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Successful malaria control interventions, mostly based on the training of health workers,

distribution of insecticide-treated nets, and spraying, decrease malaria incidence;

however, when these interventions are interrupted, a resurgence may occur. In

the Peruvian Amazon, after discontinuing the control activities implemented by the

PAMAFRO project (2006–2010)-a Global Fund-sponsored project for the strengthening

of malaria control and surveillance in multiple countries in Latin America– malaria cases

re-emerged dramatically. In parallel, meteorological factors determine the conditions

suitable for the development, reproduction, and survival of mosquito vectors and

parasites. This study hypothesized that interruption of malaria interventions may have

modified the meteorological-malaria relationships over time (i.e., temporal changes in

the dose-response between meteorological variables and malaria incidence). In this

panel data analysis, we assessed the extent that relationships between meteorological

variables and malaria changed temporally using data of monthly malaria incidence due

to Plasmodium vivax or P. falciparum in Loreto, Peru (2000–2017). Generalized additive

models were used to explore how the effects of meteorological variables changed in

magnitude before, during, and after the PAMAFRO intervention. We found that once the

PAMAFRO intervention had been interrupted, the estimated effects (dose-response) of

meteorological variables on incidence rates decreased for both malaria parasite species.

However, these fitted effect estimates did not reach their baseline levels (before the

PAMAFRO period); variations of time-varying slopes between 0.45 and 2.07 times were

observed after the PAMAFRO intervention. We also reported significant heterogeneity in

the geographical distributions of malaria, parasite species, and meteorological variables.

High malaria transmission occurred consistently in the northwestern provinces of Loreto

Department. Since the end of the PAMAFRO period, a higher effect of precipitation and

actual evapotranspiration was described on P. falciparum compared to P. vivax. The

effect of temperature on malaria was greater over a shorter time (1-month lag or less),

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.721515
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.721515&domain=pdf&date_stamp=2021-09-29
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gabriel.carrasco@upch.pe
https://doi.org/10.3389/fmed.2021.721515
https://www.frontiersin.org/articles/10.3389/fmed.2021.721515/full


Carrasco-Escobar et al. Time-Varying Effects of Climate on Malaria

comparedwith precipitation and actual evapotranspiration (12-month lag). These findings

demonstrate the importance of sustained malaria control efforts since interruption

may enhance the links between meteorological factors and malaria. Our results also

emphasize the importance of considering the time-varying effect of meteorological

factors on malaria incidence to tailor control interventions, especially to better manage

the current and future climate change crisis.

Keywords: meteorological variables, malaria epidemiology, Plasmodium vivax, Plasmodium falciparum,

interrupted malaria control intervention, Amazon rainforest

INTRODUCTION

Malaria remains a relevant public health problem, despite being
a preventable and treatable infectious disease. During 2019,
229 million malaria cases were reported worldwide and ∼139
million people were at risk of acquiring malaria in Latin America,
where more than 90% of cases occur in countries with Amazon
rainforest, such as the Bolivarian Republic of Venezuela (53%),
Brazil (20%), Colombia (10%), and Peru (5%) (1). In this area,
most (75%) cases are caused by Plasmodium vivax species and
transmitted by the primarymalaria vectorNyssorhynchus darlingi
(also known as Anopheles darlingi). In the Peruvian Amazon
region, malaria is the most important vector-borne disease, with
most cases (93.1%) located in Loreto Department (2). Although
the annual incidence rates (AIR) in this area decreased from 59.18
per 1,000 inhabitants in 2005 to 11.59 in 2010, a sharp increase
was observed in the subsequent years, reaching a peak of AIR of
42.69 in 2013 for both endemic species, P. vivax (AIR of 34.94)
and P. falciparum (AIR of 7.75) (3), and with modest reduction
in the following years. Social, economic, and weather variability
were hypothesized as drivers of the rapid increase in malaria
incidence in recent years (4, 5).

During the PAMAFRO project (2006–2011)—financed by
external funding sources such as the World Bank and established
in strategic Amazon regions such as Peru, Ecuador, Colombia,
and Venezuela—malaria cases were successfully controlled.
Training of community health workers for early diagnosis,
monitoring, and treatment in first-level health facilities, use of
long-lasting insecticide-treated nets (LLINs), and community
education in prevention measures were critical to the success
of the project and malaria control in these countries (6, 7).
However, control interventions were neither widely distributed
nor consistent over time in all districts of Loreto (3). The
southern provinces of Loreto (Ramón Castilla, Requena, and
Ucayali) benefited the least from this project. Even the district of
Soplin (Requena Province), where the highest incidence of both
malaria species was reported, did not implement community
education. Simultaneously, training of health workers was only
conducted during 2007–2008, the improvement of diagnosis only
during 2007–2010, and the LLIN distribution during 2009–2010
(3). Regrettably, due to lack of sustainable funding, PAMAFRO
strategies were discontinued in 2011, and the incidence ofmalaria
increased markedly in all regions the following year (8, 9).

