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A B S T R A C T   

The role of the gut microbiome in pathophysiology, prognostication and clinical management of heart failure 
(HF) patients is of great clinical and research interest. Both preclinical and clinical studies have shown promising 
results, and the gut microbiome has been implicated in other cardiovascular conditions that are risk factors for 
HF. There is an increasing interest in the use of biological compounds produced as biomarkers for prognosti-
cation as well as exploration of therapeutic options targeting the various markers and pathways from the gut 
microbiome that are implicated in HF. However, study variations exist, and targeted research for individual 
putative biomarkers is necessary. There is also limited evidence pertaining to decompensated HF in particular. In 
this review, we synthesize current understandings around pathophysiology, prognostication and clinical man-
agement of heart failure (HF) patients, and also provide an outline of potential areas of future research and 
scientific advances.   

1. Introduction 

The gut microbiome refers to the collection of microorganisms such 
as bacteria, archaea and eukarya found within the gastrointestinal tract 
and their environment, including molecular metabolites and surround-
ings, whereas the gut microbiota refers to all living microorganisms 
within this environment [1,2]. It is an area of active research, with an 
increasing understanding of its role in cardiovascular disease (CVD) 
[3,4]. It has many functions, including protective immune functions and 
metabolic functions related to drug absorption, and is now increasingly 
viewed as an endocrine organ, due to its ability to secrete biologically 
active compounds into the bloodstream, which can influence distant 
locations within the body [3]. Notably, the gut microbiome is not 
stagnant, and can be influenced by lifestyle, diet and medications [3,5]. 
In humans, the gut microbiome is primarily composed of Bacterioides, 
Firmicutes, Actinobacteria, Proteobacteria and Verrucomicrobia, with the 
former two being the most common [6]. Variations exist in the pro-
portions of different microflora based on individual factors, with 

dysbiosis thought to play a role in the pathogenesis and prognosis of 
disease processes, including heart failure (HF). Both dysbiosis and 
changes in bacterial metabolite levels are thought to contribute to HF 
development, pathogenesis and prognosis, though the mechanisms by 
which and timeframe in which this may occur are yet to be clearly 
elucidated [3,6]. Indeed, chronic HF patients have been shown to have 
intestinal growth of other pathogenic microorganisms such as Candida, 
Campylobacter, Shigella and Yersinia [7,8]. Overall, HF is a complex 
disease entity, with a consensus definition as follows: “a clinical syn-
drome with symptoms and/or signs caused by a structural and/or 
functional cardiac abnormality and corroborated by elevated natriuretic 
peptide levels and/or objective evidence of pulmonary or systemic 
congestion” [9]. It can be classified into further subtypes based on left 
ventricular ejection fraction (LVEF), including HF with reduced ejection 
fraction (HFrEF), where LVEF ≤40 %, and HF with preserved ejection 
fraction (HFpEF), where LVEF ≥50 %, among others [9,10]. This liter-
ature review will explore important markers and pathways implicated in 
gut microbiota and host interactions, synthesize current understanding 
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of how these are influenced in HF, with a particular focus on acute 
decompensated HF, and briefly outline potential therapeutic options for 
chronic HF and areas of further research. 

2. Methods 

Databases including PubMed/Medline and Google Scholar were 
searched using combinations of keywords including “heart failure”, 
“chronic heart failure”, “decompensated heart failure”, “gut micro-
biome” and “gut microbiota”. Search keywords were later expanded to 
include specific metabolites “TMAO”, “SCFAs” and “BAs”, and a litera-
ture search undertaken for each individual topic area to summarize 
recent advances for each of these, prior to synthesis of evidence using 
the SPIDER framework, containing sample (HF patients), phenomenon 
of interest (gut microbiome activity), design (both preclinical and clin-
ical evidence), evaluation (changes in gut microbiome activity during 
HF; therapeutic options; gaps in existing literature) and research type 
(qualitative and quantitative measures) [11]. Original research articles, 
review articles, perspective articles, systematic reviews and meta- 
analyses were all considered, as were references thereof. No date 
ranges were applied, and only English language articles were 
considered. 

