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Hyperuricemia contributes
to glucose intolerance of
hepatic inflammatory
macrophages and impairs the
insulin signaling pathway via
IRS2-proteasome degradation
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Aim: Numerous reports have demonstrated the key importance of

macrophage-elicited metabolic inflammation in insulin resistance (IR). Our

previous studies confirmed that hyperuricemia or high uric acid (HUA)

treatment induced an IR state in several peripheral tissues to promote the

development of type 2 diabetes mellitus (T2DM). However, the effect of HUA

on glucose uptake and the insulin sensitivity of macrophages and its

mechanism is unclear.

Methods: To assess systemic IR, we generated hyperuricemic mice by urate

oxidase knockout (UOX-KO). Then, glucose/insulin tolerance, the tissue uptake of

18F-fluorodeoxyglucose, body composition, and energy balance were assessed.

Glucose uptake of circulating infiltrated macrophages in the liver was evaluated by

glucose transporter type 4 (GLUT-4) staining. Insulin sensitivity and the insulin

signaling pathway of macrophages were demonstrated using the 2-NBDG kit,

immunoblotting, and immunofluorescence assays. The immunoprecipitation

assay and LC-MS analysis were used to determine insulin receptor substrate 2

(IRS2) levels and its interacting protein enrichment under HUA conditions.

Results: Compared to WT mice (10 weeks old), serum uric acid levels were

higher in UOX-KO mice (WT, 182.3 ± 5.091 mM versus KO, 421.9 ± 45.47 mM).

Hyperuricemic mice with metabolic disorders and systemic IR showed

inflammatory macrophage recruitment and increased levels of circulating

proinflammatory cytokines. HUA inhibited the nuclear translocation of GLUT-

4 in hepatic macrophages, restrained insulin-induced glucose uptake and
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glucose tolerance, and blocked insulin IRS2/PI3K/AKT signaling. Meanwhile,

HUA mediated the IRS2 protein degradation pathway and activated AMPK/

mTOR in macrophages. LC-MS analysis showed that ubiquitination

degradation could be involved in IRS2 and its interacting proteins to

contribute to IR under HUA conditions.

Conclusion: The data suggest that HUA-induced glucose intolerance in

hepatic macrophages contributed to insulin resistance and impaired the

insulin signaling pathway via IRS2-proteasome degradation
KEYWORDS

hyperuricemia, insulin resistance of macrophage, insulin signaling, IRS2-proteasome
degradation, inflammatory macrophage
Introduction

Hyperuricemia is customarily defined as a serum uric acid

(UA) level of >420 mM in humans, predisposing them to gout by

the formation of urate crystals (1). In humans and great apes,

UA is the end-product of purine degradation whereas, in other

mammals, it is further degraded into allantoin, a more soluble

metabolic product by urate oxidase (UOX) (2), an enzyme

generally located in the liver. Accumulating evidence from

clinical observational studies suggests the involvement of

asymptomatic hyperuricemia, independent of crystal

formation, in hypertension, atherosclerosis, acute and chronic

kidney disease, obesity, metabolic syndrome, fatty liver, insulin

resistance (IR), and diabetes (3–5). Our previous studies also

confirmed that hyperuricemia induced an IR state in several

peripheral tissues (6–8), including the liver, myocardium,

skeletal muscles, and adipose tissue as well as pancreatic b
cells (9), and was a strong risk factor for type 2 diabetes

mellitus (T2DM).

T2DM has both an inflammatory and metabolic etiology.

Concerning glucose metabolism, insulin mainly acts on the liver,

muscles, and adipose tissue, and the responses of these targets to

insulin and other hormones determine the circulating

concentrations of glucose, fatty acids, and other metabolites

(10, 11). In contrast, chronic low-grade inflammation and

immune system activation are implicated in the pathological

process of local and systemic IR and T2DM (12–14). Numerous

studies have demonstrated the key importance of macrophage-

elicited metabolic inflammation in IR (15, 16). In obesity and

T2DM, macrophages infiltrate metabolic organs such as the liver

and adipose tissue, leading to low-grade inflammation that

impairs insulin action (17–19).

Liver-resident macrophages, also called Kupffer cells (KCs),

represent 80–90% of the whole-body macrophage population

and are characterized by the expression of canonical
02
macrophage markers, including F4/80, CD14, CD68, and

CD11b (20, 21). KCs are activated in obesity to a more

inflammatory or M1 state (22), resulting in the migration of

inflammatory monocytes (Ly6C+ in mice) into the liver, where

they differentiate into monocyte-derived macrophages,

exacerbating the obesity-induced hepatic inflammation (23,

24). Thus, the liver undergoes a spectrum of changes ranging

from benign steatosis to fibrosis and cirrhosis (25).

Hyperuricemia is also associated with chronic low-grade

tissue inflammation, manifested as elevated serum chemokine

ligand 2 levels, increased monocyte recruitment (26), and

chronic inflammatory cell infiltration into the kidney (26).

Clinical studies and our experiments have found associations

between serum UA levels and the development of IR (27, 28);

however, whether macrophages infiltrate the liver and lead to

intrinsic IR and the underlying mechanisms of the process

remain unknown. In the current study, we constructed a

mouse model of UOX knockout (UOX-KO) to investigate the

role of high UA (HUA) in hepatic macrophage recruitment and

IR. Additionally, we explored the effect of UA on the insulin

signaling pathway in macrophages from mice.
Materials and methods

Animals and treatments

UOX-KO C57BL/6J mice were generated as described

previously (29). Adult male wild-type (WT) C57BL/6J mice

weighing 22–25 g were obtained from the Xiamen University

Laboratory Animal Center. All mice were housed in a specific-

pathogen-free facility under 12-h light/dark cycles in a

temperature-controlled environment (22–25°C) with 40–70%

humidity and free access to food and water. All experimental

procedures and animal housing in this study were designed and
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conducted in accordance with the approval of the Institutional

Animal Care and Use Committee of Xiamen University, China

(Animal Ethics number: XMULAC20200122).

The mice were assigned to two experimental groups: the WT

group (n = 8) and the UOX-KO group (n = 8). A schematic

diagram of the timeline for animal treatment and the study

design is shown in Figure 1A. At the end of the experiment (14

weeks), the mice were fasted all night and then anesthetized with

1.5% isoflurane in a mixture of 30% O2 and 69% N2O. Blood

samples were collected from the sinus orbital vein (200 mL) to
evaluate the release of proinflammatory cytokines. The mice

were euthanized by cervical dislocation (WT = 6, KO = 6).

