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Abstract: Background: Pancreatic ductal adenocarcinoma (PDAC), the most prevalent neoplastic
lethal pancreatic disease, has a poor prognosis and an increasing incidence. The insulin-like growth
factor-1 receptor (IGF-1R) signaling pathway is considered to be a contributing factor to the progres-
sion, metastasis, and therapy resistance of PDAC. Currently available treatment options for PDAC
are limited, but microRNAs (miRNAs) may represent a new therapeutic strategy for targeting genes
involved in the IGF-1R signaling pathway. Method: We investigated the expression levels of 21
miRNAs involved in the IGF-1R signaling pathway in pancreatic tissue from 38 patients with PDAC
and 11 controls (five patients with chronic pancreatitis and six patients with normal pancreatic tissue).
Results: We found 19 differentially expressed miRNAs between the PDAC cases and the controls.
In particular, miR-100-5p, miR-145-5p, miR-29c-3p, miR-9-5p, and miR-195-5p were exclusively
downregulated in PDAC tissue but not in chronic pancreatitis or normal pancreatic tissues; both
control types presented similar levels. We also identified miR-29a-3p, miR-29b-3p, and miR-7-5p as
downregulated miRNAs in PDAC tissues as compared with normal tissues but not with pancreatitis
tissues. Conclusions: We identified a panel of miRNAs that could represent putative therapeutic
targets for the development of new miRNA-based therapies for PDAC.
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1. Introduction

Pancreatic cancer occurs primarily as pancreatic ductal adenocarcinoma (PDAC) and
represents the seventh most frequent cause of death by cancer in industrialized countries [1].
As the most common pancreatic cancer, PDAC accounts for about 85% of all cases and has
a very poor prognosis, with a five-year survival rate of less than 5% [2]. This low survival
rate arises largely because PDAC is usually clinically silent in its early stages; therefore,
most diagnoses are made only at an advanced stage.

The pathogenesis of PDAC is not well defined; however, several risk factors have been
identified, including modifiable risk factors related to lifestyle (smoking, alcohol, obesity,
dietary factors, and exposure to toxic substances) and non-modifiable risk factors (sex, age,
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ethnicity, diabetes mellitus, family history of pancreatic cancer, genetic factors, chronic
infections, and chronic pancreatitis) [3].

The histopathological progression from premalignant lesions (cystic mucinous neopla-
sia, intrapapillary mucinous neoplasia, pancreatic intraepithelial neoplasia, or intraductal
oncocytic neoplasia) to PDAC is mediated by complex interactions that involve genetic mu-
tations, modifications of the tumoral microenvironment, tumoral immunoediting, neoan-
giogenesis, and alterations in signaling pathways [4,5].

For example, the insulin and insulin-like growth factor-1 receptor (IGF-1R) signaling
pathways are known to enhance the development and progression of PDAC by promoting
tumor growth and metastasis and by driving therapy resistance [6].

The IGF-IGF-1R axis consists of three receptor tyrosine kinases: IGF-1R, IGF-2R, and
insulin receptor (INSR) [7]. IGF-1R and IGF-2R, are abundant in PDAC tissue, especially in
the stromal cells. Stimulation of IGF-1 activates PI-3K/Akt and Ras/Raf.MAPK cascades,
and activation of the IGF-1/IGF-1R signaling pathway can have a negative impact on
certain tumor suppressor proteins, such as p53, BRCA1, and VHL. IGF-1R overexpression
is associated with an enhanced growth rate of cancer cells [6,8], and studies have shown
that patients with advanced clinical stages of PDAC (stages II and III) have higher levels of
IGF-1R and low IGFBP3, correlating with poor prognosis [9]. Although IGF-1R is critically
involved in the pathophysiology of this disease, monoclonal antibody therapies targeting
IGF-1R have failed to demonstrate significant clinical benefits [10]. This seems to be due
both to the complexity and the homology that is shared by insulin and IGF receptors and
to the knowledge gap regarding the cross-talk between cancer cells and the stroma in the
pancreas [6].