3. Physiological Pathways 

The gut microbiota is thought to interact with hosts through 

metabolism-independent and metabolite-driven pathways. The former 
can include bacterial cell wall products such as peptidoglycan, and 
lipopolysaccharide (LPS) and the latter can include short-chain fatty 
acids (SCFAs), trimethylamine (TMA)/Trimethylamine N-oxide 
(TMAO), and bile acids (BAs) [3,6]. 

SCFAs are generally produced from saccharolytic and proteolytic 
catabolic pathways involving intestinal flora, with the common products 
being acetate, propionate and butyrate. These have important regula-
tory roles in the integrity of the intestinal barrier, with in-vitro evidence 
suggesting that they may even be able to contribute to repair of intes-
tinal barrier function. This regulatory role is thought to be related to 
their role in maintaining a chronic hypoxic state, which is necessary for 
gut barrier integrity. Additionally, it was recently shown that SCFAs can 
increase tight junction protein expression and mucin production in 
response to external stressors, in the form of chemotherapy, thus pro-
tecting barrier integrity [3,5,7,12–15]. TMAO is a breakdown product of 
L-carnitine, choline or phosphatidylcholine, found in foods such as red 
meat, which are converted to TMA by intestinal flora, which itself is 
subsequently converted to TMAO in the liver by proteins known as 
flavin-containing monooxygenases (FMOs) [3,4,6,16]. Notably, phos-
phatidylcholine is also a major component of bile, and thus TMAO 
production occurs even in those who do not consume red meat, meaning 
that strategies aimed at targeting this pathway are also of clinical and 
research interest along with dietary modifications [3,6,17]. BAs are a 
constituent of bile, which is produced by the hepatic breakdown of 
cholesterol. Primary BAs are those produced by the liver, and enter the 

Fig. 1. Diagram summarizing known normal physiological processes (green, solid outline), with impacts of heart failure (HF) (red, no outline) and sites of action of 
potential therapeutic targets (yellow, dotted outline). Alterations or dysfunction in normal physiological processes are thought to have a possible role in HF 
development, though further research is needed to fully elucidate this (indicated using dotted lines). Abbreviations: CO = Cardiac Output, FMT = fecal microbiota 
transplantation; SCFAs = Short Chain Fatty Acids; TMA = trimethylamine; TMALIs = trimethylamine lyase inhibitors; TMAO = Trimethylamine N-oxide; PIs =
Pathway Inhibitors; BAs = Bile Acids; RDN = Renal Denervation. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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intestines post-prandially with bile. Breakdown from primary BAs to 
secondary is performed by colonic gut microorganisms in the intestines. 
As such, BAs have a key role in the breakdown of cholesterol and sub-
sequent mitigation of atherosclerotic effects. BAs are also known to have 
signaling roles, particularly after entering the enterohepatic circulation 
[5–7,18,19]. In physiological conditions, these pathways and metabo-
lites are important in maintaining health and balance, but changes in the 
proportions of these metabolites and microbes producing them can 
impact health and wellbeing, and certain changes have been implicated 
in HF (Fig. 1) [6,7]. Gut dysbiosis is also implicated in other cardio-
vascular conditions such as diabetes and atherosclerosis, which are 
themselves risk factors for HF development [20–23]. 