Serum was separated by centrifugation at 3,000 rpm for 15 min

at 4°C. The liver was collected to assess the infiltration and

activation of macrophages.

To isolate macrophages from the liver, WT (n = 5) and KO

(n = 5) mice were anesthetized with 1.5% isoflurane in a mixture

of 30% O2 and 69% N2O. The abdomen was opened, and the
Frontiers in Immunology 03
hepatic portal vein was dissociated. Hepatic perfusion was

successively performed for 2 min using Hank’s balanced salt

solution and collagenase IV (37°C) (Sigma). Subsequently, the

liver was removed, and macrophages were separated using the

following methods. The number of mice (n) used for each

endpoint is given in each figure or figure legend.
Glucose and insulin tolerance tests

Body weight and food intake were recorded twice a week in

mice housed individually (except for the survival study). In

detail, to analyze serum uric acid (at 10 weeks) and random

blood glucose (at 10 weeks) levels, and for the intraperitoneal

glucose tolerance test (IPGTT) (at 11 weeks) and intraperitoneal

insulin tolerance test (IPITT) (at 14 weeks), blood samples were

collected in the morning from the tail vein without anesthesia

after fasting overnight. The serum uric acid and random blood
B C D E
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A

FIGURE 1

Body composition, energy homeostasis, and glucose metabolism in male wild-type (WT) and urate oxidase-knockout (UOX-KO) mice.
(A) Random blood glucose measurements, intraperitoneal glucose tolerance tests (IPGTTs), 18F-FDG tests, and intraperitoneal insulin tolerance
tests (IPITTs) were carried out according to the relevant timelines. (B) The body weights of WT and UOX-KO mice were continuously monitored
for six weeks, and the body weights of 15-week-old mice were also recorded (C). (D) Serum uric acid levels. (E) Random blood glucose levels.
(F–J) Water and food consumed, energy expenditure, and oxygen consumption relative to the body weight of the mice. (K) Respiratory exchange
ratio (CO2 exhaled/O2 inhaled). (L) IPGTT blood glucose values in 11-week-old mice and area under the receiver operating characteristic curve
(AUC) for the IPGTT (M). (N) IPITT blood glucose values in 14-week-old mice and AUC for ITT (O). All the mice used in the experiment were
male. Data are the mean ± SD (n = 8). Statistics: Two-way repeated-measures ANOVA (B, F–K, L, N); Student’s t-test (C–E, M, O). Differences
were considered significant at P < 0.05.
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glucose levels in WT mice and UOX-KO mice were assessed

using a blood glucose and uric acid meter (EA-11, Sinocare).

IPGTT and IPITT were performed in mice that were fasted for 8

or 4 h. For the IPGTT, 11-week-old mice were fasted overnight

before the intraperitoneal administration of glucose at 2 g/kg

body weight. In another set of experiments, we performed IPITT

in 14-week-old mice. Normal WT mice and UOX-KO mice that

were fasted for 4 h were intraperitoneally injected with insulin at

0.5 units/kg body weight. Tail blood glucose concentrations were

monitored at 0, 15, 30, 60, and 120 min using a glucometer.

Incremental areas under the curve (AUC) were calculated from 0

to 120 min for glucose and insulin.
Body composition and energy balance

Body weight and food intake were monitored daily to obtain

body weight gain and gross energy intake. The evaluation of

energy homeostasis and metabolic parameters at the 13-week

interval in WT and UOX-KO mice was continuously conducted

for three days using a Promethion Comprehensive High-

resolution Behavioral Analysis System (Sable Promethion,

Sable Systems International, USA). The experiment was

conducted at optimum temperature (22–25°C) with a 12 h/

12 h light-dark cycle. Metabolizable energy (ME) intake was

calculated by subtracting the energy measured in feces and urine

from the gross energy intake, determined by the daily food

consumption and gross energy density. Energy efficiency was

calculated as the percentage of body energy retained per ME

intake, and energy expenditure was the difference between ME

intake and energy gain.
Tissue uptake of 18F-Fluorodeoxyglucose

18F-Fluorodeoxyglucose (FDG) (radiochemical purity >95%)

was synthesized by the nucleophilic substitution method using an

FDG-synthesizing instrument (Center for Molecular Imaging and

Translational Medicine, School of Public Health, Xiamen

University, Xiamen, China). The mice that were fasted for 16 h

were restrained, injected with insulin (0.75 units/kg) diluted in 0.9%

saline for 5 min, and then intravenously injected with 18F-FDG

(200–300 µCi/mouse). The mice were deeply anesthetized with

1.5% isoflurane in a mixture of 30% O2 and 69% N2O. Then, they

underwent small-animal positron emission tomography (PET) and

microcomputed tomography. Whole-body PET images were

acquired 30 min later using an acquisition time of 30 min

(window width: 20%; matrix: 256 × 256; medium zoom). The

PET/CT images were analyzed using InVivoScope software

(Bioscan Inc.). To quantify the radioactive signals in tissues,

regions of interest (ROIs) were drawn and counted on the PET/

CT images of the brain, kidney, liver, heart, fat, and muscle, and

their location was confirmed by CT. The differential uptake ratio
Frontiers in Immunology 04
(DUR) was used as an index of radiotracer uptake in tissues and

calculated as DUR = (tissue counts [cpm] per g of tissue)/(injected

dose counts per g of body weight). The results are expressed as a

percentage of the injected dose per gram (%ID/g).
Serum inflammatory factors

Antibodies against serum interleukin 1b (IL-1b, Cat# 88-

5019-88, RRID: AB_2574807), tumor necrosis factor-alpha

(TNF-a, Cat# 88-7324-22, RRID:A B_2575076), IL-6 (Cat#

88-7064-22 , RRID : AB_2574986) , and monocy t e

chemoattractant protein 1 (MCP-1, Cat# 88-7391-88, RRID:

AB_2575113) were purchased from Thermo Fisher Scientific

and measured using commercially available cytokine enzyme-

linked immunosorbent assay (ELISA) kits.
Transmission electron microscopy

Liver samples were isolated from WT and UOX-KO mice

and fixed in 2% glutaraldehyde and 4% paraformaldehyde in 0.1-

M sodium cacodylate (pH=7.4), treated with 10% gelatin

solution in sodium cacodylate buffer, and incubated with 2%

osmium tetroxide. Sections measuring 40 nm were cut using a

Leica EM TP ultramicrotome (Leica Microsystems) and placed

within grids stained with a 1:1 mixture of 3% uranyl acetate and

50% acetone for 30–60 s. The grids were imaged with a JEM 1400

transmission electron microscope (JEOL) at ×1,200 for low

magnification and ×12,000 for high magnification (unless

otherwise noted) using Gatan Microscopy Suite software

(Gatan). The cells were identified as described previously (30).
Isolation of hepatic macrophages

Livers were collected, digested with collagenase IV (Sigma)

and DNase, and filtered through a 70-mM cell strainer

(Biosharp). Single-cell suspensions were prepared after

removing red blood cells using ammonium-chloride-potassium

(ACK) lysis buffer (Sigma). Hepatic leukocytes were isolated by

30%, 37%, and 70% Percoll (GE Healthcare) density gradient

centrifugation. Cell counts were determined on a Coulter

counter (Thermo Fisher). The cells were washed with

phosphate-buffered saline (PBS) solution three times and

stained with fluorochrome-conjugated monoclonal antibodies,

which included fluorescein (FITC)-conjugated rat anti-mouse

CD45 (1:100, Cat# 561886, RRID: AB_395576, BD Biosciences)

and allophycocyanin (APC)-conjugated CD11b (1:100, Cat#

553312, RRID: AB_398535, BD Biosciences). The samples

were analyzed by flow cytometry (CytoFLEX S). The analysis

was performed with FlowJo software (Tree Star Inc., San Carlos,

CA, USA). Total macrophages were identified as CD45+CD11b+.
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Cell isolation, culture, and treatment

The established THP-1 cell line (CLS Cat# 300356/

p804_THP-1, RRID: CVCL_0006) was obtained from the

Chinese Academy of Science (ATCC, Shanghai). THP-1 cells

were cultured and differentiated into macrophages as described

previously (31). To assess IR in THP-1 cells, the cells were sub-

cultured in 6-cm culture dishes, exposed to 15 mg/dL of UA for

24 h, harvested by scraping, and stored at -80°C.
Peritoneal macrophages

After the intraperitoneal injection of 3% Brewer

thioglycolate medium (BD Biosciences, Franklin Lakes, NJ,

USA) for 4 days, peritoneal macrophages were isolated from

the peritoneal cavity of male UOX-KO andWTmice. Briefly, the

mouse peritoneal cavity was rinsed with 5 mL of ice-cold PBS

(pH=7.4) containing 2% fetal bovine serum (FBS). The

peritoneal fluid was collected, and the cell concentration was

adjusted to 3×106 nucleated cells/mL in Dulbecco’s modified

Eagle medium (DMEM) supplemented with 10% FBS. The

macrophages were cultured in a humidified incubator at 37°C

for 2 h. Non-adherent cells were removed by gentle washing with

warm PBS three times. To evaluate the effect of UA on insulin

signaling pathways, the cells were sub-cultured in 6-well plates

(2.5 × 105 cells/well) and exposed to UA (0, 5, 10, and 15 mg/dL)

for 24 h or 100-nM insulin for 0.5 h.
Bone-marrow-derived

macrophages Bone-marrow cells were isolated from the

femur and tibia of male WTmice. The marrow was flushed from

the bones with DMEM loaded into a 1-mL syringe. Bone

marrow cells were cultured at a concentration of 3×106 cells/

mL of DMEM medium containing 10% FBS and 20 ng/mL of

granulocyte-colony-stimulating factor (G-CSF) (#576406,

Biolegend) to differentiate them into BMDMs. On day 7,

adherent cells became mature macrophages. On day 8, the

differentiated BMDMs were re-plated with DMEM without G-

CSF overnight and then stimulated with 15 mg/mL of UA

for 24 h.

Primary peritoneal macrophages and BMDMs were

identified as CD45+F4/80+.
Quantitative immunoblotting

Quantitative immunoblotting was accomplished as we

described previously (9). A high dilution of b-actin rabbit

mAb (1:10000, ABclonal Cat# AC026, RRID: AB_2768234,
Frontiers in Immunology 05
China) was used as an internal loading control. The imaging

of blots was performed using an Azure C300 Digital Imager

(Azure Biosystems) after incubation with secondary antibodies

(1:1000, G-21234, RRID: AB_1500696, Invitrogen, USA). The

analysis was carried out in the Image Lab, and the optical density

of the bands was quantified using ImageJ (National Institutes of

Health, Bethesda, MD, USA) and normalized to the loading

controls, as applicable. The antibodies and their concentrations

were as follows (antibody, dilution, catalog number): insulin

receptor substrate 1 (IRS1; 1:1000, #2382, RRID: AB_330333),

IRS2 (1:1000, Cat# 3089, RRID: AB_2125771), AS160 (C69A7)

rabbit mAb (1:1000, Cat# 2670, RRID: AB_2199375), phospho-

AS160 (Thr642) antibody (1:1000, Cat# 4228, RRID:

AB_659940), PI3 kinase p85 (1:1000, Cat# 4292, RRID:

AB_329869), PI3K p85 (Tyr458)/p55 (Tyr199) (1:1000, Cat#

4228, RRID: AB_659940), AKT (1:1000, Cat# 9272, RRID:

AB_329827), phospho-AKT (Ser473) (D9E) (1:1000, Cat#

4060, RRID: AB_2315049), AMPKa (D5A2) rabbit mAb

(1:1000, Cat# 5831, RRID: AB_10622186), phospho-AMPKa
(Thr172) (D4D6D) rabbit mAb (1:500, Cat# 50081, RRID:

AB_2799368) , mTOR (1 :1000 , Cat# 2983 , RRID:

AB_2105622), phosphorylated mTOR (Ser2448), and rabbit

mAb (1:1000, Cat# 2971, RRID: AB_330970). All the

antibodies were purchased from Cell Signaling Technology.
Cycloheximide chase assay

To evaluate whether HUA destabilized the IRS2 protein,

THP-1 cells were treated with 15 mg/dL of HUA for 24 h.