Currently, available treatment options for pancreatic cancer remain limited, with
most patients receiving more than one type of treatment. The primary intervention is
surgical resection, followed by chemotherapy and/or radiation therapy or palliative care,
depending on the stage of the cancer [11]. However, a promising new strategy for the
improvement of pancreatic cancer treatment is offered by microRNAs (miRNAs), which
have been identified as regulators of several cancers. Indeed, the identification of miRNA
dysregulation in cancer is fundamental for identifying potential miRNA-based therapeutic
targets, as well as for obtaining a better understanding of cancer pathogenesis [12].

Structurally, miRNAs are small single-stranded non-coding RNA molecules
(18–25 nucleotides) that are involved in post-transcriptional regulation of gene expres-
sion or in inhibiting translation. It is estimated that 1–4% genes in the human genome
are miRNAs [13] and control the expression of over 60% of the protein-coding genes [14].
Their role in carcinogenesis is essential, since they can promote proto-oncogene expression
(acting as “oncomirs”) and/or serve a tumor suppressive function. The miRNAs can even
be involved in modulating extrinsic factors, such as immune system interactions, stromal
cell interactions, and even sensitivity to therapy, making these molecules the subject of
intense ongoing research.

The involvement of the IGF-1R pathway and the potential role of miRNAs in can-
cer therapy prompted us to seek out dysregulating miRNAs that could be involved in
the insulin/IGF-1R signaling pathway, as these miRNAs may represent potential PDAC
therapeutic targets.

In this study, we evaluated tumor tissues from patients with PDAC for the expression
of a panel of 21 miRNAs that target genes involved in the IGF-1R signaling pathway, and
we compared the expression of these miRNAs in noncancerous tissues from patients with
chronic pancreatitis or normal pancreatic tissues. The analyzed miRNAs comprised nine
miRNAs belonging to the let-7 family, implicated in the control of glucose homeostasis
by targeting IGF-1R, IR, and IRS2 [15] and recently found involved in PDAC [16]. Three
miRNAs regulating the expression of IGF-1R have been also selected (miR-100-5p [17], miR-
145-5p [18], and miR-150-5p [19]) as well as miRNAs involved in pancreatic development
and insulin secretion (miR-195-5p, miR-126-3p, and miR-9-5p) and miRNAs regulating



Cells 2021, 10, 1856 3 of 11

diabetes-associated pancreatic cancer pathway genes (miR-19a-3p, miR-21-5p, and miR-
29a/b/c-3p) [18].

2. Materials and Methods
2.1. Sample Collection

Forty-three patients with suspected pancreatic cancer underwent ultrasound en-
doscopy and fine needle aspiration (FNA) with a 22-gauge needle designed for standard
cytologic examination. An additional aspiration was made and collected in RNA later
reagent (Qiagen). The diagnosis was performed by a pathologist who identified 38 patients
with PDAC and 5 patients with chronic pancreatitis (P).

Normal pancreatic tissues were also collected from six patients who underwent surgi-
cal pancreatic resection for different reasons (neuroendocrine tumor, intraductal papillary
mucinous neoplasm, adenosquamous carcinoma, and metastasis of colorectal carcinoma).
The specimens were collected from normal adjacent tissue (NT) and were verified as normal
by a pathologist. All samples were kept at room temperature for 24 h, and then stored at
−80 ◦C until RNA isolation. The NT and P cases constituted our control group (CTRL).

This study was approved by the Ethics Committee of the Clinical Emergency Hospital
of Bucharest (approval number 1960 of 28 February 2019) and from the Ethics Committee
of the Victor Babes National Institute of Pathology (approval number 78 of 3 December
2019). All patients signed an informed consent form before sample collection.