The role of the sympathetic nervous system should also be noted, 
with sympathetic compensatory mechanisms restoring cardiac function 
to baseline during acute situations. Such mechanisms include activation 
of the renin-angiotensin-aldosterone system and reductions in periph-
eral blood flow. Prolonged overactive sympathetic compensation causes 
HF [24,25]. The gut microbiome may be able to modulate this sympa-
thetic activity, with a recent mouse model study showing that micro-
biota depletion resulted in increased expression of c-FOS, a marker of 
neuronal activity, and colonization of mice with SCFA-producing bac-
teria suppressed c-FOS in gut sympathetic ganglia. Additionally, it was 
also found that brainstem sensory nuclei were activated during deple-
tion, along with efferent sympathetic premotor glutamatergic neurons, 
suggesting the presence of a bidirectional circuit [26]. Additionally, 
recent evidence suggests that TMAO may also impact sympathetic ac-
tivity, with inhibition of TMAO production associated with improve-
ment in sympathetic excitation in rats fed a high salt diet [27]. In light of 
this, gut dysbiosis leading to altered levels of metabolites such as TMAO, 
SCFAs and BAs may not only have local intestinal actions contributing to 
HF development, but may also cause increased sympathetic activation 
and subsequent end-organ impacts that may play a role in both HF 
development and development of HF risk factors such as hypertension 
[28,29]. This putative interaction between the sympathetic nervous 
system and gut microbiota is further supported by a recent work by 
Nemet et al. who showed that phenylacetylglutamine, a gut microbiota 
derived metabolite, was able to mediate and foster platelet function and 
thrombosis via α2A, α2B and β2 adrenergic receptors. Additionally, as 
adrenergic receptor signaling is implicated in HF development, this 
further suggests that the gut microbiome may influence HF pathogenesis 
through sympathetic mechanisms [24,30,31]. 

4. Changes in Heart Failure 

In HF, reduced cardiac output can lead to intestinal hypoperfusion, 
also contributed to by circulatory congestion. Increased sympathetic 
tone, initially compensatory but later overactive, is also thought to 
contribute via vasoconstriction. Additionally, preclinical studies have 
demonstrated downstream inflammatory impacts which can accentuate 
atherosclerosis and fibrosis, and subsequent HF progression [8,32–35]. 
Bowel wall oedema is also seen, with these factors thought to cause 
hypoxia in the intestine; indeed, intestinal oedema has been previously 
associated with poorer outcomes in hospitalized HF patients [4–6,36]. 
This results in reduced mucosal pH and subsequently, impacts carrier- 
mediated transport within the gut, which has the dual effect of 
increased gut permeability and reduced barrier functions. Subsequent to 
this, there can be bacterial translocation into the circulation, and 
endotoxemia, which can enhance inflammation in HF patients [4–6,12]. 
This is supported by studies showing that decompensated HF patients 
have higher blood LPS levels [7,37–39], and observational studies 
showing that chronic HF patients have increased intestinal wall thick-
ness, insufficiency and permeability [4,6,8,12,40]. Recent preclinical 
evidence from Boccella et al., who used a murine transverse aortic 
constriction (TAC) model of pressure-overload HF, provides mechanistic 
support to the latter. The TAC model can mimic a more gradual time 
course of HF development than other preclinical models. It was shown 

that TAC caused intestinal barrier dysfunction and significantly 
increased serum LPS and cytokine levels, as compared to sham-operated 
controls [41,42]. 

Intestinal hypoperfusion is also associated with dysbiosis, with 
studies showing increased pathogenic bacterial colonization such as 
Shigella in decompensated HF patients as compared to compensated HF 
patients, in a relatively rapid timeframe [43]. Increased sympathetic 
drive also contributes, having been shown to precede and be associated 
with gut dysbiosis and inflammation [44]. Additionally, HF patients 
have decreased levels of SCFA-producing bacteria and increased TMAO- 
producing bacteria, along with reduced overall microbial diversity 
[3,6,7,45]. Evidence suggests that these metabolites can be absorbed 
into the intestinal circulation and resultantly impact distal organs, 
including the heart, thus contributing mechanistically to HF prognosis, 
as well as having potential to act as biomarkers (Fig. 1) [12]. 