Subsequently, THP-1 cells were treated with 5-mM
cycloheximide (CHX) (MedChemExpress) for 3 h.
Immunofluorescence staining

Liver sections ofUOX-KOmice underwent immunofluorescence

staining as described previously (9). The antibodies used and their

concentrations are listed below (antibody, dilution, catalog number,

company): anti-glucose transporter 4 (anti-GLUT4, 1:400, Cat#

ab654, RRID: AB_305554, Abcam, USA), LAMP1 (1:200, Cat#

ab24170, RRID: AB_775978, Abcam), and anti-F4/80 macrophage

marker (CI:A3-1, 1:100, Cat# ab6640, RRID: AB_1140040, Abcam).

After primary antibody incubation, the sections were washed with

PBS four times for 10min at room temperature and incubated with a

secondary antibody (1:1000, A32728 (RRID: AB_2633277) or

A32742 (RRID : AB_2762825) or A32731 (RRID : AB_ 2633280)

goat anti-rabbit/rat/mouse IgG [H+L] cross-adsorbed secondary

antibody (Thermo Scientific, USA) for 1 h. For the negative

control, the primary antibody was omitted during immunostaining.

Cell nuclei were stained using a DAPI kit for 5 min. Images were

acquired by confocal microscopy (Zeiss LSM 880 or FV1000MPE-B,

Olympus) and processed using ImageJ.
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Quantitative polymerase chain reaction
with reverse transcription analysis

BMDMs were treated with HUA for 24 h. Total cellular RNA

was extracted using a SteadyPure Universal RNA Extraction Kit

II (AG21022, Accurate Biology, China), and cDNA was

synthesized using a PrimeScript RT Master Mix (Perfect Real

Time) kit (RR036A, Takara, Japan). The resulting cDNA was

analyzed by qRT-PCR with reverse transcription using SYBR

Green PCRMaster Mix (Applied Biosystems). The samples were

normalized to the b-actin housekeeping. Quantitative analysis

was performed by the DDCT method. The primers (5′–3′) used
were designed on Primer-Blast and are shown in Table 1.
Glucose uptake measurement
by 2-NBDG

The glucose uptake of BMDMs was assessed by the

fluorescent glucose analog, 2-NBDG. Briefly, the cells were

treated with low-glucose FBS-free DMEM for 24 h. Then the

medium was replaced with Krebs-Ringer-Bicarbonate (KRB)

buffer containing insulin (final concentration, 100 nM) and 2-

NBDG (final concentration, 100 mM) for 30 min at 37°C and

analyzed by fluorometry at excitation and emission wavelengths

of 485 and 535 nm, respectively.
Immunoprecipitation assay

HEK-293T cells (Cat# BFN60810479) were obtained from

the American Type Culture Collection. HEK-293T cells

expressing Flag-IRS2 (HG17635-CF, Sino Biological Inc.) or

the PCDH vector were grown on 15-cm plates until 90%

confluency and then analyzed by immunoprecipitation (IP).

After transfection for 2 days, the cells were lysed in lysis buffer
Frontiers in Immunology 06
(1% sodium deoxycholate, 1% Triton X-100, 150 mM NaCl, 1

mM EDTA, 50 mM Tris-HCl [pH=7.4]) containing a protease

inhibitor cocktail (#HY-K0010, MCE). Pre-washed Flag-beads

(#M8823, Millipore) were added. After immunoprecipitation for

18 h, Flag-beads were washed five times for 10 min each with

lysis buffer containing protease/phosphatase inhibitor. Flag-

tagged proteins were eluted. A loading buffer of 4× sodium

dodecyl sulfate (SDS) was added to the supernatant after

enrichment and the sample was boiled in a metal bath for

10 min. Then, the sample was subjected to SDS-

polyacrylamide gel electrophoresis (PAGE) (8% separating gel)

and western blotting analysis.
LC-MS analysis and database search

Each IP assay was performed in triplicate. HEK-293T cells

overexpressing Flag-IRS2 were grown on 15-cm plates until 90–

95% confluency. The group set was as follows: IRS2 and UA

+IRS2. After transfection for two days, the UA+IRS2 group was

treated with 15 mg/dL of UA for 24 h, and then the cells were

subjected to IP as mentioned above. LC-MS analysis was

executed according to our previously described method (32).

The peptides were desalted by StageTips (33, 34). Gene ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

analysis were conducted by DAVID tools (https://david.ncifcrf.

gov/). A P-value of <0.01 was considered statistically significant.
Statistical analysis

Statistical analysis was conducted using GraphPad Prism 8.

Data from repeated cell experiments were presented as the mean ±

SD (n ≥ 4). Bar graphs were also used to show individual values. If

the sample was normally distributed, statistical analysis was

conducted between multiple groups using one-way analysis of
TABLE 1 Primer sequence.

Gene ID Forward Sequence Reverse Sequence

Irs1 3667 CTGCACAACCGTGCTAAGG CGTCACCGTAGCTCAAGTCC

Irs2 8660 CCTCACCCTGTAGTGCCTTC AAGTCGATGTTGATGTACTCGC

Insr 3643 AAAACGAGGCCCGAAGATTTC GAGCCCATAGACCCGGAAG

Marcks 4082 AGCCCGGTAGAGAAGGAGG AGCCCGGTAGAGAAGGAGG

Syt7 9066 ACTCCATCATCGTGAACATCATC TCGAAGGCGAAGGACTCATTG

Gclc 2729 GGCACAAGGACGTTCTCAAGT CAGACAGGACCAACCGGAC

Stat1 6772 CAGCTTGACTCAAAATTCCTGGA TGAAGATTACGCTTGCTTTTCCT

Crim1 51232 CCCTGTGACGAGTCCAAGTG GGTTCCGTAAATCCCGAAGGT

Prkcd 5580 AACCATGAGTTTATCGCCACC AGCGTTACATTGCCTGCATTT

il1rn 3557 CATTGAGCCTCATGCTCTGTT CGCTGTCTGAGCGGATGAA

Map4k4 9448 GGAACACACTCAAAGAAGACTGG GTGCCTATGAACGTATTTCTCCG

Anxa1 301 CTAAGCGAAACAATGCACAGC CCTCCTCAAGGTGACCTGTAA
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variance (ANOVA), followed by the Dunnett’s test or Student’s t-

test. Differences were considered significant at a P-value of <0.05.
Results

UOX-KO mice exhibited metabolic
disorders and systemic IR

Our previous studies demonstrated that UOX-KO mice

spontaneously developed hyperuricemia and aberrant lipid

metabolism, concomitant with abnormal hepatic fat

accumulation (29). We have also confirmed that UOX-KO

mice had hepatic steatosis (Supplementary Figure 1). Then, we

evaluated body weight and glucose metabolism in the UOX-KO

mice. Random blood glucose levels, IPGTT, 18F-FDG test, and

IPITT were determined according to the timeline in Figure 1A.