Studies have reported that intervention setbacks or
interruptions affect the transmission and re-emergence of

malaria (10). On Zanzibar island, Tanzania, after stopping
indoor residual spraying (IRS) due to economic factors, malaria
cases re-emerged drastically after a period with the lowest
malaria burden (11). In the Mutasa district, Zimbabwe, reduced
funding for IRS caused a resurgence of malaria (12). Political
instability also disrupted control programs as demonstrated
in a border area of Brazil where a change of government
stopped malaria prevention activities among indigenous peoples,
resulting in an outbreak during 2017 (13). Furthermore, in the
context of climate change and variability, malaria incidence may
be further influenced by meteorological determinants. Although
previous studies evaluated the impact of meteorological
factors and control interventions on malaria transmission
(14, 15), none have assessed whether the dose-response effect
of meteorological factors on malaria incidence varies over
time (time-varying effect) and if the interruption of control
intervention periods plays a role in exacerbating the trends of
those time-varying effects.

Meteorological factors are essential components of the
mosquito life cycle and parasite reproduction (16, 17).
Mosquitoes need particular ranges of temperature (from
23◦ to 31◦C) to transition successfully between each biological
stage (18). Particularly, precipitation and humidity patterns
are also crucial for adult and immature mosquito survival. For
example, an increase in precipitation is often related to higher
mortality in mosquito larvae (19, 20). However, rainfall also
contributes to mosquito breeding sources (natural or artificial
water pools), and even determines their spatial distribution (21).
Lower evapotranspiration, defined as the flow of moisture from
the soil that directly evaporates into the atmosphere and the
water that vegetation transpires into the atmosphere, provides
suitable habitat for mosquito larvae development (22). Ambient
temperature is a regulator of the parasite biological cycle (23), i.e.,
high temperature can decrease the parasite extrinsic incubation
period (EIP) inside the mosquito salivary glands and stomach
(24). However, temperature affects P. vivax and P. falciparum
differently (14). P. vivax can develop at a range of 15–30◦C,
showing less sensitivity to temperature changes compared to P.
falciparum, which develops at a narrower range (18–30◦C) (25).
In addition, it has been hypothesized that temperature impacts
P. vivax during the hypnozoite stage in the human liver until
reactivation. The increase in temperature lengthens the latency
time of temperate hypnozoite strains in the absence of other
external factors such as fever due to other infections (26). In this
context, documenting how dose-response relationships between
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meteorological factors and malaria incidence change temporally,
especially in the context of intervention interruptions, is
critical to provide updated epidemiological evidence to identify
preventable outbreaks.

As malaria transmission is sensitive to meteorological
conditions, the use of early warning systems (EWS) offers the
opportunity to take proactive measures to reduce the impact of
vector-borne diseases due to the forecasting of unusual temporal
or spatial trends prior to the onset of an outbreak (27). For
malaria forecasting, an EWS was constructed using temperature,
humidity, and precipitation (28). This system identified an
increase of malaria cases during warm and humid seasons
compared to cold and dry ones. The lagged effect of temperature
and rainfall also described the common seasonal patterns
observed inmalaria epidemics (29). However, endemic infectious
disease areas are characterized by extrinsic time-varying factors
(public interventions, social and political conflicts) that may
affect the course of an outbreak, which would require regular
updates of EWS parameters (30).

In this context, our study aims to assess the time-varying
relationship between malaria and climatic variables and explore
retrospectively whether deviations from the baseline trends were
synchronic with the interruption of control strategies (such as the
PAMAFRO project). We analyzed detailed data on P. vivax and
P. falciparummalaria cases at a local scale between 2000 and 2017
in the Peruvian Amazon.

METHODS

Study Design
We conducted a retrospective panel data analysis using
secondary data of monthly malaria incidence in Loreto, Peru, and
meteorological data derived from satellite imagery data to analyze
the climate-malaria relationship over an 18-year period.