4.1. Trimethylamine N-Oxide (TMAO) 

Animal models have shown that rodents with increased dietary 
TMAO and TMAO treatment exhibit structural changes including 
fibrosis and chamber dilation, and significantly worse cardiac function, 
with reduced TMAO showing beneficial effects [7,46,47]. Whilst neither 
of these studies directly manipulated the gut microbiome to produce 
TMAO, TMAO is a known metabolite of various gut bacteria and thus it 
is plausible that dysbiosis leading to increased TMAO would cause these 
impacts. Additionally, TMAO has also been reported to have multiorgan 
inflammatory effects, with reduced levels associated with reduced 
inflammation in rodent models, which can contribute to HF progression, 
in particular due to associations of elevated plasma TMAO with 
impaired renal function [21,48]. These results suggest strongly that 
TMAO has mechanistic effects, although studies are yet to clearly 
elucidate human pathogenesis [7]. TMAO has also been associated with 
more advanced left ventricular diastolic dysfunction and has utility in 
predicting poorer long-term outcomes in chronic systolic HF patients 
[12,49]. It has also been implicated in other atherosclerotic and CVD, 
which are themselves associated with myocardial ischemia and infarc-
tion [21,50], as well as conditions such as diabetes [21], which are 
associated with increased risk of HF development [20,21]. Indeed, 
TMAO has been associated with increased platelet responsiveness and 
activation, and was able to predict thrombotic event risk [51]. Never-
theless, there is a paucity of studies considering acute or decompensated 
HF; a recent 2020 meta-analysis reported that TMAO could predict poor 
prognoses in HF patients, but only one of the included studies considered 
acute HF [52,53]. Two more recent 2021 studies of acute HF patients 
reported predictive value for longer-term outcomes [54] and potential 
intestinal overgrowth [55], respectively. A 2022 meta-analysis similarly 
reported that elevated TMAO was significantly associated with major 
adverse cardiac events and all-cause mortality; this meta-analysis 
included ten studies, of which only three reported on cohorts of acute 
HF patients. Subgroup analysis by acute and chronic HF was performed 
for the latter outcome, all-cause mortality, and significance of the results 
maintained. However, this study was not able to account for dose- 
response relationship between TMAO levels and poor prognosis due to 
few included studies providing relevant data [56]. As such, further 
research is warranted to clarify this association and clinical implications 
thereof. 

4.2. Short Chain Fatty Acids (SCFAs) 

Common SCFAs include acetate, propionate and butyrate; these are 
generally found in the colon, but can also be found systemically, with 
various resultant physiological impacts [7]. Previous studies have 
shown a reduction of SCFA-producing bacteria in HF patients, such as 
Faecalibacterium prausnitzii, and bacteria from the Lachnospiracea and 
Ruminococcacea families, known to contribute significantly to butyrate 
production [7,57–59]. This suggests that SCFA-producing bacteria may 
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have cardioprotective effects. Indeed, considering other CVD, reductions 
in butyrate-producing microbial species have been previously associated 
with an increased risk of atherosclerotic lesion development [60]. 
Whilst there are a number of purported implications and links of SCFAs 
with CVD, with preclinical studies showing that increased dietary SCFAs 
improve cardiac function, these links are yet to be clearly elucidated in 
the context of HF [7,12]. The current state of evidence around their role 
in HF development is summarized in the following paragraph. 

Specifically, SCFAs have been shown to have immune mediatory 
impacts, with subsequent impacts on cardiac structure and function, 
particularly via enhancement of anti-inflammatory regulatory T cell 
pathways [4,6]. Additionally, they have also been shown to have 
modulatory impacts on blood pressure, which could impact HF devel-
opment, though further research is required to clarify this putative as-
sociation [6,12]. Importantly, SCFAs, particularly butyrate, are thought 
to have a role in maintaining integrity of the gut barrier. This is via 
promotion of intestinal epithelial cell differentiation, reparation of 
damaged mucosa, tight junction protein expression, mucus generation 
and mediation of inflammation caused by circulating exogenous sub-
stances, and potentially a response to external stressors to reverse 
changes that occur [6,7,14,15]. Additionally, in the colon, butyrate is 
thought to activate hypoxia inducible factor to assist in maintenance of 
the gut barrier, as the physiologic state of this region is relative hypoxia 
[12,14]. As such, hypotheses pertaining to reductions in SCFAs having a 
role in HF are corroborated by observed increases in gut permeability in 
HF patients [8,40,57]. As with TMAO, there is a gap in the literature in 
the context of decompensated HF patients with, to our knowledge, no 
studies exploring the role of SCFAs in outcomes for this group. 

