Szpiech ZA, Torres R,

Gagliano Taliun SA, Corvelo A, Gogarten SM, Kang HM, et al.

Sequencing of 53,831 diverse genomes from the. NHLBI TOPMed

Program. bioRxiv; 2019. doi:10.1101/563866.

Tang K, Thornton KR, Stoneking M. A new approach for using ge-

nome scans to detect recent positive selection in the human ge-

nome. PLoS Biol. 2007;5(7):e171.doi:

10.1371/journal.pbio.0050171.

Tataru P, Mollion M, Glemin S, Bataillon T. Inference of distribution

of fitness effects and proportion of adaptive substitutions from

polymorphism data. Genetics. 2017;207(3):1103–1119. doi:

10.1534/genetics.117.300323.

Tenaillon O. The utility of Fisher’s geometric model in evolutionary

genetics. Annu Rev Ecol Evol Syst. 2014;45:179–201. doi:

10.1146/annurev-ecolsys-120213-091846.

Tennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE, Gravel S,

McGee S, Do R, Liu X, Jun G, et al. Evolution and functional impact

of rare coding variation from deep sequencing of human exomes.

Science. 2012;337(6090):64–69. 10.1126/science.1219240 22604720

Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, Silverman

JS, Powell K, Mortensen HM, Hirbo JB, Osman M, et al. Convergent

adaptation of human lactase persistence in Africa and Europe.

Nat Genet. 2007;39(1):31–40. doi:10.1038/ng1946.

Torgerson DG, Boyko AR, Hernandez RD, Indap A, Hu X, White TJ,

Sninsky JJ, Cargill M, Adams MD, Bustamante CD, et al.

Evolutionary processes acting on candidate cis-regulatory

regions in humans inferred from patterns of polymorphism and

divergence. PLoS Genet. 2009;5(8):e1000592.doi:10.1371/jour-

nal.pgen.1000592.

Voight BF, Kudaravalli S, Wen XQ, Pritchard JK. A map of recent posi-

tive selection in the human genome. PLoS Biol. 2006;4(4):

e154.doi:10.1371/journal.pbio.0040072.

Wall JD, Stawiski EW, Ratan A, Kim HL, Kim C, Gupta R, Suryamohan

K, Gusareva ES, Wenang Purbojati R, Bhangale T, et al. The

GenomeAsia 100K Project enables genetic discoveries across

Asia. Nature. 2019;576:106–111. doi:10.1038/s41586-019-1793-z.

Walter K, Min JL, Huang J, Crooks L, Memari Y, McCarthy S, Perry JRB,

Xu C, Futema M, Lawson D, et al.; UK10K Consortium. The UK10K

project identifies rare variants in health and disease. Nature.

2015;526(7571):82–90. doi:10.1038/nature14962.

Wang ET, Kodama G, Baldi P, Moyzis RK. Global landscape of recent

inferred Darwinian selection for Homo sapiens. Proc Natl Acad Sci

U S A. 2006;103(1):135–140.

Williams AL, Genovese G, Dyer T, Altemose N, Truax K, Jun G,

Patterson N, Myers SR, Curran JE, Duggirala R, et al.; on behalf of

the T2D-GENES Consortium. Non-crossover gene conversions

show strong GC bias and unexpected clustering in humans. eLife.

2015;4:1–21. doi:10.7554/elife.04637.

Williamson SH, Hernandez R, Fledel-Alon A, Zhu L, Nielsen R,

Bustamante CD. Simultaneous inference of selection and popula-

tion growth from patterns of variation in the human genome.

Proc Natl Acad Sci U S A. 2005;102(22):7882–7887.

Williamson SH, Hubisz MJ, Clark AG, Payseur BA, Bustamante CD,

Nielsen R. Localizing recent adaptive evolution in the human ge-

nome. PLoS Genet. 2007;3(6):e90. doi:10.1371/journal.p-

gen.0030090.

Zhen Y, Huber CD, Davies RW, Lohmueller KE. Stronger and higher

proportion of beneficial amino acid changing mutations in

humans compared with mice and flies. bioRxiv; 2018. DOI:

10.1101/427583.

D. Ortega-Del Vecchyo et al. | 21



Appendix

Integration over the space of allele frequency
trajectories using importance sampling
Performing an integration over the space of allele frequency tra-
jectories Hk where the allele has a frequency f in the present is
challenging. One possible way to perform that integration step is
to perform many simulations under the assumptions of the
Poisson Random Field (PRF) framework (Sawyer and Hartl 1992;
Hartl et al. 1994) and utilize rejection sampling to only keep those
trajectories that end at a frequency f in the present. The number
of mutations that enter the population each generation j have a
Poisson distribution with mean 2NjuK ¼ H=2 under the PRF
model. Nj is the population size in generation j, u is the mutation
rate per base and K is the number of sites being simulated. The
sites are independent and the frequency of each mutation
changes each generation following a Wright–Fisher model with
selection. We could generate many allele frequency trajectories
under this framework given a particular value of 4Ns and just
keep those trajectories that end at a frequency f . However, this is
inefficient and computationally demanding since the vast major-
ity of allele frequency trajectories will not end at a frequency f in
the present. And it is particularly more challenging if we wish to
calculate Lð4Ns; f ;DjLÞ for a grid of 4Ns values.

Here, we used an importance sampling approach to integrate
over the space of allele frequency trajectories and calculate the
likelihood Lð4Ns; f ;DjLÞ over many different values of 4Ns. The ef-
ficient integration over the space of allele frequency trajectories
is done using the importance sampling approach developed by
Slatkin (2001) with a modification regarding the importance sam-
pling distribution we use. Here the “target” distribution f xð Þ ¼
PðHkj4Ns; f ;DÞ are samples of allele frequency trajectories that
end at a frequency f and have a selection coefficient 4Ns.

Following Slatkin (2001), we can define the trajectory Hk of a
derived allele a as the number of copies ig of the allele a each gen-
eration g since the allele appeared in the population. Therefore,
Hk ¼ fiT; iT�1; iT�2; . . . ; i2; i1; i0g, where iT ¼ 0 and iT�1 ¼ 1. The ef-
fective population sizes at those times are
N ¼ fNT;NT�1;NT�2; . . . ;N2;N1;N0g. The allele appears in genera-
tion T � 1, where it has 1 copy in the population.

We define the fitness of the genotypes AA, Aa, and aa as 1, 1þs,
and 1þ 2s, respectively. Under a Wright–Fisher model with selec-
tion, the probability of moving from it to it�1 copies of the allele
going forward in time is equal to:

P it�1jit
� �

¼ pit ;it�1
¼ 2Nt�1

it�1

� �
x
0 it�1
t ð1� x

0

tÞ
2Nt�1�it�1 ; (A1)

where

x0t ¼ xt
1þ 2sxt þ sð1� xtÞ

1þ 2sx2
t þ 2sxtð1� xtÞ

: (A2)

The frequency of the allele at generation t is xt ¼ it= 2Nt.
As a “importance sampling” distribution g xð Þ, we use a very

similar process to a Wright–Fisher neutral model. We start with
the count y of the number of derived alleles a in the present
based on a sample of n alleles. Estimating the frequency in gener-
ation 0 based on that sample of alleles is equal to the problem of

estimating a probability based on binomial data. Therefore, we
can follow Gelman et al. (2013) to state that the posterior density
of the distribution of allele frequencies f̂ in generation 0 is distrib-
uted as: f̂ jðy; nÞ � Beta yþ 1; n� yþ 1ð Þ. Based on the distribution
of f̂ ; we can obtain the distribution of the number of alleles in
generation 0, i0, just by multiplying i0 ¼ f̂ n and rounding i0 to a
discrete value. Then we can define the probability of having i0
alleles in generation 0 given that we sampled y derived alleles in
a sample of n alleles as