2.2. Evaluation of miRNAs

Total RNA was isolated using the miRNeasy Mini Kit (Qiagen, Hilden, Germany),
according to the manufacturer’s protocol. RNA quality and quantity were assessed using a
spectrophotometric method (NanoDrop 2000, Thermo Scientific, Wilmington, NC, USA).
A 10 ng sample of total RNA was reverse transcribed with an miRCURY LNA RT Kit (Qia-
gen), and the expression of a panel including 21 miRNAs involved in the IGF-1 signaling
pathway was evaluated using a miRCURY LNA SYBR Green PCR Kit and a miRCURY LNA
miRNA PCR Assay (Qiagen). The 21 miRNAs were the following: hsa-let-7a-5p, hsa-let-7b-
5p, hsa-let-7c-5p, hsa-let-7d-5p, hsa-miR-145-5p, hsa-miR-19a-3p, hsa-miR-195-5p, hsa-miR-
126-3p, hsa-miR-150-5p, hsa-miR-29a-3p, hsa-miR-29b-3p, hsa-miR-29c-3p, hsa-miR-21-5p,
hsa-miR-223-3p, hsa-miR-9-5p, hsa-miR-7-5p, hsa-let-7e-5p, hsa-let-7f-5p, hsa-let-7g-5p,
hsa-let-7i-5p, and hsa-miR-100-5p. The Ct data were normalized against the geomet-
ric mean of three reference miRNAs (U6 snRNA, SNORD38B, and SNORD49A) whose
stability in pancreatic normal tissue, pancreatitis, and PDAC has been validated in our
samples using the RefFinder algorithm [20]. The miRNA expression data are presented as
2−∆Ct values.

2.3. Statistical Analysis

The miRNA levels were not normally distributed (Shapiro–Wilk test <0.05); therefore,
the statistical analysis was performed using nonparametric tests. The Mann–Whitney test
was used to compare the miRNA expression between the PDAC and CTRL groups. The
Kruskal–Wallis test, followed by pairwise comparisons, was applied to find significant
differences among the PDAC, P, and NT groups. The changes in miRNA levels were
considered significant if p < 0.05 and the fold regulation (FR) was FR > 2 or FR < −2.

Differences in the sociodemographic features among the groups were tested with the
chi-squared test (for categorical variables) and with the t-test (for continuous variables).
Statistical analysis was performed using the Statistical Package for the Social Sciences (SPSS
version 17.0). The graphs were realized using GraphPad Prism 8.4.3.

3. Results

This study included 49 patients, consisting of 38 patients with PDAC and 11 CTRL
cases (5 P and 6 NT). The sociodemographic and lifestyle data of the patient and control
groups are reported in Table 1. The two groups were homogeneous for age, sex, and
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lifestyle characteristics. The clinical data of the patients with PDAC are summarized
in Table 2. Cholesterol and lipase level were available for 22 and 17 PDAC patients,
respectively. Ten patients presented normal cholesterol levels (160.7 ± 25.4 mg/dL), five
patients presented borderline levels (221.8 ± 17.2 mg/dL), and seven patients presented
high levels (337.7 ± 91.3 mg/dL). An impairment of lipase level was observed in six
patients, reporting a lipase average of 902.6 ± 697.4 U/L.

Table 1. Sociodemographic and lifestyle data of patients and controls enrolled in the study.

Features PDAC (n = 38) CTRL (n = 5 P, n = 6 NT) Significance

Age (mean ± SD) 65.08 ± 9.93
CTRL = 58.00 ± 13.93 PDAC vs. CTRL, p = 0.064

P = 65.80 ± 13.36 PDAC vs. P, p = 0.884
NT = 51.50 ± 11.55 PDAC vs. NT, p = 0.004

Sex (%F) 55.30%
CTRL = 36.4% PDAC vs. CTRL, χ = 1.219, p = 0.269

P = 40% PDAC vs. P, χ = 0.414, p = 0.520
NT = 33.3% PDAC vs. NT, χ = 0.999, p = 0.318