Study Area and Population
Loreto Department, in northeastern Peru, covers 28.7% of the
national territory. The political-administrative organization of
Loreto is divided into eight provinces and 53 districts, with
Maynas being the province with the largest territorial area and
population density in the department, and Iquitos (the capital
of Loreto), its most populous city. We included only 49 districts
because four were created after the start of the data collection
in 2000. According to the National Institute of Statistics and
Informatics (INEI is the Spanish acronym) and the Peru National
Household Survey (ENAHO in Spanish) in 2019, the total Loreto
population was 883,510 inhabitants, of which 69.6% were urban
dwellers. Overall, 32.2% of the population lives in poverty (7%
in extreme poverty) and only 39.6% of households accessed basic
public services (water, sanitation, electricity, and telephone) (31).

The health system in Loreto is composed of public and private
clinics. In 2016, Loreto had 521 healthcare facilities (2.8% of
the total national facilities), where each physician had to assist
an estimated 1,086 inhabitants (32). Regarding health coverage,
85.4% of the population had health insurance, of which 66.6%
were affiliated with the free integral health insurance (access to
health establishment belonging to the Ministry of Health of Peru

[MoH]) (33). For malaria, the diagnosis is carried out exclusively
by MoH. However, health access is still deficient in indigenous
and rural communities in the Peruvian Amazon, mainly due to
transportation and monetary barriers (34, 35). Approximately
83.3% of the population had informal employment since themost
common economic activities are based on agriculture, fishing,
and mining (32). The geographical location of Loreto, in the
Amazon basin, has a rainy tropical climate with high levels of
humidity. The maximum temperature reaches 36◦C (between
December and March), and the minimum is 17◦C (between June
and July). The humidity and rain are constant throughout the
year, with greater intensity between December and May (36).

Data Sources
Malaria Passive Case Detection Data
Epidemiological surveillance of malaria in Peru, carried out by
the General Directorate of Epidemiology of MoH, established
mandatory weekly case reporting through NOTI software in all
health facilities (37, 38). Most of the data were collected at health
facilities (passive case detection). The data included malaria cases
caused by P. falciparum and P. vivax species at the district-
or province-level.

In Peru, the most common method for laboratory malaria
diagnosis is microscopic examination of a thick and thin
smear of capillary blood to identify Plasmodium presence and
specific Plasmodium species, respectively. Thick and thin smear
procedures (39) and treatment management (40) have been
established in national guidelines provided by the Ministry
of Health.

For this study, we collected monthly confirmed malaria
cases classified by species during 2000–2017 in all districts of
Loreto. Data from the four districts created since 2014—after
data collection had begun—were included in the districts where
they were formerly located. Monthly malaria incidence rates
(MIR) were calculated as the ratio of malaria cases to the total
population at risk of malaria.

PAMAFRO Study Description
The PAMAFRO project, sponsored by the Global Fund,
focused on health worker training and community-based
prevention measures and conducted four types of activities
for malaria intervention throughout the Loreto region between
2006 and 2010 (41). First, improvement of malaria diagnosis,
through training, monitoring, and constant evaluation of
experienced and less experienced microscopists, purchase of new
microscopes, and maintenance of existing microscopes (7), and
implementing a diagnostic quality control system and active and
passive search of cases. Second, the strengthening of malaria
monitoring and treatment through the supply and availability
of antimalarial drugs and inputs, treatment standardization,
monitoring treatment adherence, evaluating drug efficacy, and
training health workers (3). Third, community participation,
through health promotion and education using graphic, radio,
and audiovisual materials, formation of community groups to
participate in health decision making, searching for community
leaders to facilitate communication of behavioral change, and
technical and financial support of community environmental
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management activities and financial support for prevention
campaigns. Finally, the project integrated vector control by
purchasing logistical support for the distribution of LLINs in
all communities, identifying and eliminating mosquito breeding
sites, and applying IRS (6).

Considering that the interventions were not consistently
implemented over time, we defined dichotomous variables for
each intervention type to identify whether it was conducted
during each year in a particular district. Other control efforts
carried out by national or international institutions during
periods outside of the PAMAFRO project time frame were not
considered for this study.

Meteorological Data
Meteorological data for terrestrial surfaces were obtained from
the TerraClimate dataset (Climatology Lab of the University
of California, Merced) based on climatic aided interpolations
(at ∼4-km spatial resolution) from 1958 to 2019 for several
meteorological variables, which combine high-resolution spatial
climatological normal from the WorldClim with time-varying
data from Climate Research Unit version 4.0, and the Japanese
55-year Reanalysis (42). The meteorological variables used for
the analysis were actual evapotranspiration (mm), precipitation
(mm), runoff (mm), and maximum and minimum temperature
(◦C). The dataset was downloaded and processed using R
software version 5.0.3 to produce monthly district aggregates for
the meteorological variables by taking the mean cell values of the
grid that pertain to each district in Loreto.