Systemic UOX-KO had no significant effect on body weight

(Figures 1B, C, F), but the serum uric acid and random blood

glucose levels were elevated compared to the WT mice

(Figures 1D, E). To assess whole-body metabolic states and the

mechanisms underlying stable weight and elevated blood

glucose, we used indirect calorimetry in a Promethion

Comprehensive High-resolution Behavioral Analysis System

over three days in 13-week-old mice on a chow diet. Notably,

IR resulted in decreased energy production by glucose

utilization, contributing to the pathogenesis of T2DM.

UOX-KO mice showed increased water consumption under

both light and dark conditions (Figure 1G), whereas total

food consumption increased and energy expenditure

decreased under light conditions (Figures 1H, I). Additionally,

oxygen consumption and the respiratory exchange ratio

increased under dark conditions (Figures 1J, K), indicating

decreased glycolysis and fat oxidation, respectively, under dark

conditions (Supplementary Data set 1, https://figshare.com/s/

90b6af1ad966dff6f244 ).

The UOX-KO mice exhibited glucose intolerance and

insulin insensitivity compared to the WT mice, as assessed by

GTT or ITT (Figures 1L–O). A pyruvate tolerance test (PTT)

was performed to evaluate potential differences in liver-specific

insulin sensitivity between the two genotypes of mice. Our

preliminary results showed that the UOX-KO mice exhibited

PTT compared to the WTmice (Supplementary Figure 2). Then,

we reproduced this observation in male WT and UOX-KO mice

using PET/CT imaging to assess 18F-FDG uptake. 18F-FDG

uptake was lower in UOX-KO than in WT mice (Figures 2A–

D). Glucose uptake was not seen in the liver, brain, kidney, and

adipose tissue of the UOX-KO mice, suggesting that UOX-KO

generates a systemic disorder of glucose uptake. There was no

difference in glucose uptake by the myocardium and muscle
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between the two groups. Consistent with our previous

observation in hyperuricemic mice, insulin-stimulated glucose

uptake and metabolic homeostasis were impaired.
UOX-KO mice liver recruited
inflammatory macrophages and
exhibited increased circulating
proinflammatory cytokines

Obesity conditions such as fatty liver involve an

accumulation of inflammatory macrophages, with a key role in

the pathogenesis of obesity-induced IR (18, 35–40). We assessed

this possibility in the UOX-KO mice. The number of F4/80-

positive cells increased in the UOX-KO livers compared to the

WT mice (Figures 3A, B). We also analyzed the total

CD45+CD11b+ macrophages in the liver tissue of the WT or

UOX-KO mice by flow cytometry. In brief, the number of

CD45+CD11b+ cells increased (Figures 3C, D), suggesting that

these macrophages expressed a proinflammatory phenotype.

Then, to determine the sources of F4/80+ cells in the liver of

the UOX-KO mice, the hepatic cell content and structure were

investigated by TEM (Figure 3E). Normal livers exhibited

abundant hepatocytes and fewer KCs and hepatic stellate cells

but few monocytes. UOX-mouse livers showed steatosis due to

excess fat storage in the hepatocytes, which activated KCs to

secrete a large variety of cytokines and chemokines, resulting in

the recruitment of monocyte-derived macrophages (Figure 3E).

The serum levels of IL-1b, IL-6, MCP-1, and TNF-a were all

elevated in the UOX-KO mice (Figure 3F). Altogether, these

results demonstrate that UOX-KO-mouse livers recruited

inflammatory macrophages and showed increased circulating

proinflammatory cytokines.
HUA impaired glucose tolerance and
insulin signaling in macrophages

Classically, GLUT4 is mainly responsible for skeletal muscle

and adipocyte insulin-mediated glucose uptake (41–43). Previous

studies have also confirmed that adipose-specific GLUT-4–KO

mice showed IR secondarily in the muscle and liver tissue (42,

44). To explore glucose uptake in inflammatory macrophages in the

liver of WT and UOX-KO mice, we assessed the co-localization of

F4/80 and GLUT-4 by immunofluorescence assays. The UOX-KO

mice exhibited the downregulation of GLUT-4 expression in

hepatic macrophages, revealing an IR state in macrophages

(Figure 4A). We then further explored the inherent glucose

uptake of macrophages under HUA conditions. Insulin

significantly increased 2-NBDG uptake, and pretreatment with 15
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mg/dL of UA for 24 h suppressed insulin-induced 2-NBDG uptake

(Figures 4B–D). Pretreatment with probenecid, a UA transporter

(OAT) inhibitor, rescued HUA-decreased 2-NBDG uptake in

macrophages (Figures 4B–D), suggesting that UA passed through

the cell membrane to exert its functions, possibly viaOAT channels.

The class-1 phosphatidylinositide 3-kinase (PI3K)-AKT

pathway links the activation of the insulin receptor to glucose

metabolism (45–50). Studies have confirmed that metabolic

inflammation induces IR by inhibiting insulin signaling (51,

52). We evaluated the relationship between glucose uptake and

insulin signaling. IRS1 and IRS2 levels were markedly reduced

by combined treatment with UA (15 mg/dL, 24 h) and insulin

(100 nM, 3 or 4 h) (Figures 4E–G). The phosphorylation of

AKT, AS160, PI3K, and mammalian target of rapamycin

(mTOR) was enhanced by insulin stimulation but reduced by

treatment with 15 mg/dL of UA (Figures 4E, H–K). However,

with prolonged insulin action, AKT, AS160, PI3K, and mTOR

phosphorylation gradually decreased, which was sharply

reversed by UA treatment (Figures 4E, H–K). Collectively,

these observations indicate that insulin-driven PI3K-AKT

signaling in macrophages was inhibited by UA treatment.
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Under hyperuricemic conditions, GLUT-4 was downregulated

by inactivating insulin signaling.
HUA mediated the IRS2 protein
degradation pathway and activated
AMPK/mTOR in macrophages

Recent data indicated that prolonged exposure to insulin

could increase the degradation of IRS1 and IRS2 by the

ubiquitin-proteasome system (53, 54). Such an increase in the

proteasomal degradation of IRS1 is an attractive mechanism for

IR because the increased ubiquitination of proteins is a common

cellular mechanism for downregulating various signaling

processes (55). We also found that IRS1 and IRS2 levels were

decreased by combined treatment with UA (15 mg/dL, 24 h) and

insulin (100 nM, 3 or 4 h) (Figures 4E–G). To further

understand the mechanisms by which HUA inhibited insulin

sensitivity, we assessed the IRS2 protein degradation pathway.