4.3. Bile Acids (BAs) 

It has been previously shown that BAs have a role in signaling upon 
entering the systemic circulation, and BA receptors have been found in 
cardiomyocytes, suggesting that they may influence cardiovascular 
function [5,7,57]. Secondary BAs are thought to have major roles, and it 
was recently shown that an increased ratio of secondary to primary BAs 
in chronic HF patients predicted reduced overall survival in unadjusted 
analyses [5,57,61]. Additionally, BAs are also thought to influence 
inflammation and fibrosis, along with intestinal barrier integrity, hence 
having another potential role in HF pathophysiology [7]. The G protein- 
coupled receptor TGR5 and nuclear receptor farnesyl X receptor (FXR) 
have both been implicated in mediating actions of BAs. TGR5 is thought 
to be cardioprotective, but there is controversy around the role of FXR, 
with further studies required to elucidate this [6,7,37]. Gut dysbiosis 
and its subsequent impacts on BAs and their levels may also have indi-
rect contributions to HF development, due to the important role BAs 
play in cholesterol metabolism and subsequent excretion [18]. The role 
of BAs in decompensated HF is also not clear and warrants further study. 

5. Therapeutic Options 

Therapeutic guidelines for HF have recently been published, with 
comprehensive recommendations for management of HF and its various 
subtypes. Both non-pharmacological and pharmacological measures are 
recommended, stratified as per the new the Universal Definition and 
Classification of Heart Failure, with strong class 1 evidence for most 
disease phenotypes, barring pharmacological agents targeted at HFpEF 
specifically [10]. However, considering previous results that chronic HF 
patients with high TMAO levels had worse outcomes and TMAO levels 
did not respond well to guideline-based therapies, and that adding 
TMAO to a model with B-type natriuretic peptide improved prognosis, 
further research related to therapeutic mechanisms targeting manipu-
lation of the gut microbiome may be useful [62]. Despite this, there is no 
mention of such therapeutic options, owing to these being currently in 
their infancy; though some therapeutic options have been implemented 
for treatment of other clinical conditions, their use in HF is currently in 

either hypothetical or experimental stages, with further validation 
necessary. These also include non-pharmacological measures such as 
alterations in diet, metabolite levels and microbial flora. However, the 
majority of these are focused on chronic HF as opposed to acute (Fig. 1) 
[3,63]. 

5.1. Lifestyle Modifications 

Reducing dietary red meat lowers the intake of TMAO precursors, 
with patients receiving a Mediterranean diet shown to have reduced 
CVD and mortality risk [3,6,17]. Indeed, it has been shown in clinical 
studies that changing to a red meat free diet can cause rapid reductions 
in plasma TMAO levels [50]. Additionally, high-fiber diets have been 
shown to prevent HF development in preclinical studies, thought to be 
related to an increased production of the SCFA acetate, and subsequent 
beneficial cardioprotective and gut barrier maintenance effects 
[6,7,12,64]. A western diet low in fiber and rich in saturated fat has been 
shown to increase intestinal permeability and subsequently increase 
circulating LPS and endotoxaemia [7]. Notably, whilst such dietary 
modifications have been shown to have beneficial impacts on cardiac 
function and HF biomarker levels, impacts of other concomitant lifestyle 
interventions are unclear, and hence further studies exploring the 
impact of dietary interventions in conjunction with existing lifestyle 
strategies in HF patients is necessary [6]. 

Exercise is also emerging as a modulator of the gut microbiota and 
has subsequent beneficial impacts on cardiac function, particularly 
being associated with increased levels of the SCFA butyrate [4]. 
Addressing sleep fragmentation, commonly reported in HF patients, has 
also been suggested as having therapeutic potential, though a recent 
preclinical mouse model study showed that whilst inducing sleep frag-
mentation and HF in the mice individually resulted in gut microbiome 
alterations, when both conditions were induced concomitantly there 
was no additional effect, and hence continuing research is necessary to 
further elucidate any links between sleep, gut microbiome alterations, 
and HF development and prognosis [65,66]. 