Data Analysis
A descriptive analysis was conducted, where we first analyzed
graphically the annual incidence rate variation of malaria
by species between 2000 and 2017 at the provincial level,
comparing the variation before, during, and after the PAMAFRO
intervention. Data from the new province of Putumayo (2014–
2017) was merged to their parental province, Maynas province.
We also estimated the mean and standard deviation of the
annual incidence rates by species and the annual values of the
meteorological variables at the provincial level to compare their
central tendency and dispersion throughout the study period.
Finally, a repeated measures correlation analysis (43) was carried
out over the observed values of the meteorological variables
at a district level. For studies with repeated measurements of
the same groups or individuals over time, the usual technique
for a correlation analysis is to aggregate the observations for
each group and calculate the correlation coefficient across the
aggregated data. However, this may lead to spurious results
if the inter-group associations differ from the intra-groups
associations (Simpson’s paradox). Repeated measures correlation
analysis allows for isolation of the inter-district variability to
better estimate the common within-district association of the
meteorological variables.

Generalized additive models (GAM) were used to apply
smooth functions over time to estimate the time-varying effects
(i.e., monthly specific slopes) of the meteorological variables
on the malaria case count at the district level. Separate models
for P. vivax and P. falciparum were constructed using the

same set of selected meteorological covariates to compare
the results. The selected variables were the monthly actual
evapotranspiration (mm), precipitation (mm), and minimum
temperature (◦C). Covariate selection for each meteorological
exposure model was based on a priori knowledge of the structural
dependence between these factors. Monthly district counts of
new malaria cases were modeled using a Negative binomial
(NB) distribution. This distribution was chosen primarily to
address the presence of over-dispersion in the counts. Further
discussion about the specific distribution can be found in the
Supplementary Methods section. In addition, we built lagged
versions of the models to analyze how the lagged effects of the
meteorological variables changed over time.We lagged the values
of the covariates by 1, 3, 6, and 12 months and built a different
time-varying coefficients model for each lag value.We refer to the
model without lagging as the base model. To make the models
comparable (fitted over the same data set), we filtered out the
first year (2000) since for the 12 month-lagged model we had
observations starting at January 2001. Consequently, we fitted all
the models with observations of 204 months, from January 2001
to December 2017. We then compared the base model with the
lagged models using the Akaike information criterion (AIC) to
determine which configuration best fit the data.

For each parasite species, the base NB additive model for the
expected cases count was specified as follows:

log[E(Yij)] = α + δ0(district) + γ 1(t) · aetij + γ2(t) · prcpij

+ γ3(t) ·mintempij + log(pop2015i),

were E(·) is the expectation operator, and Yit is the count of
malaria cases for the i-th district (i = 1, ..., 49) in the j-
th month (j = 1, ..., 204). The covariates aetij, prcpij, and
mintempij represent the values for the actual evapotranspiration,
precipitation, and minimum temperature, respectively, for the i-
th district in the j-th month. The parameter α is the intercept of
the model. The variable t represents the continuous time over the
period of study, and its values were generated by creating date-
time values using the months and years of the measurements
in the dataset and then converting them into numerical values.
Further detail about the generation of these time values can be
found in the Supplementary Methods section. The functions
γ1(t), γ2(t), and γ3(t) are smooth functions over the time variable,
and they act as time-varying regression coefficients for the
covariates. These smooth terms in the model were approximated
using penalized regression splines. These types of splines are
penalized for their curvature complexity to prevent over-fitting.
The degree of penalization is controlled by a regularization
parameter, known in the GAM literature as the smoothing
parameter, which can be estimated from the data along with
the estimation of the whole model. The term δ0(district) is a
random effect term for the districts to adjust for the repeated
measures at this geographic level. Finally, the log-population
of the districts in 2015 was added as an offset to the models
to estimate incidence rates. We did not consider population
density as an additional covariate of interest as we assumed
no time changes in this variable during the study period. The
configuration for the lagged models is the same, but using
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FIGURE 1 | Annual malaria incidence rates variation by parasite species. Annual malaria incidence rates variation due to P. vivax (red) and P. falciparum (light blue) in 7

provinces of Loreto Region between 2000 and 2017. We created our own grid using the geofacet R package to represent the Loreto provinces: Maynas (first row),

Datem del Marañon, Loreto, Mariscal Ramon Castilla (second row from left to right), Alto Amazonas, Requena (third row from left to right), Ucayali (fourth row). The

period shaded in gray represents the PAMAFRO intervention.

the lagged values of the covariates instead. The models were
estimated using the implementation of the restricted maximum
likelihood estimation algorithm done by Wood (44). The model
fitting under all these specifications was done using the mgcv

package of R software. Further details about the specifications of
the GAMs are available in the Supplementary Methods section,
but for a more comprehensive review of this topic, please refer to
Wood et al. (45).