The mRNA expression of genes associated with insulin signaling

pathways, such as IR, IRS1, IRS2, MAP4K4, SYT7, and
B

C D

A

FIGURE 2

Whole-body 18FDG uptake in WT and UOX-KO mice. (A) Representative PET image (whole-body 18FDG uptake) of the brain, kidney, muscles,
liver, myocardium, and epididymal adipose tissue in WT and UOX-KO mice. (B) The change in color represents the level of glucose uptake.
(C) Schematic diagram of coronal and sagittal mice. (D) Quantitative measurement of 18FDG uptake in the brain, kidney, muscles, liver,
myocardium, and epididymal adipose tissue (the value of the region of interest [ROI]; the dotted line circle). All the mice used in the experiment
were male. Data are the mean ± SD (n = 6). Statistics: Tukey multiple comparisons test. Differences were considered significant at P < 0.05.
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FIGURE 3

Liver from UOX-KO mice accumulated inflammatory macrophages. (A) Livers from 14-week-old WT C57BL/6J and UOX-KO mice underwent
immunohistochemical staining with anti-F4/80 antibody to observe morphology; then, the sections were scanned using confocal scanning
optical microscopy and quantified by ImageJ (six regions were selected for each mouse) (B), scale bar = 200 or 100 mm. (C, D) The frequencies
of total macrophages CD45+CD11b+ in the liver of WT and UOX-KO mice were analyzed and quantified by flow cytometry. (E) Transmission
electron microscopy of WT or UOX-KO mice livers showing hepatocytes (Hc), Kupffer cells (KCs), monocyte-derived macrophages (McMFs),
monocytes (Mc), and Hc-associated subcellular structures such as the space of Disse or the perisinusoidal space (SD) and sinusoidal space (SS),
scale bar = 5 mm. (F) The UOX-KO mice showed increased serum levels of proinflammatory cytokines. All the mice used in the experiment were
male. The results are the mean ± SD (n = 6). Statistics: Student’s t-test. Differences were considered significant at P < 0.05.
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MARCKS, was assessed by RT-PCR. Except for IRS1 expression,

the expression of the genes associated with insulin signaling did

not change significantly (Figure 5A). However, IRS2 protein was

degraded by combined treatment with CHX, a protein synthesis

inhibitor, and UA (Figures 5B, C). Additionally, the IRS2 protein

was degraded in a time-dependent manner by UA treatment,

and the phosphorylated AKT level did not increase further

(Figure 5D), suggesting that the IRS2 protein degradation

pathway is involved in UA-induced IR.

Earlier studies showed that mTOR complex 1 (mTORC1)

activation required mTORC1 localization to the lysosome,

which is mediated by the formation of a complex between the

active Rag heterodimer RagA/B-GTP/RagC/D-GDP and

mTORC1 (Raptor and mTOR) (56, 57). We found that HUA

induced the lysosomal localization of mTOR in BMDMs

(Figure 5E). Since inflammation and IR are linked through the

AMPK-mediated pathway, we assessed phosphorylated AMPK.

Consistent with our hypothesis , AMPK was highly

phosphorylated (Figures 5F, G), and mTOR activation was

suppressed by UA treatment (Figures 5H–J). In addition,

HUA activated AMPK/mTOR signaling in THP-1 cells, which

was blocked by compound C, an inhibitor of AMPK

(Figures 5H–J). Thus, UA inhibited the phosphorylation of

mTOR and activated AMPK.
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IRS2 and its interacting protein-enriched
ubiquitination degradation under
HUA conditions

Flag-IRS2 or empty vector was overexpressed in HEK-293T

cells and immunoprecipitated using whole cell lysates in

triplicate. HEK-293T cells expressing empty vector alone were

used as the negative controls (Figure 6A). To identify the

putative biological processes associated with IRS2-interacting

proteins under HUA conditions, we used enrichment analysis

with the GO domain “biological process” (Figure 6B) and KEGG

pathway analysis (Figure 6C). These analyses identified the

regulation of cellular localization and the regulation of protein

stability, related to IRS2 degradation. Proteins significantly

interacting with IRS2 were classified into different protein

complexes. We identified 20 predominant complexes

(Figure 6D and Supplementary Dataset 2. See https://doi.10.

6084/m9.figshare.19450718): Nop56p-associated pre-rRNA

complex, spliceosome, 40S ribosomal subunit, cytoplasmic,

large drosha complex, CDC5L complex, emerin complex 52,

IGF2BP1 complex, SNW1 complex, and other known

complexes, as well as the SF3b complex. The autodegradation

of E3 ubiquitin ligase COP1, the ubiquitin-dependent

degradation of cyclin D, and the ubiquitin-mediated
B C D

E

F G H

I J K

A

FIGURE 4

HUA impaired glucose tolerance and insulin signaling in macrophages. (A) Staining for F4/80 (a marker of macrophages, green) and glucose
transporter 4 (GLUT-4, red) in frozen hepatic sections of 14-week-old WT mice and UOX-KO mice, scale bar = 100 or 20 mm. Bone marrow-
derived macrophages (BMDMs) from WT mice were pretreated with HUA (15 mg/dL, 24 h) or probenecid (4 mM, 1 h), a UA transporter (OAT)
inhibitor, and then underwent basal or insulin-stimulated 2-NBDG uptake assays detected by fluorescence microscopy (B) and analysis by flow
cytometry (C), scale bar = 100 mm. (D) Differentiated THP-1 cells were pretreated with UA (15 mg/dL) for 12 h, and insulin was added (100 nM).
(E–K) Immunoblotting was used to analyze the phosphorylation of AKT, PI3K, and mTOR and the protein levels of AKT, IRS1, IRS2, PI3K, and
mTOR. Data are the mean ± SD [(A): n = 6, (B-D): n = 3, (E-K): n = 4]. Statistics: Two-way ANOVA with Tukey multiple comparisons tests.
Differences were considered significant at P < 0.05. ns, No statistics.
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degradation of phosphorylated Cdc25A were also involved in