Smokers (%) 39.50%
CTRL = 27.3% PDAC vs. CTRL, χ = 0.546, p = 0.460

P = 0% PDAC vs. P, χ = 3.031, p = 0.082
NT = 50% PDAC vs. NT, χ = 0.238, p = 0.626

Coffee consumers (%) 39.50%
CTRL = 63.7% PDAC vs. CTRL, χ = 2.013, p = 0.156

P = 60% PDAC vs. P, χ = 0.765, p = 0.382
NT = 66.7% PDAC vs. NT, χ = 1.562, p = 0.211

Alcohol consumers (%) 27.30%
CTRL = 15.8 % PDAC vs. CTRL, χ = 0.750, p = 0.386

P = 40% PDAC vs. P, χ = 1.710, p = 0.191
NT = 16.7% PDAC vs. NT, χ = 0.003, p = 0.956

Table 2. Clinical features of PDAC patients.

PDAC (n = 38)

Localization Clinical Stage Lymph Node
Invasion Metastasis Diabetes Jaundice Family History

of PDAC

Head = 23
T2 = 7

18 14 10 15 2T3 = 6
T4 = 10

Neck = 3
T2 = 1

2 1 2 0 0T3 = 2

Body = 6
T2 = 2

5 5 3 0 0T3 = 2
T4 = 2

Body-Tail = 4
T2 = 2

2 2 2 0 1T3 = 1
T4 = 1

Tail = 2
T3 = 1

2 2 0 0 0T4 = 1

First, we compared the PDAC and control groups for the levels of the 21 selected
miRNAs involved in the IGF-1R pathway. The PDAC group showed downregulation of 19
of these 21 miRNAs (p < 0.05, FR < −2.00) (Supplementary data). Further analysis of the
three groups showed that miR-100-5p, miR-145-5p, miR-29c-3p, miR-9-5p, and miR-195-5p
were significantly downregulated in PDAC patients as compared with the NT and P groups
(Figure 1).
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atitis (P), and pancreatic ductal adenocarcinoma (PDAC) groups. Values are shown as mean ± SEM.

Three miRNAs (miR-29a-3p, miR29b-3p, and miR-7-5p) were differentially expressed
in the PDAC group as compared with the NT group, but no significant changes were found
in the P group (Figure 2).
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Figure 2. Differential expression of miRNAs in pancreatic tissues from normal (NT) and pancreatic ductal adenocarcinoma
(PDAC) groups. Values are shown as mean ± SEM.

The differences in miR-let-7a-5p, miR-let-7b-5p, miR-let-7c-5p, miR-let-7d-5p, miR-
let-7g-5p, miR-let-7f-5p, miR-126-3p, miR-150-5p, miR-19a-3p, miR-21-5p, and miR-let-7e-
5p expression were significant only in the comparison between the PDAC and P groups
(Supplementary Figure S1). No difference was observed in the expression of the 19 miRNAs
between the P and NT groups (Table 3).

At the moment of miRNAs analysis, nine PDAC patients were still alive and data
regarding the survival were available for the other 29 individuals. The survival range
was between 1 and 12 months and the average (±SD) was 5.2 ± 3.3 months. Sixteen
patients reported a survival below 6 months and 13 a survival above/equal to 6 months.
No significant correlations were found between the months of survival and the analyzed
miRNAs level. Moreover, the level of these miRNAs did not change (p > 0.05) between the
group of survival <6 months (n = 16) and survival ≥6 months (n = 13). Additionally, no
significant differences in miRNA expression were found in the PDAC group in relation
to tumor localization, clinical stage, lymph node invasion, or the presence of diabetes or
jaundice (data not shown).
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Table 3. Comparison of the levels of the miRNAs in PDAC, NT, and P. p-Values refer to Kruskal–Wallis test followed by pairwise
comparisons. FR (fold regulation); ns (statistically not significant).