Before model fitting, we scaled the meteorological variables
from 0 to 1, where 0 corresponds to the minimum observed
value and 1 to the maximum. Scaling was done to obtain
comparable estimates of the coefficients (i.e., standardize), and
avoid convergence problems. Therefore, the value of a coefficient
for a givenmeteorological variable at a specific point in time is the
log-relative risk of themalaria incidence when themeteorological
variable changes from its minimum value to its maximum.

The fitted values of the time-varying coefficients and their
confidence intervals were plotted over time, highlighting the
period of the PAMAFRO intervention. This strategy enabled a
visual analysis of how the coefficients changed before, during, and

after this period. For the base time-varying coefficients model, we
built a table for the maximum and minimum fitted values and
their confidence intervals on each period to facilitate analysis.

RESULTS

Malaria and Meteorological
Heterogeneities
Overall, 697,916 malaria cases were analyzed in all the Loreto
districts between 2000 and 2017. Most of them (76%) were
caused by P. vivax, while 24%, by P. falciparum. Over time, the
AIR decreased between 2006 and 2011 for both malaria species
exclusively during the PAMAFRO period. Figure 1 shows an
important geographical heterogeneity of malaria epidemiology
for both parasite species. At the sub-regional level, high malaria
transmission occurred consistently in the northern provinces
of Loreto (Loreto, Datem del Marañon, Mariscal Castilla, and
Maynas) compared to the southern provinces (Requena, Alto
Amazonas, and Ucayali). The highest mean AIR (per 10,000
population) of P. vivax malaria (Table 1) was in Loreto province
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(Mean-M = 50.3; Standard Deviation-SD = 35.5), whereas the
lowest in Ucayali (M = 0.3; SD = 0.4). The highest mean AIR of
P. falciparummalaria was in Datem del Marañon province (M =

26.2; SD= 25.9), the lowest in Ucayali (M = 0.03; SD= 0.02).
The variability in the distribution of meteorological factors

between provinces during the period of study is presented in
Table 1. Requena had, on average, the lowest annual mean
value of actual evapotranspiration (M = 82.41mm; SD = 4.15),
while Datem del Marañon had the highest (M = 86.14mm;
SD = 4.28). Both provinces also had the greatest standard
deviations of the annual mean values for this variable, meaning
a broader variability. Ucayali showed, on average, the lower
level of annual mean precipitation (M = 160.20mm; SD =

17.50), whereas Maynas had the highest (M = 275.59mm; SD
= 67.55). Greater dispersion is shown in the annual values
for this variable compared to the others, i.e., Maynas is the
province with the highest dispersion. Regarding the annual mean
of maximum temperature, on average, Datem del Marañon had
the lowest level (M = 30.37◦C; SD = 0.34) and Ucayali had the
highest (M = 32.62◦C; SD = 0.25). In the case of minimum
temperature, lower levels of annual means were seen in Ucayali
(M = 20.74◦C; SD = 0.25) and the highest levels in Mariscal
Ramon Castilla (M = 21.85◦C; SD = 0.20). In addition, the
outbreak of malaria cases following the interruption of the
control efforts was accompanied by an increasing trend of the
mean levels of the maximum and minimum temperature over
most of the areas of study (Supplementary Figures 1–7). For
instance, in Datem del Marañon, one of the provinces which
had a mayor outbreak, the mean minimum temperature went
from ranging from 20.30◦ to 21.57◦C before the interruption
to ranging from 20.7◦ to 22.06◦C after the control ceased,
and the mean maximum temperature went from ranging from
29.55◦ to 30.79◦C before the interruption to ranging from 29.98◦

to 31.33◦C.
Supplementary Table 1 shows the repeated measures

correlation coefficients (r) and their 95% confidence intervals for
the climate variables. The most noticeable finding is the almost
perfect correlation between precipitation and runoff (r = 0.99;
95% CI: [0.99, 0.99]) within the districts during the period of
study. Therefore, including both variables in a model for the
malaria incidence rate would have caused multi-collinearity
problems. Other variables that showed moderate to strong
correlation were the actual evapotranspiration and maximum
temperature (r = 0.56; 95% CI: [0.55, 0.57]), and maximum
temperature and minimum temperature (r= 0.44; 95% CI: [0.43,
0.46]).

Meteorological Time-Varying Effects
The fitted values of the time-varying coefficients for actual
evapotranspiration, precipitation, and minimum temperature,
along with their 95% confidence intervals, for both the base
model for P. vivax and the base model for P. falciparum from
2001 to 2017 were plotted in Figure 2.