IRS2-interacting proteins (Supplementary Dataset 2). Thus,

ubiquitination degradation could be involved in IRS2 and its

interacting proteins to contribute to IR under HUA conditions.
Pharmacological proteasome inhibitor
MG132 rescued insulin signaling and
glucose uptake

HUA induced intrinsic IR in macrophages. Furthermore,

treatment with the pharmacological proteasome inhibitor

MG132 prevented the IRS2 degradation caused by combined

stimulation with HUA and insulin (Figure 7A). To further

investigate whether MG132 facilitated glucose uptake in HUA

conditions, we assessed GLUT-4 translocation. Insulin increased

GLUT-4 translocation to the cell surface in macrophages, which

was significantly inhibited by HUA (Figure 7B). GLUT-4

translocation was increased significantly by MG132

pretreatment and combined stimulation with HUA and

insulin (Figure 7B).
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We next explored the effect of MG132 on insulin signaling in

THP-1 cells exposed to UA (Figure 7C). HUA impaired IRS2/

PI3K/AKT/AS160 signaling, which was rescued by treatment

with MG132 (Figures 7C-F).
Discussion

Our findings indicate that HUA-induced systematic IR may

be associated with inflammation and the development of T2DM.

UOX-KO mice showed metabolic disorders and systemic IR;

inflammatory macrophages were recruited and circulating

proinflammatory cytokine levels increased. We further

demonstrated that hyperuricemia evoked glucose intolerance

in liver macrophages, induced IR, and impaired insulin

signaling. The fundamental cause of obesity is imbalanced

food intake and energy expenditure, leading to chronic low-

grade inflammation (58). These inflammatory responses

inducing IR in obesity and T2DM are not limited to impaired

insulin signaling pathways; complex interactions of multiple

metabolic pathways have also been implicated (52, 59, 60). Of
B C

D E
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A

FIGURE 5

HUA mediated IRS2 protein degradation and activated AMPK/mTOR in macrophages. (A) BMDMs were exposed to HUA for 24 h, and the mRNA
levels of genes associated with insulin signaling were assessed by RT-PCR. (B, C) Differentiated THP-1 cells were pretreated with UA; then,
cycloheximide (CHX, 5 mM) was added for 3 h. IRS2 protein levels were evaluated by immunoblotting. (D) Differentiated THP-1 cells were
pretreated with UA (15 mg/dL) for various periods; then, insulin (100 nM) was added for 3 h. Protein IRS2 and phosphorylated AKT levels were
evaluated by immunoblotting and analyzed by ImageJ. Images are representatives of 3 independent experiments of biological replication.
(E) Images of BMDMs incubated with UA (15 mg/dL, for 3 h) and co-immunostained with phalloidine and lysosomal-associated membrane proteins
(LAMP1), showing the lysosomal localization of mTOR. Scale bar =10 mm. (F, G) Phorbol ester (PMA) (160 nm, for 24 h)-primed THP-1 cells were
treated with UA (15 mg/dL) for various times, scale bar = 50 or 10 mm. Western blot analysis of total and phospho-AMPK levels. (H–J) THP-1 cells
were pretreated with compound C for 2 h and then exposed to UA (15 mg/dL) for 2 h. HUA activated AMPK/mTOR pathway signaling in THP-1
cells, which was blocked by compound C, an inhibitor of AMPK. Data are the mean ± SD from 3–4 independent cell experiments. Statistics: One-
way ANOVA with Tukey multiple comparison tests. Differences were considered significant at P < 0.05.
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note, hyperuricemic mice did not show increased body mass but

did show metabolic disturbances and IR, as evidenced by

changes in glucose uptake, food and water consumed, oxygen

consumption, the respiratory exchange ratio, and energy

expenditure. In addition, the UOX-KO mice showed glucose

intolerance and insulin insensitivity compared to the WT mice,

as assessed by the GTT or the ITT. However, there was no

difference in 18FDG uptake in the myocardium and muscle

between the WT and UOX-KO mice, presumably due to the

timing of PET/CT image acquisition. Whole-body PET images

were acquired 30 min after the intravenous injection of 18F-FDG,

and the ITT and GTT were monitored continuously for 120 min.

Our previous studies demonstrated that HUA induced insulin

resistance in skeletal muscle cells (61) and myocardial cells (7),

suggesting that HUA-induced IR is associated with skeletal

muscles and the myocardium.

Glycemic homeostasis is maintained by efficient

communication between the insulin-secreting organ, the

pancreas, and insulin target organs such as adipose tissue, the

liver, and skeletal muscles in response to physiological

challenges that transiently cause glycemia or lipemia. All
Frontiers in Immunology 12
tissues are filled with their own tissue macrophages, which

maintain tissue homeostasis and physiological functions. IR is

a breakdown of communication at insulin target tissues. At the

onset of IR, macrophages accumulate in the adipose tissue (62),

liver (63), and pancreatic islets (64). Since inflammation is linked

to metabolic health, tissue macrophage responses are potent

mediators of insulin signaling, sensitivity, and resistance but are

often ignored. Compensatory hyperinsulinemia that ensues

excessive dietary carbohydrate intake or early-stage insulin

resistance in overweight or obese patients may provoke

macrophages to release proinflammatory cytokines like IL-1b,
which in turn may render insulin target cells insulin-resistant.