miRNA
Significance PDAC vs. NT PDAC vs. P P vs. NT

p-Value FR p-Value FR p-Value FR p-Value

miR-let-7a-5p 0.006 / ns −19.01 0.005 ns ns
miR-let-7b-5p 0.002 / ns −19.70 0.006 ns ns
miR-let-7c-5p 0.004 / ns −12.58 0.005 ns ns
miR-let-7d-5p 0.012 / ns −13.48 0.009 ns ns
miR-let-7g-5p 0.034 / ns −12.64 0.044 ns ns
miR-100-5p 0.001 −9.83 0.012 −8.72 0.035 ns ns

miR-let-7f-5p 0.015 / ns −12.44 0.015 ns ns
miR-126-3p 0.002 / ns −29.16 0.007 ns ns
miR-145-5p <0.001 −8.15 0.003 −10.84 0.019 ns ns
miR-150-5p 0.002 / ns −23.70 0.002 ns ns
miR-19a-3p 0.007 / ns −10.13 0.011 ns ns
miR-21-5p 0.012 / ns −2.96 0.025 ns ns

miR-29a-3p 0.001 −4.82 0.003 / ns ns ns
miR-29b-3p 0.001 −2.64 0.006 / ns ns ns
miR-29c-3p <0.001 −5.78 0.001 −2.49 0.04 ns ns
miR-7-5p 0.001 −16.41 0.001 / ns ns ns
miR-9-5p <0.001 −4.96 0.002 −5.76 0.013 ns ns

miR-let-7e-5p 0.006 / ns −5.52 0.015 ns ns
miR-195-5p <0.001 −16.09 0.001 −19.26 0.004 ns ns

ns: not significant.

4. Discussion

Pancreatic cancer remains one of the most aggressive malignancies and shows poor
prognosis and a disappointing response to therapeutic drugs. Previous studies have identi-
fied an association between the progression of PDAC and the overexpression of several
growth factor receptors, such as HER [21], EGFR [22], and IGF-1R [23–25]. IGF-1R overex-
pression has been correlated with poor prognosis [9], high tumor grade, and short overall
survival [26]. In the last decade, several IGF/IGF-1R inhibitors, including monoclonal
antibodies against IGF-1R and against its ligands (IGF-1 and IGF-2) and inhibitors of the
IGF-1R tyrosine kinase, have been introduced in clinical trials, but these have failed to show
clinical benefit in the patient population [27]. However, IGF-1R remains a valid target, and
new treatment strategies targeting its pathway need further development.

In this context, the targeting of miRNAs, which are able to regulate multiple genes,
may achieve a cumulative effect on a set of related target proteins at multiple levels of the
same pathway. The miRNAs, therefore, represent an attractive therapeutic target [28], and
several candidates were identified in the present study by the analysis of the panel of 21
miRNAs targeting genes involved in the IGF-1R signaling pathway. In particular, miR-100-
5p, miR-145-5p, miR-29c-3p, miR-9-5p, and miR-195-5p were exclusively downregulated
in PDAC tissue but not in the chronic pancreatitis and normal pancreatic tissues.

Downregulation of miR-100-5p has been reported in different types of cancers, includ-
ing oral cancer cells, where it contributes to malignancy [29] and in the serum of patients
with bladder cancer [30] and prostate cancer [31]. This miRNA also seems to regulate the
mechanism of apoptosis in breast cancer [32], and the levels of miR-100 were significantly
lower in the serum/plasma or peripheral blood mononuclear cells from patients with
type I diabetes [33] and in serum from obese normoglycemic subjects and subjects with
type II diabetes as compared with controls [34]. Interestingly, in line with our finding of
downregulation of miR-100-5p in PDAC tissue, other studies have suggested that this
miRNA inhibits the proliferation and invasion of PDAC [35].