A concurrent exacerbation to a more negative effect of
all meteorological variables on the log-relative risk occurs
right before and right after the end of the PAMAFRO
intervention (Figure 2). This exacerbation to a more negative T
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FIGURE 2 | Fitted time-varying meteorological effects on MIR by parasite species. Fitted time-varying meteorological effects due to P. vivax (red) and P. falciparum

(light blue) and their 95% CI (shading of each colored curve). The period shaded in gray represents the PAMAFRO intervention.

effect seems greater for actual transpiration and precipitation
for P. falciparum than for P. vivax, whereas the difference is
less evident for the effects of minimum temperature. Table 2
presents the maximum and minimum values before, during, and
after the PAMAFRO intervention of the fitted coefficients of the
meteorological variables on each parasite-specific model. The

effect of actual evapotranspiration on P. vivax began to have a
progressive change from being not significant throughout the
intervention to amore negative effect aroundmid-2010 (Figure 2
and Table 2). After the intervention, the minimum coefficient
value was−0.94 (95% CI: [−1.43,−0.44]) at the end of 2012, and
then transitioned to a non-significant effect between 2015 and

Frontiers in Medicine | www.frontiersin.org 7 September 2021 | Volume 8 | Article 721515

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Carrasco-Escobar et al. Time-Varying Effects of Climate on Malaria

2016. On the other hand, the effect of actual evapotranspiration
on P. falciparum transitioned from being not significant at the
start of the intervention to a more negative effect around mid-
2008, prior to the effect on P. vivax. It reached the value of−1.86
(95% CI: [−2.52, −1.19]) between 2012 and 2013, which is the
minimum value throughout the whole period of study.

A similar pattern was found for precipitation, the only
difference being that its effect on P. vivax did not intensify much
in magnitude at the end of the intervention, compared with
its effect on P. falciparum. The latter increased significantly in
magnitude toward a more negative effect, reaching the value of
−2.41 (95% CI: [−3.53, −1.28]) at the first quarter of 2011,
right after the end of the PAMAFRO intervention. Finally, it is
apparent from Figure 2 that the effect of minimum temperature
on the log-relative risk of malaria incidence presented a seasonal
pattern with a stable level throughout the whole period of study.
Two disruptions in the level of its effect are visible in the plot.
The first one occurred between 2002 and 2003, where the effect
of minimum temperature on P. falciparum had a substantial
increase toward a more positive effect, and the second one
between 2010 and 2012, where the effect on P. vivax increased
toward a more negative effect. In the latter period, the effect
of minimum temperature on P. vivax reached a value of −3.23
(95% CI: [−4.07,−2.40]) in 2010, the same year the intervention
ended. Before 2010, the effect of minimum temperate on both
parasite species tended to have a negative level, whereas, after
2012, it tended to have a positive level.

Variation of Meteorological Time-Varying
Lagged Effects
Figure 3 shows the fitted coefficients and their 95% confidence
interval for the meteorological variables lagged by different
numbers of months. Different models were fitted for each lag
value. The magnitude and direction of the lagged effects of
the meteorological variables on each parasite species changed
differently throughout the study, although most of the lags
for each variable follow a similar trend. In the case of actual
evapotranspiration, its 6-month lagged effects on P. vivax and
P. falciparum intensified more over time compared to the other
lags. For P. vivax, it was exacerbated toward a more positive
effect between 2008 and 2010, following an exacerbation to a
more negative effect from 2010 to 2013. For P. falciparum,
it transitioned from null effects most of the time during the
intervention to a more negative effect after the PAMAFRO
intervention between 2010 and 2013.

For precipitation, the exacerbation to a more negative effect
at the end of PAMAFRO was observed for the no lagged and
12-month lagged effects on P. vivax, and all the lagged effects,
except the 6-month lagged effect on P. falciparum. Finally, for the
minimum temperature, all the lagged effects suggest evidence of
a seasonal pattern. The greatest intensification was observed on
the 6-month lagged effect after the PAMAFRO intervention, from
2012 to 2014, where the effects on each parasite species increased
in magnitude toward a more positive effect.

Model performance metrics were presented in
Supplementary Table 2. For P. vivax, the 1-, 3-, and 6-
month lagged covariates models performed better for the AIC.
For instance, the 6-month lag had the best AIC value, and the
12-month lagged covariates model had the worst. The more
complex model was the 3-month lagged covariates model, as it
had higher degrees of freedom, and, conversely, the simpler one
was the 1-month lagged covariates model. For P. falciparum,
results were similar, but the base model, in this case, was slightly
better than the 3-month lagged covariates model. The more
complex model for P. falciparum was the model with 6-month
lags, and the simpler one was the model with a 12-month lag.