Such a mechanism might be primarily relevant in the liver,

which is exposed to much higher insulin concentrations than

any peripheral organ (65). Kupffer cells contribute to the

production of inflammatory mediators that promote insulin

resistance in hepatocytes. Myeloid/macrophage-specific KO

models such as IKK-b or CCR2 that impair inflammatory

responses in Kupffer cells show attenuation of hepatic insulin

resistance in the setting of high-fat feeding, despite the full

development of hepatic steatosis (11, 66). This study showed that
B

CD

A

FIGURE 6

Outputs of proteomic analysis of IRS2-altered proteins under HUA conditions. Experimental workflow of the identification of IRS2-interacting
proteins. HEK-293T cells were transduced with IRS2 with specific sequences containing the 3×Flag tag, followed by exposure to UA (15 mg/dL)
for 24 h. The resulting cell lysates were reacted with Flag beads. (A) To confirm successful immunoprecipitation, IRS2 overexpression was
identified using a Flag antibody. The groups were empty vectors and IRS2. To identify IRS2-binding proteins, the bound fraction was eluted,
shotgun LC-MS/MS was performed, and the group set was as follows: IRS2 andUA+IRS2. (B, C) The pathways were analyzed for common genes
using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) ver. 6.8. GO analysis and KEGG pathway analysis represent
the functional classes of IRS2-interacting proteins. (D) Proteins remarkably interacting with IRS2 were classified into different protein complexes.
GO and KEGG analyses were performed using DAVID tools (https://david.ncifcrf.gov/). P < 0.01 was considered statistically significant.
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hyperuricemia-induced circulating monocytes were recruited

into the mouse liver; these macrophages exhibited impaired

glucose uptake, insulin sensitivity, and insulin signaling

pathways. The hyperuricemia-induced metabolic disease may

also involve functional integration between several organs via

circulating factors released from mononuclear macrophages.

Next, we explored the mechanism of IR in macrophages.

IRS2 was highly expressed in macrophages, and loss of IRS2 in

myeloid cells improved glucose homeostasis and promoted
Frontiers in Immunology 13
resistance to high fat diet-induced metabolic dysfunction (67).

However, a recent study reported that myeloid cell-specific Irs2-

deficient mice exhibited impairment of IL-4-induced M2a-

subtype macrophage activation as a result of the stabilization

of the FoxO1/HDAC3/NCoR1 corepressor complex, resulting in

IR under the high-fat diet condition (68). Many studies have also

reported that IRS1 or IRS2 degradation is one of the causes of IR

(55, 69). In this study, our data indicated that IRS2 proteasome

degradation might contribute to IR in HUA conditions.
B
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FIGURE 7

MG132 rescues insulin signaling and glucose uptake. (A) BMDMs were exposed to MG132 (10 mM) for 2 h before adding UA (15 mg/dL) for 24 h
and insulin for 3 h. (B) GLUT-4 translocation was assessed by immunofluorescence staining. (C) Cells were pretreated with MG132 (10 mM) for 2
h, then exposed to UA (15 mg/dl) for 24 h, and insulin (100 nM) was added for 3 h. Immunoblotting was used to analyze the phosphorylation of
AKT and PI3K(C). AKT, IRS2, and PI3K proteins were also quantified by immunoblotting (D–F). Data are the mean ± SD from 4 independent cell
experiments. Statistics: one-way ANOVA with Tukey's multiple comparison test. Differences were considered significant at P < 0.05.
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Consistent with previous reports (70), phosphorylated AKT

levels were also decreased, suggesting the impairment of the

insulin pathway. However, long-term insulin exposure also

degraded IRS1/IRS2. Macrophages exposed to UA alone could

not degrade IRS2, but insulin stimulation for 3 h after UA

treatment promoted IRS2 degradation. In addition, the

pharmacological proteasome inhibitor MG132 restored insulin

signaling and glucose uptake.

Ubiquitination plays a critical role in regulating insulin-like

growth factor and insulin signaling (71–76). Several ubiquitin

ligases, such as CUL7 (77), Cbl-b (78), SOCS1, SOCS3 (69), and

ubiquitinate IRSs, promote their proteasomal degradation,

inhibiting IGF and insulin signaling, which contributes to

muscle atrophy, as well as IR. Additionally, we used IRS2 as

bait to find IRS2-interacting proteins and found that various

protein complexes were enriched, including E3 ubiquitin ligase

COP1, cyclin D, and ubiquitin-mediated degradation of

phosphorylated Cdc25A. COP1, an E3 ubiquitin ligase, is

implicated in the ubiquitylation of various protein substrates

to promote their proteasomal degradation, which increases p53

turnover by targeting it for proteasomal degradation (79). Thus,

COP1 could act as a novel targeting IRS2 for ubiquitin-

mediated degradation.

Recent findings indicated that the metabolic effects of AMPK

might be mediated, at least in part, by the modulation of

mTORC1 activity. We found that HUA activated AMPK/

mTOR in macrophages. mTORC1 (ser2448) signaling has

been implicated in insulin and nutrient and cellular energy

status (80, 81), and mTORC1 is known to induce IRS1/2

serine phosphorylation, leading to the inhibition of IRS1/2

tyrosine phosphorylation and/or proteasomal degradation of

IRS1/2 (82–84). AMPK is a well-known physiological inhibitor

of the energy-consuming mTOR signaling pathway.

Accordingly, the HUA-induced AMPK activation in this study

may be a possible mechanism to explain the inhibition of

mTORC1 activity. Therefore, we speculated that HUA

promotes proteasomal degradation of IRS2 and may inhibit

insulin signaling through mTORC1.
Limitations of this study

Although HUA induced IR in HepG2 cells and hepatic tissue

(8, 85), since hepatocytes are the most abundant cell type in the

liver that responds to insulin, the effect of UA in insulin

signaling was not evaluated in primary mouse hepatocytes.

Although we demonstrated the mechanism of IR in

macrophages, previous studies have attempted to define the

reaction kinetics between IR and inflammation (51, 86). Some

reported that local IR preceded inflammation, and others

reported inflammation before IR (14). Under HUA conditions,

we did not confirm a link between inflammation and IR. In
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terms of mechanism, although LC-MS analysis indicated that

IRS2 was degraded by ubiquitin ligase, we did not further verify

it in this study. In addition, crosstalk between hepatocytes and

hepatic macrophages remains to be studied in the UOX-

KO mice.
Conclusion

In summary, the liver in hyperuricemic mice recruited

inflammatory macrophages, which impaired glucose uptake.

The binding of insulin to its receptor activated IRS1/2, which

triggered downstream signaling cascades, including the

phosphorylation of the PI3K/AKT/AS160 pathway, which

regulated GLUT-4 translocation into the plasma membrane

and promoted glucose uptake by macrophages (Graphical

Abstract). In addition, HUA-mediated IRS2 protein

degradation disrupted PI3K/AKT/AS160 signal transduction in

macrophages. The pharmacological proteasome inhibitor

MG132 restored insulin signaling and glucose uptake.

Macrophage activation plays a critical role in hyperuricemia.

Cellular targeting of Kupffer cells to undergo alternative

activation might be an effective strategy for treating HUA-

induced insulin resistance.
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