P i0jn; y
� �

¼ P X <
i0 þ 0:5

2N0
jBeta yþ 1; n� yþ 1ð Þ

� �

� P X <
i0 � 0:5

2N0
jBeta yþ 1; n� yþ 1ð Þ

� �
: (A3)

On the other hand, the probability that we obtain y derived
alleles in a sample of n alleles given i0 is

P n; yji0
� �

¼ n
y

� �
i0

2N0

� �y

1� i0
2N0

� �n�y

: (A4)

To sample from g xð Þ, first we obtain a random value of i0 using
the probability distribution defined in Equation (A3). Then, we
move backwards in time assuming that the allele is neutral.
Under this proposal distribution, if it�1 ¼ 1, then it can take any
value from 0 to 2Nt. If it�1 ¼ 0 or 2Nt then we stop the allele fre-
quency trajectory. If it�1 is bigger than 1 and smaller than 2Nt,
then it can take any value from 1 to 2Nt. These 3 rules are used
together to make sure that each trajectory going forward in time
always goes from 0 to 1 copy of the allele.

The transition probabilities under g xð Þ of going from it�1 alleles
in generation t� 1 to it alleles in generation it are

P itjit�1
� �

¼ qit�1 ;it ¼

2Nt

it

� �
ðxt�1Þit ð1� xt�1Þ2Nt�it

1� 2Nt

it

� �
ðxt�1Þ0ð1� xt�1Þ2Nt

if it�1 ¼ 2; 2Ntð Þ and it > 0

2Nt

it

� �
ðxt�1Þit ð1� xt�1Þ2Nt�it if it�1 ¼ 1

0 if 1Þ it�1 ¼ 0 or 2Nt or 2Þ it�1 ¼ 2; 2Ntð Þ

8>>>>>>>>><
>>>>>>>>>:

and it ¼ 0

where xt�1 ¼ it�1=2Nt�1. By generating an allele frequency trajec-
tory with this importance sampling distribution, we can calculate
the probability of any sample from this importance sampling dis-
tribution g xð Þ:

g xð Þ ¼ P i0jn; y
� �YT

t¼1
qit�1 ;it (A6)

Finally, the probability of the whole allele frequency trajectory
Hk going forward in time is then equal to

P Hkj4Ns; f ;D
� �

¼ f xð Þ ¼ Pðn; yji0Þ
Y1

t¼T�1
pit ;it�1

(A7)

Now that we have defined how to sample allele frequency tra-
jectories using our proposal distribution, we can compute the
weight for every simulated allele frequency trajectory Hk from
g xð Þ as xk ¼ ðf ðxkÞ=gðxkÞÞ. For some of the proposed trajectories
sampled under g xð Þ, the trajectory will end up at a frequency of 1
going backwards into the past, instead of 0. The value of xk for
those trajectories is defined to be equal to 0.

The expected value that we wish to obtain with this problem is
Lð4Ns; f ;DjL 2 wjÞ. After generating R replicates using g xð Þ, we can
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compute that expected value under the importance sampling
framework as

L 4Ns; f ;DjL 2 wj
� �

¼
PR

k¼1 xkP L 2 wjjHk
� �

PR
k¼1 xk

(A8)

Using this approach, we can estimate Lð4Ns; f ;DjL 2 wjÞ for dif-
ferent values of 4Ns using the same set of allele frequency trajec-
tories generated from our importance sampling distribution. To
do this, we reestimate f ðxkÞ using (A7) with a desired value of the
selection coefficient s in (A2) using the set of generated allele fre-
quency trajectories. Then, we calculate xk ¼ ðf ðxkÞ=gðxkÞÞ, and we
calculate Lð4Ns; f ;DjL 2 wjÞ with (A8). We can calculate the val-
ues of Lð4Ns; f ;DjL 2 wjÞ for other selection coefficients s by recal-
culating f ðxkÞ , xk , and then Lð4Ns; f ;DjL 2 wjÞ using the same set
of generated allele frequency trajectories. This alleviates the
need to simulate a different set of allele frequency trajectories for
each value of the selection coefficient s that we want to evaluate
and follows the idea of a driving value (Fearnhead and Donnelly
2001). The proposal distribution g xð Þ is not necessarily optimal
for every s value, but it is possible to verify if the distribution is
reasonable based on the ESS values:

ESS ¼ 1PR
i¼1 xi

2
(A9)

where

xi ¼
xiPR
j¼1 xj

(A10)

The ESS indicates the sample size used in a Monte–Carlo evalu-
ation of f xð Þ that is equivalent to the importance sampling ap-
proach estimate. The ESS takes values between 1 and R, where a
higher value of the ESS indicates that more samples from g xð Þ are
contributing to the estimate of the expected value of
Lð4Ns; f ;DjL 2 wjÞ. This is a necessary, but not sufficient, condi-
tion to obtain an accurate estimate of the expected value of
Lð4Ns; f ;DjL 2 wjÞ when using an importance sampling approach.
Values of ESS close to 1 indicate that few replicates of g xð Þ are
making a contribution of the expected value of Lð4Ns; f ;DjL 2 wjÞ
and, therefore, the estimated expected value of Lð4Ns; f ;DjL 2 wjÞ
is likely to not be accurate.

In every demographic scenario explored, we simulated R ¼
100,000 allele frequency trajectories to evaluate a set of discrete
4Ns values.

Pairwise coalescent times T2 given different
values of selection
We investigated properties of the distribution of T2 given different
strengths of selection. To do this, we discretized and compressed
each of the allele frequency trajectories we obtained using
PReFerSim according to a set of allele frequency boundaries (0.0,
0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01,
0.0125, 0.015, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.15,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.96, 0.97, 0.98, 0.99, 0.995,
and 1.0) to reduce the computational time needed to simulate
haplotypes under the structured coalescent model with mssel.
When the allele frequency trajectory crosses a boundary, the al-
lele frequency will be equal to the average of the new upper and
lower boundaries when applying this compression. We then used

each compressed allele frequency trajectory to estimate the dis-
tribution of pairwise coalescent times T2 between a pair of haplo-
types containing the allele changing in frequency. For each
compressed allele frequency trajectory, we estimated the proba-
bility of coalescing at a time t as

P T2 ¼ tð Þ ¼
Yt�1

x¼1
1� 1

Nax

� �	 

1

Nat

(A11)

where Nax denotes the number of chromosomes that have the de-
rived allele at generation x. Additionally, due to the way we com-
pressed the allele frequency trajectories, where the allele
frequency at the time that the allele emerges is not equal
to 1=Nax , the probability of T2 in the generation j where the allele
appears is equal to 1�

Pj�1
t¼1 PðT2 ¼ tÞ. We averaged the probabili-

ties of T2 over all the simulated allele frequency trajectories given
a particular value of 4Ns to obtain the distribution of T2 given a
value of 4Ns.