DISCUSSION

By analyzing panel data of the Peruvian Amazon from 2001
to 2017, this study found a critical disruption in the baseline
relationship between malaria and climate after the interruption
of the malaria control period implemented by PAMAFRO. At
the end of the PAMAFRO intervention, the estimated effects
(dose-response) of actual evapotranspiration, precipitation, and
minimum temperature on the incidence rates decreased for
both malaria parasite species. Although this decrease diminished
after ∼2 years, the dose-response effects did not return to
baseline levels (before the PAMAFRO period). Notably, the
interruption of the PAMAFRO project impacted the time-
varying effects of meteorological variables such as precipitation
and actual evapotranspiration more markedly for P. falciparum
compared with P. vivax. These findings highlight the importance
of sustaining malaria control efforts since interruption may
destabilize the baseline (pre-PAMAFRO) associations between
meteorological factors and malaria incidence rates. Also,
the time-varying effect of meteorological factors on malaria
incidence should be used to inform and update EWS in the
context of climate change projections.

The effect of meteorological variables on malaria incidence,
when the PAMAFRO intervention was discontinued,
demonstrated that the relationship between malaria and climate
intensified in a region of low malaria incidence. This emphasizes
the importance of monitoring meteorological variation during
the elimination process to detect early disruptions of this
relationship. EWS play a pivotal role in this context when
considering these time-varying effects. Previous studies have
revealed the importance of implementing integrated surveillance
and control systems for monitoring meteorological indicators in
predicting abrupt changes in the risk of malaria in hotspots of
the Amazon region (46).

The effect of meteorological variables on P. falciparum was
longer and temporally significant compared with P. vivax where
the decreases are potentially related to activation of the silent
latent parasite stage (hypnozoite), that results in relapses (47).
In addition, P. falciparum has been associated with minimum
temperatures over time (14, 48), due to its shorter optimal
developmental temperature range (15◦-30◦C) compared to P.
vivax (18◦-30◦C) (49). High temperature shortens the parasite
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TABLE 2 | Maximum and minimum fitted effects of the meteorological variables of the adjusted models for the parasite species within three periods: before, during and

after the PAMAFRO intervention.

Climate variable Before During After

Min Max Min Max Min Max

Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI

P. vivax

Actual evapotranspiration −0.88 [−1.82, 0.06] 0.31 [−0.13, 0.76] −0.62 [−1.11, −0.14] 0.31 [−0.13, 0.76] −0.94 [−1.43, −0.44] 0.66 [−0.13, 1.44]

Precipitation −1.90 [−2.88, −0.92] −0.01 [−0.37, 0.34] −0.87 [−1.50, −0.23] 0.05 [−0.30, 0.40] −0.87 [−1.51, −0.23] 0.19 [−1.02, 1.40]

Minimum temperature −1.46 [−2.29, −0.64] 0.66 [−0.03, 1.34] −3.23 [−4.07, −2.40] 1.00 [0.28, 1.71] −3.04 [−3.81, −2.26] 1.93 [1.17, 2.69]

P. falciparum

Actual evapotranspiration −0.19 [−1.43, 1.04] 0.60 [0.02, 1.18] −1.53 [−2.20, −0.86] 0.55 [−0.04, 1.13] −1.86 [−2.52, −1.19] −1.01 [−2.08, 0.06]

Precipitation −1.65 [−2.30, −1.00] −0.48 [−1.03, 0.07] −2.35 [−3.45, −1.25] 0.02 [−0.53, 0.57] −2.41 [−3.53, −1.28] 0.29 [−1.72, 2.30]

Minimum temperature −1.90 [−3.68, −0.12] 2.21 [1.28, 3.15] −2.35 [−3.49, −1.20] 0.06 [−0.99, 1.11] −1.88 [−2.98, −0.79] 2.07 [0.96, 3.17]

95% CI: 95% Confidence Interval.

Precipitation and actual evapotranspiration in millimeters (mm), maximum and minimum temperature in Celsius degrees (◦C).

development inside the mosquito; thus the EIP is∼9–15 days for
P. falciparum and 8–24 days for P. vivax (50).