5.2. Antibiotics 

Preclinical studies have shown a role for antibiotic therapy in HF 
treatment, which could modify the composition of the intestinal 
microbiota, but there is still a lack of clarity in human patients [7]. 
Another proposed reason for beneficial impacts of antibiotics is reduced 
bacterial translocation, and thus reduced systemic inflammation, but 
this has not been translated to improved clinical outcomes [6,57]. 
Additionally, previous studies have shown reduced plasma TMAO levels 
with antibiotic use, which rebounded after discontinuation thereof 
[21,67]. However, the Targeting Gut Microbiota to Treat Heart Failure 
(GutHeart) randomized controlled trial (RCT), which investigated the 
effect of the antibiotic rifaximin and the prebiotic Saccharomyces bou-
lardii on LVEF and HF biomarkers relative to patients receiving stan-
dards of care only, showed no significant differences between groups 
[68]. Hence, in light of these variable results, further research is critical, 
especially considering the potential impact on beneficial gut bacteria 
viability that antibiotic use can have, which could cause overgrowth of 
harmful bacteria and contribute to antibiotic resistance risk, both of 
which could further complicate patient management. However, in the 
present, a personalized approach is necessary to ensure benefits of 
antibiotic use outweigh the risks for each patient [4,12,21,69]. 

5.3. Prebiotics and Probiotics 

Prebiotics refer to food substrates able to promote growth of certain 
beneficial microorganisms [7]. Putative effective prebiotics may have 
benefits through actions at various points in the physiological pathways 
by which the gut microbiome and its metabolites may influence HF 
progression. They include various substances that can promote the 
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fermentation of dietary fiber into SCFAs, beneficial due to their car-
dioprotective effects and contribution to gut barrier maintenance 
[70,71]. Another substance with purported benefits at other points in 
the pathway includes Bifidobacterium animalis subsp. lactis LKM512, 
which was recently shown to reduce fecal TMA concentration, abun-
dance of TMA-producing bacteria and serum tumor necrosis factor alpha 
levels in probiotic group vs placebo group, hence potentially reducing 
TMAO-related HF progression [72]. Preclinical studies also indicate that 
there may be a beneficial role of oligosaccharides, including those that 
are food-derived, as prebiotics. They have been shown to promote SCFA- 
producing bacteria and reduce opportunistic pathogenic bacteria, and 
may also prevent hypertension and HF development [70,71]. To our 
knowledge, there are few human studies pertaining to hypertension and 
HF specifically, but a recent double blind RCT showed that fructo- 
oligosaccharides dosage was associated with significant positive 
changes in both diversity and abundance of SCFA-producing organisms, 
including Faecalibacterium, Ruminococcus and Oscillospira [73]. These 
have previously been shown to be beneficial to cardiac health [7,57]. 
Additionally, prebiotics have also been shown to potentially oppose 
negative effects of antibiotics by promoting diversity in the microbiome, 
though evidence regarding any potential concurrent use is lacking, with 
the GutHeart trial not investigating this [7,57,68]. 

Probiotics are live microorganisms introduced in a bid to restore a 
healthy balance of microflora [7]. These include Lactobacillus planatrum 
299v, which has shown utility in preclinical studies, and Saccharomyces 
boulardii, which showed improved cardiac function in a cohort of 
chronic HF patients, albeit with a small sample size [7,74]. However, the 
GutHeart trial showed no significant effect of Saccharomyces boulardii 
treatment on HF biomarkers or LVEF relative to the other intervention 
(antibiotic use) and control groups [68]. Probiotic use is also of interest 
after myocardial infarction (MI), as adverse cardiac remodeling (CR) 
may result in HF development. Probiotic use may have benefits post-MI 
due to reduced inflammatory activity, which could contribute to 
improved CR, and improvements in cardiac risk factors such as hyper-
tension, dyslipidemia and diabetes mellitus [75–77]. Indeed, a recent 
RCT by Moludi et al. showed that probiotic use in this context was 
associated with improvements in echocardiographic indices, albeit not 
significantly [75]. Hence, probiotic use could be useful in certain clinical 
contexts, but further research is necessary to ascertain their clinical 
utility and which clinical contexts they may be useful in, particularly 
considering reported risk of probiotics undergoing translocation into 
systemic circulation [6,57]. 