Connecting the distribution of fitness effects
of variants at a particular frequency (DFEf)
with the distribution of fitness effects of new
mutations (DFE)
The distribution of fitness effects of variants at a particular fre-
quency DFEf in the population is related to the distribution of fit-
ness effects of new mutations DFE defined by a set of j

parameters w ¼ fw1;w2;w3; . . . ;wjg using the following equation
based on Bayes’ theorem:

Pw f jsj;D
� �

¼
Pwðsjjf ;DÞ Pwðf jDÞ

Pw sjjD
� � (A12)

where we can rearrange the above equation to obtain:

Pw sjjD
� �

¼ Pw sjð Þ ¼
Pwðsjjf ;DÞ Pwðf jDÞ

Pwðf jsj;DÞ
(A13)

If we look at the information of all nonoverlapping intervals
r ¼ f[4Ns0, 4Ns1), [4Ns1, 4Ns2), [4Ns2, 4Ns3). . . , [4Nsb�1, 4Nsb)g ¼
fs1; s2; s3; . . . ; sbg covering all 4Ns values from 0 to infinite,
Pwðsjjf ;DÞ defines the DFEf over a set of discrete bins. As seen in
the section A method for inference of the distribution of fitness effects
for variants found at a particular frequency (“DFEf ”), we can use the L
values to infer DFEf ða; bÞ. Then, we can estimate that Pw sjjf ;D

� �
¼

Pa;b sjjf ;D
� �

: In other words, Pw sjjf ;D
� �

is equal to the probability
of having a 4Ns value in the interval sj in variants at a frequency
f given the discretized gamma distribution DFEf a; bð Þ.

Pwðf jDÞ can be computed by measuring the proportion of var-
iants at a certain frequency f . That proportion must take into ac-
count all variants that have emerged during the demographic
history D, including variants that have become fixed or have been
lost. We can calculate Pwðf jDÞ as:

Pw f jD
� �

¼
vfPG

g¼1 mg
¼

vf

m
: (A14)

We define the number of variants at a frequency f in the pre-
sent as vf . The demographic history D encompasses G genera-
tions, where the number of mutations that appear every
generation g is equal to mg, Based on the Poisson Random Field,
the number of mutations mg appearing every generation follows
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a Poisson distribution with mean 2Ngul, where Ng is the number
of individuals in generation g, u is the mutation rate per base and
l is the number of bases where the mutation can take place.
Therefore, we can estimate the expected value of m to use in the
denominator in A14 as

E m½ � ¼
XG

g¼1
E mg½ � ¼

XG

g¼1
2Ngul (A15)

To calculate Pwðf jsj;DÞ, we can make the assumption that all
the mutations in the interval sj have very similar selection coeffi-
cients, which is more likely to be true when the interval is not
very big. This probability can be found via forward-in-time simu-
lations using PReFerSim, where we simulate variants that have a
selection coefficient contained in a certain interval sj in a particu-
lar demographic scenario D. That probability includes variants
that have become fixed or have been lost during the demographic
history D. We define the number of variants at a frequency f with
a selection coefficient 4Ns contained in a certain interval sj in the
present as vf ;sj

. The number of mutations that appear every gen-
eration g with a selection coefficient 4Ns contained in a certain
interval sj is equal to mg;sj . In this case, the number of mutations
mg;sj appearing every generation follows a Poisson distribution
with mean 2Ngulsj , where Ng is the number of individuals in gen-
eration g, u is the mutation rate per base and lsj is the number of
bases where a mutation leading to a derived allele with a selec-
tion coefficient 4Ns contained in a certain interval sj can take
place. Therefore, we can estimate the expected value of msj as:

E msj½ � ¼
XG

g¼1
E mg;sj½ � ¼

XG

g¼1
2Ngulsj (A16)

And we use the expected value of msj
in the denominator of the

following equation:

Pw f jsj;D
� �

¼
vf ;sjPG

g¼1 mg;sj

¼
vf ;sj

msj

: (A17)

To accelerate the calculation of Pwðf jsj;DÞ we can perform the
strategy of doing forward-in-time simulations under an arbitrary
DFE that encompasses all the intervals r ¼ fs1; s2; s3; . . . ; sbg an-
alyzed where we know the proportion of new mutations psj that
will be contained inside an interval sj when the number of bases
where the mutation can take place is equal to l. In this case, we
can estimate the expected value of msj

to use as the denominator
in Equation (A17) as:

E msj½ � ¼
XG

g¼1
E mg;sj½ � ¼

XG

g¼1
2Ngulpsj (A18)

We used that strategy in Supplementary Figs. 8, 23, 26, 39, 40,
43, and Fig. 9.

We calculate Pw sjð Þ for the first b� 1 intervals using Equation
(7). Then, for the last interval sb we use Pw sbð Þ ¼ 1�

Pb�1
i PwðsiÞ. IfPb�1

i PwðsiÞ > 1:0, we set the probabilities Pw

�
sjÞ ¼

Pw

�
sjÞ=

Pb�1
i PwðsiÞ for the first b� 1 intervals and PwðsjÞ ¼ 0 for

the last interval b.
We tested if Equation (7) could provide accurate estimates of

Pw sjð Þ using forward-in-time simulations with PReFerSim. We per-
formed simulations under the human DFE (shape ¼ 0.184; scale ¼
319.8626; N ¼ 1,000) (Boyko et al. 2008), the mice DFE (shape ¼
0.11; scale ¼ 8,636,364; N ¼ 1,000,000) (Halligan et al. 2013), and a
version of the human DFE with a scale value that is 20 times
smaller. These simulations were performed under the constant

population size demographic model and the population expan-
sion model. We calculated Pwðsjjf ;DÞ and Pwðf jDÞ from a set of 1%
frequency variants obtained in simulations under a particular de-
mographic model and DFE. We calculated Pwðf jDÞ from Equation
(A14) employing Equation (A15) to estimate E m½ �. Pw f jsj; D

� �
was

estimated in all cases by performing simulations under an arbi-
trary DFE that is different from the DFE under study. The results
from these analyses are shown in Fig. 7 and Supplementary Figs.
5–7, where we used the mice DFE to estimate Pw f jsj; D

� �
. The

number of simulations and the Poisson mean of the number of
mutations per epoch performed to calculate Pwðf jsj;DÞ and
Pw f jD
� �

is equivalent to having a ul value equal to 250 in the
results of Fig. 7 and Supplementary Fig. 6 when using Equations
(A14), (A15), (A17), and (A18). On the case of Supplementary Fig. 7
the ul value was equal to 125. ul is equal to 100 to calculate
Pw f jD
� �

while ul is equal to 500 to calculate Pwðf jsj;DÞ in
Supplementary Fig. 5.

ABC-based inference of the demographic
scenario
We inferred demographic models using variants at a f ¼ 1% fre-
quency in the population. To do this, we first stablish a demo-
graphic model we will investigate with a set of parameters we
wish to infer. We define a set of prior distributions for each pa-
rameter and use an ABC approach that follows this procedure:

1) Take a dataset of A loci with a derived allele at a frequency

f ¼ 1%, where the number of derived alleles in each of the

A loci is equal to n. Obtain a distribution ‘ ¼ 2� A� n
2

� �
of

L values. That distribution is calculated by taking all

possible pairs of haplotypes with the derived allele, going
upstream and downstream in a region of l kb with the focal
loci in the middle of the region for the A loci. Then, use that
distribution of L values to calculate Dwi ¼ PðL 2 wiÞ for each
of the 6 windows wi.

2) Draw a random value for each parameter from each prior
distribution of demographic parameters.

3) Simulate A random allele frequency trajectories Hk where
the allele ends at a frequency f ¼ 1% in the present using
the demography based on the parameter values sampled
from the prior distribution. We do this step using PReFerSim.