A few previous studies have investigated a role for miR-145-5p in PDAC. For example,
in 2014, miR-145 was suggested to act as a tumor suppressor and regulator of MUC13,
which is aberrantly overexpressed in pancreatic cancer [36]. Two years later, an association
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was found for a panel of 19 miRNAs, including miR-145-star, and the overall survival and
disease-free survival in 104 patients with pancreatic tumors [37]. In support of these results,
and in line with our findings, a recent study in an animal model demonstrated that the
overexpression of miR-145-5p reduced the in vivo growth of xenograft PDAC tumors [38].

The miR-29 family members, which comprise miR-29a, miR-29b (1 and 2), and miR
29c, have all been linked to pancreatic cancer [39]. For example, miR-29a showed a
tumor-suppressive role that involved targeting of MUC1, an oncogenic mucin that is
overexpressed in PDAC and other epithelial cancers [40]. This miRNA functions as a
potent autophagy inhibitor in PDAC and increases the effect of gemcitabine in cancer cells,
while decreasing cancer cell invasion [41]. Similarly, miR-29b also appears to act as a tumor
suppressor that targets DNA methyltransferase 3b to decrease cell viability and promote
apoptosis of pancreatic cancer [42]. Notably, miR-29b also targets IGF-1 and the PI3K
signaling pathway (p85α) [43]. Likewise, miR-29c suppresses cell migration and invasion
by targeting MMP2, and this miRNA has been suggested as a novel marker of pancreatic
cancer metastasis [44]. Interestingly, all three miR-29 family members were downregulated
in the PDAC cases in our study, but only miR-29c was differentially expressed in the
PDAC tissues as compared with the chronic pancreatitis and normal tissues. Differential
expression of miR-29a and miR29b was observed for PDAC as compared with the normal
tissues, but not when compared to the pancreatitis tissues. Moreover, it has been shown that
miR-29 is a key regulator of collagen expression [45] and the loss of miR-29 is a common
phenomenon of activated pancreatic stellate cells (PSCs)/fibroblasts, the major stromal cells
responsible for fibrotic stromal reaction [46]. The literature data regarding the involvement
of miR-9-5p in PDAC are scarce, but this miRNA is involved in insulin secretion [47] and
may represent a prognostic or therapeutic target in pancreatic cancer. Its low expression
has been strongly correlated with poor overall survival, and its overexpression markedly
inhibited pancreatic cancer cell proliferation by enhancing cell apoptosis [48].

Studies on miR-195-5p have demonstrated that this miRNA suppresses the expression
of IGF1R and the activation of PI3K/Akt signaling [49], but its role in PDAC has not
been extensively investigated. One study suggested that the overexpression of miR-195
inhibits the proliferation, migration, and invasion of pancreatic cancer cells and that
its levels inversely correlate with doublecortin-like kinase 1, a tumor-specific stem cell
marker in pancreatic cancer [50]. A few recent studies have reported that specific long
noncoding RNAs drive tumorigenesis by modulating the miR-195-5p/Wnt/beta-catenin
signaling pathway [51] and promote the progression of pancreatic cancer by upregulating
programmed death-ligand 1 by acting as a sponge for microRNA-195-5p [52]. Higher
levels of miR-195 have also recently been reported in extracellular vesicles from blood from
patients with PDAC than from blood from healthy controls, although no difference was
detected when compared to extracellular vesicles from blood from patients with chronic
pancreatitis [53].

In conclusion, our findings validated previous results that indicated the involvement of
a panel of miRNAs targeting genes involved in the IGF-1R signaling pathway. Specifically,
we showed the downregulation of miR-100-5p, miR-145-5p, miR-29c-3p, miR-9-5p, and
miR-195-5p exclusively in PDAC tissue as compared with chronic pancreatitis and normal
pancreatic tissues. These miRNAs could, therefore, be considered potential molecular
targets for promising miRNA-based approaches for future curative treatments for PDAC.

All patients in the present study were followed up, including the control group with
chronic pancreatitis, since in these particular cases FNA offers less information that fine
needle biopsy or surgery. The study was limited by its relatively small cohort; therefore,
further investigations on larger numbers of patients are needed to confirm the results
presented here.
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