5.4. Fecal Microbiota Transplantation (FMT) 

Aimed at transferring functional bacteria from healthy subjects to 
patients and thus altering gut microbiota composition [4], FMT has 
shown utility in refractory Clostridioides difficile infections and inflam-
matory bowel disease. However, the potential for use in HF patients is 
unclear, with, to our knowledge, no studies in HF patients to date 
[6,7,12,21,57]. Additionally, infection, endotoxin transfer and rejection 
risks must be considered [21]. 

5.5. TMAO Pathway Inhibitors 

Considering the understanding of TMAO as having a role in cardio-
vascular function and HF, there is great interest in inhibiting TMAO or 
TMA production. Drugs have been developed for this, inhibiting various 
aspects of the pathway, including 3,3-dimethyl-1-butanol (DMB), which 
is a choline analogue, and hence prevents TMA synthesis, as well as 
fluoromethylcholine (FMC) and iodomethylcholine (IMC), which both 
inhibit the TMA generating cutC and cutD enzyme pair. Each of these 
drugs was found to reduceplasma TMAO levels and improve cardio-
vascular structural changes and function, with the cutC/cutD inhibitors 
also associated with reversals in platelet hyperreactivity [47,78]. 
Encouragingly, these drugs were not associated with systemic toxicity. 

However, evidence suggests that factors other those targeted by these 
drugs are associated with TMA production [79]. Hence, further under-
standing of the underlying drug pathways being targeted is necessary to 
drive further development of such drugs and understanding of efficacy 
[4,12,21,47,78,79]. Additionally, a personalized medicine approach 
which considers how individuals may produce and metabolize TMAO 
uniquely based on underlying factors is of great clinical interest [69]. It 
has also been recently shown that the cntA/B complex, a gene cluster 
involved in TMAO production, was positively correlated with TMAO 
levels in HF patients, particularly from the Escherichia and Klebsiella 
genera. As such, strategies for targeting dysbiosis may be of additional 
clinical value by facilitating reduced TMAO or causing TMAO inhibition 
[80]. 

5.6. Renal Denervation (RDN) 

Recently, RDN has emerged as a potential treatment for HF, as it 
reduces global sympathetic tone and thus may address the role the 
sympathetic nervous system plays in HF pathophysiology and develop-
ment [81]. It has previously been shown that RDN has benefit in treat-
ment of hypertension, which can contribute to HF development [81,82], 
and was recently shown that RDN may be a safe and effective treatment 
for HF with preserved ejection fraction, with benefits appearing to be 
independent of blood pressure changes [81,83]. The relationship be-
tween RDN and the gut microbiome is of particular interest, with Guo 
et al. reporting that RDN was able to reverse abnormal gut microbiome 
changes in rats with chronic HF, with increased abundances of beneficial 
bacteria and reductions in harmful bacteria observed [84]. However, 
further preclinical and human studies are necessary to validate these 
preliminary findings, and better understand the mechanisms underlying 
these changes. 