4) Use mssel to simulate n haplotypes containing the derived
allele in the middle of the simulated region for each simu-
lated allele frequency trajectory Hk obtained in the past
step. After this step, A datasets with n derived haplotypes
were simulated. The average per base mutation rate u and
the average per base recombination rate r in these simula-
tions of haplotypes should be defined by the user.

5) Use the A datasets to calculate ‘ ¼ 2� A� n
2

� �
values of L

by taking all possible pairs of haplotypes with the derived
allele, going upstream and downstream in the A alleles. Use
that distribution of L values to calculate D0wi ¼ PðL 2 wiÞ for
each of the 6 windows wi.

6) Calculate a ¼
P6

i¼1 jD0wi
� Dwi

j
7) Go back to 2) until 10,000 values have been sampled for

each demographic parameter from the prior distributions.
8) Retain the 100 simulations where the value of a is smaller.

The values obtained for the parameters in those 100 simu-
lations define the posterior distributions of those parame-
ters. The point estimates of each parameter were defined as
the median of the posterior distribution.

24 | GENETICS, 2022, Vol. 220, No. 4



The values of A, n, and l were set to 150, 40 and 500,000 in these
tests, respectively. The 6 windows fw1; w2; w3; w4; w5; w6g
were set equal to f(0, 50,000], (50,000, 100,000], (100,000, 150,000],
(150,000, 200,000], (200,000, 250,000], (250,000,1)g. We tested our
ABC approach in the constant population size scenario and the
population expansion scenario in 100 simulated datasets for
each demographic scenario using values of u ¼ 1:2 � 10�8 and
r ¼ 1 � 10�8. The results from these tests can be seen in
Supplementary Figs. 9 and 10. We did an additional analysis un-
der the population expansion scenario where each of the A ¼ 150
variants had a different recombination rate sampled with re-
placement from the distribution of the 142 average recombina-
tion rates per base using the 250 kb upstream and downstream
region surrounding each of the 142 1% synonymous variants of
the UK10K dataset. The results from this analysis are shown in
Supplementary Fig. 11. We tested our ABC approach in the case
of the constant population size scenario setting the effective pop-
ulation size N a single parameter that we wish to infer. The uni-
form prior distribution for this parameter is a
N � uniformð1; 000; 20; 000Þ. On the other hand, 3 parameters
to infer in the population expansion scenario are the effective
population size in the ancient epoch, the effective population size
in the present epoch and the time when the population size
changes. The uniform prior distribution for those parameters are
uniformð1; 000; 10; 000Þ, uniformð1; 000; 100; 000Þ, and
uniformð0; 500Þ, respectively.

Assessing the impact of ancestral state
misidentification on our estimates of
selection
We assessed the impact of ancestral state misidentification on
our method. We use the information from L in a set of haplotypes
carrying a derived allele at a frequency f . If the allele at a fre-
quency f is actually an ancestral allele, this could lead to poten-
tial biases in our inferences of selection. The probability of
miscalling an ancestral allele at a frequency f as a derived allele
is dependent on the number of ancestral alleles and derived
alleles at a frequency f , and the probability of ancestral state
misidentification pmisid. Following (Ragsdale et al. 2016), we define
that the observed number of sites containing a set of alleles
called to be derived, either correctly or incorrectly, at a frequency
f Fðf Þ will be equal to Fðf Þ ¼ FTrueðf Þ ð1� pmisidÞþ
FTrue 1 – f

� �
pmisid. Here, FTrueðf Þ and FTrueð1� f Þ are the number

of sites containing a derived allele and an ancestral allele at a fre-
quency f , respectively. The count of those number of sites will be
dependent on the action of natural selection and the demo-
graphic scenario under study (Supplementary Table 5). The pro-
portion of ancestral alleles at a frequency f incorrectly called as
derived alleles correctly will be equal to:

Pincorrectðf Þ ¼ ðFTrue 1 – f
� �

pmisidÞ=ðFTrueðf Þ ð1� pmisidÞ
þ FTrue 1 – f

� �
pmisidÞ: (A19)

A recent study reported values of pmisid between 0.001 and
0.015 for different categories of sites in humans (Fortier et al.
2019). In our analysis, we use a value of pmisid equal to 0.015.
Based on that value of pmisid, we found that Pincorrectðf Þ was equal
to 0 for deleterious alleles, <0.00016 for neutral alleles and
<0.012 for advantageous alleles in the demographic scenarios an-
alyzed (Supplementary Table 5). We performed simulations
where an ancestral allele could be incorrectly called as a derived
allele at a frequency f based on Pincorrectðf Þ and found that the

ancestral state misspecification did not cause biases on the esti-
mation of 4Ns for neutral and deleterious alleles. We also found
that the strength of selection for advantageous alleles was
slightly underestimated (Supplementary Fig. 12).

Assessing the robustness of our method to
biases in SNP and genotype calling in low
frequency variants, statistical haplotype phasing
errors, recombination rate misspecification,
mutation rate misspecification, and Monte–Carlo
strategy used to estimate the pairwise identity by
state lengths
Biases in SNP and genotype calling are another source of concern
for the application of our method. Those biases cause a decrease
or an increase on the number of called rare variants depending
on the pipeline used to do the SNP and genotype calling. The im-
pact of these biases is more dramatic for singleton variants com-
pared with other higher frequency variants (Han et al. 2014). One
way to mitigate these effects if to mask very low frequency var-
iants that are prone to sequencing errors. We tested this idea in a
set of 4Ns values in each inspected demographic scenario by ex-
amining 100 simulation replicates (see Forward-in-time simulations
to assess the impact of selection on the allele frequency trajectories, allele
ages, pairwise coalescent times T2, and L values) where we mask var-
iants that appear only once in each set of haplotypes with the
derived variant before estimating L. Those variants were also
masked when we performed the Monte–Carlo estimations of
P L 2 wjjHk
� �

before we estimated Lð4Ns; f ;DjL 2 wjÞ in Equation
(1). The results of these analysis are shown in Supplementary
Fig. 13.

The haplotype phase of the majority of the large-scale whole-
genome datasets available is resolved utilizing statistical phasing
software (Francioli et al. 2014; Walter et al. 2015; Wall et al. 2019),
such as ShapeIT (Delaneau et al. 2019) and Eagle (Loh et al. 2016).
We analyzed the impact of haplotype phasing errors due to the
use of statistical phasing software in estimates of selection using
our method. We analyzed our inferences of 4Ns in simulations
performed with 5 different values of 4Ns in the constant popula-
tion size model and the population expansion model. We used
our simulation pipeline to obtain 100 simulations replicates with
1 loci A ¼ 1 simulated in each simulation replicate. We obtained
n ¼ 40 haplotypes with the derived allele and 3,960 haplotypes
with the ancestral allele for each simulation replicate. Those
haplotypes were randomly sampled without replacement to ob-
tain 2,000 individuals where the phase of the haplotypes was un-
known. We statistically phased the haplotypes using ShapeIt2,
which was also used to phase the UK10K dataset, using the fol-
lowing command:

shapeit.v2.904.3.10.0-693.11.6.el7.x86_64/bin/

shapeit –input-vcf <PhasedDataPrefix> -M

<GeneticMap> -O <PhasedDataOutput> –output-log

<LogOutput>

where PhasedDataPrefix is a vcf file with the unphased data of
2,000 individuals; GeneticMap contains the recombination rate of
the region; and PhasedDataOutput is the output statistically
phased vcf file of the region. We estimated the L values in the sta-
tistically phased and compared them with the L values obtained
if the haplotype phase was perfectly known (Supplementary Fig.
14). We used the L values of the statistically phased haplotypes to
estimate 4Ns. We compared those estimates of selection with the
estimates we obtain when we use the L values in the same set of

D. Ortega-Del Vecchyo et al. | 25



haplotypes if we knew the haplotype phase perfectly
(Supplementary Fig. 15).