Our results were consistent with previous studies in terms
of heterogeneity among meteorological variables. A predictive
study reported that moderate temperature (23–24◦C) was related
to the highest risk of malaria at a lag of 2 weeks, with a
significantly increased risk up to 4 weeks of lag (51). Intriguingly,
this is consistent with the incubation period of the parasite
inside a human host; the time elapsed between the mosquito
bite and the manifestation of symptoms is ∼9–14 days for P.
falciparum and 12–17 days for P. vivax infection (52). The
parasite EIP inside the mosquito ranges between 1 and 3 weeks
(50), reinforcing the seasonal relationship between temperature
and malaria incidence. In addition, our study described a
significantly longer effect of precipitation and evapotranspiration
on malaria incidence; this could be explained by the formation
of optimal mosquito breeding sites as a consequence of rainfall
over the previous year (51). The development of natural breeding
sources is a long-term process that depends not only on
precipitation but also on vegetation and soil moisture (which
control evapotranspiration) (53). In other vector-borne diseases
such as dengue, there was a similar pattern of meteorological
variables: the minimum temperature (26◦C) with 0–5 weeks lag
and precipitation (60mm) with 8–15 weeks lag was related with
increased dengue incidence (54).

Our findings are relevant for current and future climate
change. Climate change causes unexpected circumstances such
as land degradation and disruption, floods, and droughts
that destabilize the economic growth, population health and
often increase migration (23, 55), which alter the operation
of control activities, as well as interactions among the
environment, mosquito, and host. Mosquitoes circulate in
impacted environments near human settlements, resulting in
increased malaria risk (56). Also, rising global temperature
is a major contributor to the increasing spread of malaria
even in non-endemic areas (57, 58). In addition, governments
need to monitor and enforce the implementation of malaria
interventions (59). In Zambia, for example, many of the positive

effects of control programs are being reduced by the negative
impact of climatic conditions that favor the spread of malaria
(60). These scenarios may lead to a more substantial resurgence,
changes in seasonal trends, and complications for malaria control
and elimination.

After a period of low malaria rates due to control
interventions, malaria re-emerged due to weakening control
activities, technical problems, and increasing malaria potential
(61). Funding constraints are the most common cause of control
program interruptions. After only 4 months of discontinuing
malaria prevention activities in Uganda, malaria cases increased
(62). In Venezuela, the high incidence rates of malaria continue
to increase due to the catastrophic socio-economic and political
crisis that decimated vector-borne disease control programs.
Prolonged poverty, lack of hygiene, and malnutrition has
increased population-level susceptibility to infectious diseases
(63). A major contributing factor has been the massive migration
of Venezuelans to neighboring countries resulting in the
importation of malaria cases to border regions (64). Similar
situations have been reported around the world (11, 12, 61).
Despite decreases in funding from international entities and
global funds, we strongly recommend that intervention be
considered an ongoing and necessary expense (65). Effective
control of malaria hotspots could reduce malaria mortality and
morbidity (66). Changes in land cover due to human settlement
may also alter the temperature and increase mosquito migration
to non-endemic high altitudes, for example in Kenya (67).
One study showed that mosquitoes carried by wind continued
surviving, breeding, and feeding on human blood, potentially
expanding malaria transmission to new altitudes (68).

We acknowledge the following limitations to this study. First,
passive case detection data are recorded only for individuals
overwhelmed by symptoms who seek care at health services;
health personnel do not conduct active case detection in the
community. Hence the results of these findings are relevant only
for clinical cases, and further studies are required to understand
whether the same patterns are observed for asymptomatic cases,
which contribute to the maintenance of parasite transmission
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FIGURE 3 | Fitted time-varying meteorological effects on MIR by parasite species at different time lags. Fitted time-varying meteorological effects at different time lags

and their 95% CI (shading of each colored curve). The period shaded in gray represents the PAMAFRO intervention.

(69). Second, limited access to remote areas in the Amazon
region prevents continuous health care access to indigenous
communities, thus the malaria caseload is an underestimate.
Low geographic accessibility and travel time have been found
to be barriers to reaching remote health facilities (35). Third,
some reports have indicated that mosquito activities such as
host-seeking behavior were influenced by wind speed affecting
human CO2 dispersion, and other studies reported that the
mosquito movement depends on wind direction (70). However,
we did not include other meteorological variables such as
wind speed in this analysis. Instead, we selected meteorological
variables commonly used in epidemiological malaria studies.
Finally, other factors such as natural disasters or political
crises were not considered for this analysis; to the best of our
knowledge, no major events were reported in this area during the
study period.

CONCLUSIONS

The sustainability of malaria elimination efforts deserves
particular attention due to current climate change challenges.
This study provided evidence of important deviations of the
baseline climate-malaria trends concurrent with the interruption
of malaria control interventions in the study area. These
disruptions significantly affect the transmission of P. falciparum
in comparison to P. vivax and provide information for tailoring
future malaria control activities.
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