6. Conclusions and Future Directions 

There is now an increased appreciation of the potential interrelation 
between the gut microbiome and CVD, including HF. However, further 
clarification of mechanistic roles of underlying metabolites and their 
potential as biomarkers is necessary, with TMAO being particularly 
promising in this regard. Further research into its prognostic capabilities 
is warranted, as well as studies looking at whether SCFAs and BAs can be 
used in this manner. If found to have prognostic value, such biomarkers 
could have a role in risk stratification in HF, with incorporation into 
nomograms along with other biomarkers that have been shown to have 
benefit, such as natriuretic peptides, potentially ameliorating their 
predictive value [85,86]. Indeed, using nomograms has been shown to 
have benefits in prognostication and readmission previously in chronic 
HF, which could benefit risk stratification for HF patients and thus guide 
treatment decisions [87]. Additionally, biomarker evidence of HF has 
recently been included in the new Universal Definition and Classifica-
tion of Heart Failure, as part of the criteria for Stage B ‘pre-heart failure’, 
which refers to those without symptoms or signs but with any one of 
structural heart disease, abnormal cardiac function and elevated bio-
markers, specifically natriuretic peptides or troponin [9]. As such, if the 
prognostic capability of TMAO, SCFAs and BAs as biomarkers was to be 
validated, these could potentially be incorporated into such definitions 
to further improve and guide risk stratification, considering that they 
have been implicated in HF pathophysiology. Additionally, as natri-
uretic peptides can also be elevated in disease conditions other than HF, 
such as chronic kidney disease or atrial fibrillation, the use of multiple 
biomarkers may facilitate an individualized approach to diagnosis and 
risk stratification [9,88,89]. However, there are variations in specific 
patterns of dysbiosis for each compound discussed, and previous studies 
have had marked variations in study populations and protocols [69]. As 
such, further targeted research pertaining to each of these putative 
biomarkers is warranted, with measurement of blood and urinary levels 
of particular relevance for potential future clinical uptake [21]. 
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Previous research is also limited by a lack of clarity around the extent 
of diversity within the microbiome. Thus, further research with large 
sample sizes and comprising subgroup analyses of participants who have 
other factors that influence variability of the microbiome such as 
ethnicity, age, long-term medication and antibiotic use, and disease 
conditions such as diabetes and autoimmune conditions is critical, and 
may inform further understanding of the gut microbiome in physiolog-
ical settings, along with how this may change from a pathophysiological 
point of view in HF [21,34,90]. Machine learning applications may be of 
relevance for this, considering the vast number of factors interacting 
with the gut microbiome and the high levels of diversity, and have been 
proposed in other contexts with similar high data volumes in order to 
ascertain clinically relevant relationships and patterns [34,91]. In fact, 
machine learning has previously been shown to have value in person-
alizing dietary advice provided to patients [57,92,93]. The role of co-
morbid conditions such as hypertension and atrial fibrillation must also 
be considered during this process, as these may influence treatment 
response due to the shared underpinnings these conditions are thought 
to have [81]. Additionally, the gut microbiome and metabolites have 
been implicated in graft survival and treatment response in HF patients 
requiring heart transplantation (HT). It has also been shown that TMAO 
levels remain elevated even after HT. As such, further research into the 
extent to which the gut microbiome impacts HT treatment response, and 
into the efficacy of combining HT with treatment strategies addressing 
gut microbiome changes is warranted [94,95]. 

There is a literature gap in acute decompensated HF patients, and 
further study of underlying mechanisms is particularly important in this 
group, along with larger scale studies to better understand prognostic 
utility [57]. During the Coronavirus Disease 2019 (COVID-19) 
pandemic, remote medicine and use of telemedicine to overcome staff-
ing shortages and mandatory isolation periods has become increasingly 
necessary, and there has been a global shift towards telemedicine owing 
to the increased convenience and access to care it has provided. Addi-
tionally, there is increasing evidence of CVD in both paediatric and adult 
patients. As such, biomarkers that can predict outcomes and stratify risk 
for patients may assist with overcoming barriers related to physical 
examination imposed by telemedicine, and may also assist with resource 
allocation in such settings, as has previously been reported [96–100]. 
Additionally, it has been recently hypothesized that the gut microbiome 
may modulate COVID-19 infection response [101]. As such, a detailed 
understanding of underlying pathophysiological mechanisms of the 
metabolites outlined earlier could facilitate incorporation of these bio-
markers into clinical decision making both during and beyond the 
COVID-19 pandemic, and influence development of therapeutic mech-
anisms, though further research and development of frameworks for a 
personalized approach to treatment seem to be critical for these me-
tabolites to be clinically relevant as biomarkers [57,69]. 
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