We also explored the impact of recombination rate misspecifi-
cation and mutation rate misspecification in our estimates of se-
lection. To do this, we performed simulations where the values of
q or h were higher or smaller than the values used to calculate
Lð4Ns; f ;DjL 2 wmj Þ and then perform the inferences using
Equation (2) (Supplementary Figs. 16 and 17).

The accuracy of the estimates of P L 2 wjj D;Hk
� �

based on the
Monte–Carlo strategy will impact the likelihood estimates of 4Ns
based on Equation (2). We compared our estimates based on the

Monte–Carlo strategy previously described where we simulate

100 sets of n haplotypes to compute
n
2

� �
values of L for each set

to obtain 100� n
2

� �
values of L for each Hk. We compared this

strategy with 3 alternative methodologies to compute

P L 2 wjj D;Hk
� �

: (1) simulate twice the number of sets of n haplo-

types, 200, for each Hk to obtain 200� n
2

� �
values of L for each

Hk; (2) simulate sets of n haplotypes with the derived allele loci lo-

cated at the center end of a simulated 500 kb region and then cal-

culate ‘ ¼ 2� n
2

� �
values of L for each set of n simulated

haplotypes by estimating L in all the possible comparisons of

haplotype pairs containing the derived allele at both sides of the

focal site to obtain 2� 100� n
2

� �
values of L for each Hk; and (3)

simulate sets of n haplotypes with the derived allele loci located

at the center end of the simulated 500 kb region and take the in-

formation of the upstream and downstream distances to con-

struct a single statistic L0 that measures pairwise identity by state

lengths to obtain ‘ ¼ 100� n
2

� �
values of L0 for each Hk

(Supplementary Fig. 20).

We also explored the impact of recombination rate variation in
our estimates of selection. First we generated 100 simulation rep-
licates under a certain 4Ns value that contained A1 ¼ 150 var-
iants with a recombination rate r ¼ 0 and A2 ¼ 150 variants with
a recombination rate r ¼ 1� 10�8: The L values obtained with a
recombination rate r ¼ 0 are written as LA1

j, while the L values
obtained with a recombination rate r ¼ 1� 10�8 are written as
LA2

j. Then, following Equation (1), we estimated the likelihood of
different 4Ns values using

L 4Ns; f ;DjL
� �

¼
Y‘A1

j¼1

Lð4Ns; f ;D; q ¼ 0jLA1
j 2 wmj Þ

Y‘A2

j¼1

Lð4Ns; f ;D; q

¼ 1; 000jLA2
j 2 wmj

Þ;

where q ¼ 4Nr̂l are the average recombination rates. N is the pop-
ulation size in the present, r̂ is the average per base recombina-
tion rate in a region of length l ¼ 500 kb with the focal allele in
the center of the region. The estimate of selection is found by
maximizing this composite likelihood function by using a grid
search over a range of candidate 4Ns values going from �200 to
200. Lð4Ns; f ;D; q ¼ 0jLA1

j 2 wmj
Þ and Lð4Ns; f ;D; q ¼ 1; 000jLA2

j 2
wmj Þ are estimated using Equation (1) with a recombination rate
equal to r ¼ 0 and r ¼ 1� 10�8, respectively.

The calculation of Lð4Ns; f ;D; qjLA1
j 2 wmj Þ for a particular

population-scaled recombination rate value q requires approxi-
mately 100 h of computation time. Therefore, if we have 300 var-
iants with a different recombination rate, then the computation
time scales to 30,000 h. Since this computation time is too large,
we developed a strategy to reduce the computation time. Our
strategy follows these steps:

1) We took the 21 different percentile values (0th, 5th, . . ., 95th,
100th ) from the distribution of 300 average recombination
rates q ¼ 4Nr̂l, where N is the population size in the present,
r̂ is the average per base recombination rate in a region of
length l taking the upstream and downstream 250 kb
regions next to the 300 1% frequency variants.

2) We generated 21 likelihood functions Lð4Ns; f ;D; qjjL 2 wiÞ
for each selection value explored, each with a different re-
combination rate qj from the 21 different percentile values
(0th, 5th, . . ., 95th, 100th ) of 300 average recombination rates
qi.

3) We estimated the likelihood function Lð4Ns; f ;D; qkjL 2 wiÞ
across the 300 regions. To do this we take each of the 6 win-
dows wi ¼ fw1;w2;w3;w4;w5;w6g and:

4) We take the 21 values of Lð4Ns; f ;D; qjjL 2 wiÞ from the 21
different percentile values (0th, 5th, . . ., 95th, 100th ) for each
value of wi.

5) We fit a polynomial regression model with 4 regression
coefficients, with the independent variable being equal to qj

and the dependent variable being equal to
L 4Ns; f ;D; qjjL 2 wi

� �
.

6) We predicted the value of L 4Ns; f ;D; qkjL 2 wi
� �

for every
one of the 300 average population-scaled recombination
rates qk in the 300 regions based on the values of the poly-
nomial regression model.

We chose to use 4 regression coefficients based on analysis done
with a different number of regression coefficients, and we chose to
use the smallest amount of regression coefficients where there was
a significant improvement compared with using 1 less regression
coefficient based on an error metric e (Supplementary Table 11). As
an example of the good fit of the polynomial regression model
across the 6 windows wi, we plotted the predicted values of
L 4Ns; f ;D; qkjL 2 wi
� �

based on the polynomial regression model
with 4 regression coefficients when 4Ns ¼ 0 (Supplementary Fig.
45). We estimated the values of 4Ns in 100 simulation replicates
with 300 variants with variable recombination rates. We sampled
300 recombination rates r with replacement from the distribution of
275 average recombination rates per base in the 250-kb upstream
and downstream region of a focal loci in the UK10K dataset. Those
sampled r values were fixed in the 100 simulation replicates. Then,
we estimated the likelihood equation using the collection of lengths

Lkj
¼ fLkj1

; Lkj2
; Lkj3

; . . . ; Lkj
2�ð 40

2 Þ
g of the 2� 40

2

� �
values of L in each

of the 300 regions k:

L 4Ns;D; f jL
� �

¼
Y300

k¼1

Y‘j¼2�
40
2

� �

i¼1 Lð4Ns; f ;D; qkjLkji
2 wmkji

Þ

where wmkji
is an integer between 1 and M ¼ 6 indicating the win-

dow in which the length Lkji
falls. And used that likelihood equation

to obtain an estimate of 4Ns using a grid approach as in the previ-
ous analysis. The results are shown in Supplementary Fig. 22.

We used the likelihood functions L 4Ns; f ;D; qkjL 2 wi
� �

in the
300 regions and Equation (4) to estimate L a; b;D; f jL

� �
using the

collection of lengths Lkj
¼ fLkj1

; Lkj2
; Lkj3

; . . . ; Lkj
2�ð 40

2 Þ
g of the 300

regions k to calculate:

L a; b;D; f jL
� �

¼
Q300

k¼1

Q‘j¼2�
40
2

� �

i¼1 Lða; b; f ;D; qkjLkji
2 wmkji

Þ

We used this likelihood function to obtain an estimate of the
parameters that define the DFEf of the 1% frequency variants in
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the population expansion scenario using a grid approach. The
results from this analysis are shown in Supplementary Fig. 23.

Assessing the impact of linked selection on
our estimates of selection via forward-in-
time simulations
We evaluated the impact of linked selection in our estimates of
selection. To do this we performed forward-in-time simulations
using SLiM (Haller and Messer 2019). These simulations mimic
the arrangement of functional elements and recombination rates
across the human genome. These simulations cover the human
genome in 101 nonoverlapping regions of 20 Mb. We used a scaled
population expansion demographic model in this set of analysis
based on the population expansion model (Fig. 4). The recombi-
nation rate in the simulated regions follows an inferred recombi-
nation map in humans (Kong et al. 2010). The arrangement of
exonic elements is taken from GENCODE v14 (Harrow et al. 2012)
and the position of the conserved noncoding elements is defined
as in (Huber et al. 2017). We defined that the DFE of variants in
conserved noncoding elements follows a gamma distribution
(shape ¼ 0.0415; scale ¼ 640; N ¼ 25,636) (Torgerson et al. 2009).
We assumed that the proportion of synonymous mutations in ex-
onic regions is equal to 1/3.31 (Huber et al. 2017), and that synon-
ymous mutations are neutral as assumed in recent papers that
infer the DFE. We evaluated the inference of selection when the
nonsynonymous mutations had a point population-scaled selec-
tion coefficient equal to 0, �50 or �100, and when the DFE of the
nonsynonymous mutations followed a gamma distribution of fit-
ness effects inferred in humans (shape ¼ 0.184; scale ¼ 319.8626;
N ¼ 1,000) (Boyko et al. 2008). We scaled the population expansion
demographic model (Fig. 4) to avoid a very slow runtime of the
SLiM simulations. To do this, we reduced the population size and
population expansion time by a factor of 5, and we increased the
mutation rate (to get a u ¼ 1:2 X 10�8 � 5), recombination rate and
selection coefficients by the same factor. The number of chromo-
somes simulated was equal to 4,000.

We used the following procedure to test our inferences of se-
lection for each of the 3 4Ns values evaluated and the Boyko DFE:

0) We performed many simulations of 20 Mb regions across all

the human genome in 101 nonoverlapping regions until we

obtained at least 600 and 300 regions upstream or downstream

of a nonsynomyous or synonymous site, respectively, of a de-

rived allele at a f ¼ 1% (n ¼ 40) frequency where the average

per base recombination rate in the region was smaller than

1:2 X 10�10 � 5. Therefore, the recombination rate in the region

was more than 100 times smaller than the mutation rate in

the region. Since the recombination rate was more than 2

orders of magnitude smaller than the mutation rate, we as-

sumed a recombination rate r ¼ 0 for simplicity in all the

analysis from step 1) to 4).

1) We randomly sampled 300 regions with a synonymous site

at a frequency f ¼ 1%, and we used those regions to estimate

the demographic scenario D using our ABC algorithm. We used

the collection of L ¼ 300� 40
2

� �
of values of L to estimate

Dwi ¼ PðL 2 wiÞ and then we used our ABC algorithm starting

from step 2. When we ran the ABC algorithm, we only calcu-

lated L going downstream to obtain the same number of L ¼
300� 40

2

� �
L values as in the data for each draw of parame-

ters from the prior distribution. We used 50,000 draws of

parameters before calculating the point estimate for all the

parameters as defined in the section ABC-based inference of the

demographic scenario. Then, we estimated L 4Ns; f ;DjL 2 wmj

� �
for inferences of population-scaled selection coefficients and

Lða;b;D; f jL 2 wmj
Þ for inferences of the DFEf based on the in-

ferred demographic scenario D. We used a per base mutation

rate of u ¼ 1:2 X 10�8 � 5 and a per base recombination rate

equal to 0 to estimate L 4Ns; f ;DjL 2 wmj

� �
and

L a;b;D; f jL 2 wmj

� �
:

2) We created 100 sets of simulation replicates. We randomly

sampled 600 nonsynonymous sites with replacement to create

each simulation set.

3) We estimated the value of selection in each simulation repli-

cate using equation (2) in the case of the simulations per-

formed using a point 4Ns value and equation (4) in the case of

the simulations where we wanted to estimate the parameters

of a DFE.

4) We go back to 1) until we have estimated the value of selec-

tion in 10 different inferred demographic scenarios. The results

for each of the 10 demographic scenarios are shown as simula-

tion replicates in Supplementary Figs. 24–26.

ABC algorithm used to infer the demographic
scenario consistent with haplotypic patterns
at 1% frequency synonymous variants in the
UK10K dataset
Our ABC algorithm has the following steps:

Data preparation:

1) We will infer a demographic history using synonymous var-
iants at a frequency f ¼ 1%6 0.05%. To do this, we will infer
the demographic history that better explains the distribu-
tion L of variants at a frequency f ¼ 1%6 0.05%.

2) Out of the 3,781 individuals present in the phased UK10K
haplotype reference panel, we selected the 3,621 individuals
that had European ancestry, along with a set of individuals
that were not related to other individuals in the panel, as
previously defined in the original UK10K study (Walter et al.
2015).

3) We estimated the frequency of every variant present in the
phased haplotype panel.

4) To identify the synonymous variants, we used the func-
tional annotations for each variant from Ensembl 75
Variant Effect Predictor, as reported in the vcf file with allele
frequencies available from the UK10K website (https://
www.uk10k.org/data.html). Since some variants annotated
as a synonymous mutation can possess more than one
functional annotation, we only considered a variant to be
synonymous if it did not possess another annotation that
had a higher impact (HIGH or MODERATE) as defined in
https://www.ensembl.org/info/genome/variation/predic
tion/predicted_data.html . . Variants with a high or moder-
ate impact are those annotated to be transcription ablation,
splice acceptor variants, splice donor variants, stop gained,
frameshift, stop lost, start lost, transcript amplification,
inframe insertion, inframe deletion, missense, or protein al-
tering variant.

5) We used the annotations from the 1000 Genomes Project
phase 3 (Auton et al. 2015) to define the ancestral allele of
each variant. This also allows us to define the derived allele
of every site.
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6) Depending on the frequency f of the variants being investi-
gated, retain all the Y synonymous variants V ¼
fV1; V2; . . . ;VYg that: 1) Have a derived allele frequency in
the interval 1% 6 0.05% and 2) are more than 5 Mb away
from the centromeres or telomeres. In the end we retained
142 synonymous variants.

7) For every variant Vi, take the number nVi
of haplotypes hVi

containing the derived allele. Then remove the sites where
there is a singleton variant in the sample hVi . After remov-
ing those sites, calculate the haplotypic length L for every
possible pair of haplotypes in hVi going upstream and down-
stream. The UK10K haplotype panel does not contain sin-
gleton variants present in the sample of 7,242
chromosomes. Therefore, the calculation of L in this step is
done ignoring singleton sites, either because they were not
present in the original UK10K panel or because we remove

them from the sample hVi . After performing the L calcula-

tions, we will end up with ‘ ¼
PY

i¼1 2� nVi

2

� �
values of L.

8) We define 6 nonoverlapping windows W ¼ fw1; w2;

w3; w4; w5; w6g¼ f (0, 50000], (50000, 100000], (100000,
150000] , (150000, 200000], (200000, 250000], (250000, 1)g.
Then, we calculate PðL 2 wiÞ using the distribution of L val-
ues obtained in the previous step. The distribution Dwi ¼
PðL 2 wiÞ across the 6 i windows represents the summary
statistic we will use to infer demography in our ABC algo-
rithm.

ABC algorithm:
We constructed a demographic model for the synonymous var-

iants at a 1% 6 0.05% frequency in the population. A graphical
representation of the model is presented in Supplementary Fig.
28, along with the prior distributions for the demographic param-
eters of the model. The parameters to infer are the population
size in the present N1, the population size in the preceding epoch
N2 and the time T1 when the population size changes from N2 to
N1. The uniform prior distributions used for those parameters are
T1 � uniformð0; 1; 449Þ, N1 � uniformð1; 000; 100; 000Þ and
N2 � uniformð500; 20; 000Þ.

Our ABC approach follows this procedure:

1) We take the per base average recombination rates of the
upstream regions of the 1% 6 0.05% 142 synonymous
alleles in the UK10K dataset fru

1; r
u
2; . . . ; ru

142g and the per
base average recombination rates of the downstream
regions frd

1; r
d
2; . . . ; rd

142g. We also defined the average per
base mutation rate u ¼ 1:5 X 10�8:

2) Define the frequency f¼ 1% 6 0.05% of the alleles that will
be investigated.

3) Draw a random value from each prior distribution of demo-
graphic parameters.

4) Using PReFerSim, simulate 142 random allele frequency
trajectories Hk where the allele ends at a frequency f¼1% 6

0.05% in the present based on the demographic history with
the parameter values sampled from the prior distribution.
In these simulations we reduced all population sizes and
times of population size changes by a factor of five to re-
duce the computing time. We ended up with a set of allele
frequency trajectories H ¼ fH1;H2; . . . ;H142g.

5) Simulate two 250 kb regions with n ¼ 72 haplotypes con-
taining the derived allele for each one of the 142 simulated
allele frequency trajectories H obtained in the past step us-
ing mssel. n is close to the product of 7242�f , where 7242 is
the total number of haplotypes in the UK10K dataset. The

average per base recombination rates ru
i and rd

i were used to
simulate the two 250 kb regions from each Hi, where i goes
from 1 to 142. The average per base mutation rate u ¼
1:5 X 10�8 was also used. After sampling the u, ru

i and rd
i

values we scaled up their value by a factor of five. After this
step, 2�142 datasets with 72 derived haplotypes were simu-
lated. We removed sites where there is a singleton variant
in each sample of 72 derived haplotypes, as done in the
UK10K data.

6) Calculate ‘ ¼ 2 � 142� 72
2

� �
values of L by taking all pos-

sible pairs of haplotypes with the derived allele. Use that

distribution of L values to calculate D
0
wi
¼ PðL 2 wiÞ for each

of the 6 windows wi.

7) Calculate a ¼
P6

i¼1 D
0
wi � Dw1

8) Go back to 3) until we have sampled 50,000 values for each
demographic parameter from the prior distributions.

9) Retain the 100 simulations where the value of a is smaller.

The values obtained for the parameters in those 100 simula-
tions define the posterior distributions of those parameters. The
point estimates of each parameter were defined as the median of
their posterior distribution.

The values of a in the 100 retained simulations went from
0.014 to 0.042, indicating that we had a good match between the
data and the 100 retained simulations.

Estimating L taking into account differences
in local recombination rates in the UK10K
dataset and the population expansion
scenario
Apart from being dependent on the strength of selection acting
on the variants, the distribution of L surrounding each variant on
the genome in the UK10K data is dependent on the average popu-
lation scaled recombination rate q ¼ 4Nr̂l, where r̂ is the average
per base recombination rate in a region of length l. We took into
account the local recombination rate when inferring the distribu-
tion of fitness effects using the 275 non-CpG nonsynonymous 1%
frequency variants. To do this, we used our importance sampling
method to obtain the distribution of L given the selection coeffi-
cient, the inferred demographic scenario, and 21 different recom-
bination rates qNS. To select the 21 recombination rates, we used
the results from a previously inferred recombination map (Kong
et al. 2010). We took the 21 different percentile values (0th, 5th, . . .,
95th, 100th) from the distribution of 550 average population-
scaled recombination rates q in the upstream and downstream
250 kb regions next to the 275 nonsynonymous 1% frequency var-
iants. In the end, we generated 21 likelihood functions
Lð4Ns; f ;D; qNS

j jL 2 wiÞ for each selection value explored, each
with a different recombination rate qNS

j . Those 21 likelihood func-
tions Lð4Ns; f ;D; qNS

j jL 2 wiÞ were used to infer selection using the
upstream and downstream regions from the nonCpG nonsynony-
mous 1% frequency variants. They were also used to infer the
point estimate of 4Ns in the nonCpG synonymous 1% frequency
variants.

First, we evaluated the accuracy of our method to infer selec-
tion under the inferred scaled UK10K demographic scenario using
simulations. We mimicked the amount of information present in
the UK10K data in each simulation replicate. We followed the
protocol detailed in the section Forward-in-time simulations to as-
sess the impact of selection on the allele frequency trajectories, allele
ages, pairwise coalescent times T2, and L values to generate 100
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simulation replicates for 5 different 4Ns values (50, 25, 0, �25,
�50) under the 21 different values of recombination qNS

j . In all
simulations performed in this section, we used 10,000 trajectories
Hk where the present-day frequency was equal to f ¼ 1 60.05%,
and where n was equal to f � 7; 242. The point selection coeffi-
cients 4Ns change the distribution of the number of derived
alleles that have a frequency in the range f ¼ 1 60.05%. As an ex-
ample of this, 10,161 alleles end with a present-day allele fre-
quency of n ¼ 76 derived alleles while 11,617 alleles end with a
present-day allele frequency of n ¼ 69 derived alleles using 1,700
PReFerSim simulations done using a Poisson mean of 100 new
mutations with a 4Ns value equal to �50 in the first epoch. In our
simulations of each point selection coefficient 4Ns, we first
recorded the number of trajectories Mi that ended up with a ni

number of derived alleles equal to 69, 70, 71, 72, 73, 74, 75; or 76
in 1,700 PReFerSim simulations done with a Poisson mean num-
ber of 100 new mutations in the first epoch of the demographic
model. Then, in each simulation replicate we sampled 275 num-
bers taken from the multinomial distribution with probabilities
pi ¼ Mi=

P76
i¼69 Mi to obtain 275 numbers reflecting the number of

trajectories that have a present-day number of derived alleles ni

value equal to 69, 70, 71, 72, 73, 74, 75 or 76 for each 4Ns value.
Each simulation replicate contains 275 sets of haplotypes that
end with a present-day number of derived alleles ni, where each
ni value is a sample from the multinomial distribution. In each
simulation replicate of 275 independent variants we can define
the number of variants Ani where we end up with ni derived

alleles in the present and based on that definition we can state

that there will be ‘ ¼ 2�
P76

ni¼69 ½Ani �
ni
2

� �
� � 2� 275� 72

2

� �

L values in each simulation replicate.

We estimated the value of 4Ns in each of those 21 sets of 100
simulation replicates, done with 21 different recombination rates
qNS

j and using 5 different 4Ns values using the likelihood function
Lð4Ns; f ;D; qNS

j jL 2 wiÞ that matches the recombination rate qNS
j

used to do the simulations in each set. Each simulation replicate

had ‘ ¼ 2�
P76

ni¼69 ½Ani
� ni

2

� �
� � 2� 275� 72

2

� �
L values

(Supplementary Fig. 32). We also performed simulations where
the present-day frequency was equal to n ¼ 72 (f �1%; n ¼ 72
chromosomes with the derived allele in a sample of 7,242 chro-
mosomes) for 275 independent variants. We found few differen-
ces in terms of the root mean squared errors compared with our
simulations where the present-day allele frequency was equal to
f ¼ 1 60.05% (Supplementary Fig. 32F).

The vast majority of the 550 average recombination rates per
base taken from the upstream and downstream 250 kb regions
next to the 275 nonsynonymous 1% frequency variants are not
equal to the 21 different recombination rates qNS

j . We estimated
the likelihood function Lð4Ns; f ;D; qNS

j jL 2 wiÞ across the 550
regions using the following approach:

For each of the 6 windows wi ¼ fw1;w2;w3;w4;w5;w6g:

1) We took the 21 values of Lð4Ns; f ;D; qNS
j jL 2 wiÞ for each

value of wi.
2) We fit a polynomial regression model with 5 regression

coefficients, with the independent variable being equal to
qNS

j and the dependent variable being equal to
L 4Ns; f ;D; qNS

j jL 2 wi

� �
.

3) We predicted the value of L 4Ns; f ;D; qjjL 2 wi

� �
for every

one of the 550 average population-scaled recombination
rates qj in the 550 j regions based on the values of the poly-
nomial regression model.

This approach allows us to estimate the values of
L 4Ns; f ;D; qjjL 2 wi

� �
for the 6 windows wi across the 550 average

population-scaled recombination rates qj. We chose to use 5 re-
gression coefficients based on analysis done with a different
number of regression coefficients, and we chose to use the small-
est amount of regression coefficients where there was a signifi-
cant improvement compared with using one less regression
coefficient based on an error metric e (Supplementary Table 12).
As an example of the good fit of the polynomial regression model

across the 6 windows wi, we plotted the predicted values of

L 4Ns; f ;D; qjjL 2 wi

� �
based on the polynomial regression model

with 5 regression coefficients when 4Ns ¼ 0 (Supplementary Fig.

46). After inspection of the polynomial regression models, we

found that the values of L 4Ns; f ;D; qjjL 2 wi

� �
were predicted to

be negative for some windows wi in the recombination rates qNS

values bigger than the 95% percentile value. This particular effect
was not seen in the population expansion scenario. Since

L 4Ns; f ;D; qjjL 2 wi

� �
must be � 1 and 	 0, we set

L 4Ns; f ;D; qjjL 2 wi

� �
¼ 1 for all windows wi in the recombination

rates qNS values bigger than the 95% percentile value. This is
equivalent to stating that in our inferences we will ignore the L
values in regions where the recombination rates q are bigger
than the 95% percentile value from the distribution of 550 aver-
age population-scaled recombination rates q.

We define the per base average recombination rates of the up-
stream regions of the 1% 6 0.05% 275 synonymous alleles in the
UK10K dataset as fru

1; r
u
2; . . . ; ru

275g and the per base average recom-
bination rates of the downstream regions frd

1; r
d
2; . . . ; rd

275g.
We performed 100 simulation replicates with 5 different 4Ns

values using 275 variants at a f ¼ 1%60:05% frequency where the
average population-scaled recombination rates q mimics the val-
ues seen in the 550 regions surrounding those variants. The aver-
age per base recombination rates ru

i and rd
i were used to simulate

the two 250 kb regions from each of the 275 variants i: We evalu-
ated our approach to estimate selection based on the predicted
values of L 4Ns; f ;D; qjjL 2 wi

� �
for every one of the 550 average

population-scaled recombination rates q and an analog of
Equation (2):

L 4Ns;D; f jL
� �

¼
Y550

j¼1

Y‘j¼
72
2

� �

i¼1 Lð4Ns; f ;D; qjjLji 2 wmji
Þ

Our results can be seen on Supplementary Fig. 31. Lji is the
pairwise haplotypic identity by state of the haplotype pair i in the
recombination rate region j.

We also performed 100 simulation replicates with 5 different
4Ns values using 275 variants at a f ¼ 1%6 0:05% frequency with
each of the 21 population-scaled recombination rates qNS. We es-
timated the values of selection on those 100 simulation replicates
using the likelihood functions L 4Ns; f ;D; qNS

j jL 2 wi

� �
and

Equation (2). The results of this analysis are shown in
Supplementary Fig. 32.

We performed 100 simulation replicates under the Boyko dis-
tribution of fitness effects and 2 different demographic models
(“UK10K model” and “scaled UK10K model”) using 275 variants at
a 1%6 0:05% frequency where the average population-scaled re-
combination rates q mimics the values seen in the 550 regions
surrounding those variants. We used the likelihood functions
L 4Ns; f ;D; qjjL 2 wi

� �
in the 550 regions j and an analog of

Equation (4) to estimate L a; b;D; f jL
� �

using the collection of
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lengths Lj ¼ fLj1 ; Lj2 ; Lj3 ; . . . ; Lj
72
2

� �g of the 550 regions j:

L a; b;D; f jL
� �

¼
Y550

j¼1

Y‘j¼
72
2

� �

i¼1 L a; b; f ;D; qjjLji 2 wmji

� �
:

Finally, we used the likelihood functions Lða; b;D; f ; qjjL 2 wmji
Þ

from the 550 regions to obtain an estimate of the parameters that
define the DFEf of the 1%60:05% frequency variants in the UK10K
dataset. We also obtained an estimate of those parameters in 100
bootstrap replicates.

Bootstrap confidence intervals
We used a bootstrap approach to estimate the 95% confidence
intervals of our estimate of the selection coefficient s. We
resampled each of the 275 variants with replacement, with their
respective L values, and we estimated the value of selection using
this distribution of L values. This process was repeated using a
sample of 100 bootstrap replicates.

We used the same bootstrap approach to estimate the shape
and scale parameters of a compound distribution of fitness
effects. The variation across 100 bootstrap replicates is shown in
Supplementary Fig. 42.

Estimation of Pwðf jDÞ in the UK10K dataset
To estimate Pwðf jDÞ, we used Equation (A14) where

Numerator: the number of nonsynoymous f ¼ 1%60:05 fre-
quency non-CpG variants that are more than 5 Mb away from
centromeres or telomeres. This is 275.

Denominator: we calculated the total number of mutations

in the UK10K model (see Supplementary Fig. 19), including the

alleles that became fixed or extinct from the population.

Following Equation (A15), the total number of mutations that

appear each generation in our demographic scenario is equal

to: 2Ngul. Where Ng is the effective population size in that gen-

eration. l ¼ 35; 086; 455 is the total number of non-CpG nonsy-

nonymous possible variants that are more than 5 Mb away

from centromeres or telomeres (35,086,455). We used the

Ensembl 75 Variant Effect Predictor 93.3 to aid in our calcula-

tion of l. A variant was annotated as nonsynonymous if it pos-

sessed a nonsynonymous annotation in any of the transcripts

inspected and it did not possess a variant that gave a “high” im-

pact in any transcript as explained in https://www.ensembl.

org/info/genome/variation/prediction/predicted_data.html.

Variants with a high impact are those annotated to be tran-

scription ablation, splice acceptor variants, splice donor var-

iants, stop gained, frameshift, stop lost, start lost, or transcript

amplification. u is the mutation rate, which we set to 1.5 � 10�8

(S�egurel et al. 2014). We sum the total number of mutations

across all the generations in the UK10K model to obtain the de-

nominator of Equation (A14).
We show our estimates of Pw sjð Þ over 3 different sj intervals in

Fig. 9 using the estimate of Pwðf jDÞ described above. We compare

our estimate of Pw sjð Þ with previous estimates (Boyko et al. 2008;

Kim et al. 2017).
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