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This paper presents an innovative classification system for hand gestures using 2-channel surface electromyography analysis.
The system developed uses the Support Vector Machine classifier, for which the kernel function and parameter optimisation are
conducted additionally by the Cuckoo Search swarm algorithm. The system developed is compared with standard Support Vector
Machine classifiers with various kernel functions. The average classification rate of 98.12% has been achieved for the proposed
method.

1. Introduction

Surface electromyography (SEMG) is a noninvasive method
of measurement of the bioelectrical activity of muscles.
SEMG is used both in the diagnosis of diseases of the
muscular system and in the development of man-machine
interfaces. However, the accuracy of systems that translate
human muscle activity into the motion of various machinery
or accuracy of sophisticated analysis of human motion based
on SEMG signals is still an open problem.

Several successful systems for EMG classification can
be pointed out. Examples of systems previously developed
include the use of the 𝑘-Nearest Neighbors algorithm in
combination with Bayesian analysis, which achieves correct
classification rate of 94% [1]. Better results are achieved with
techniques that use neurofuzzy adaptive inference (95% of
correctly classified samples) [2], wavelet analysis (97.4%) [3],
or a combination of wavelet analysis with the Support Vector
Machine classifier (95%) [4]. Even better results are achieved
when the Support Vector Machine classifier is subjected
to additional parameter optimisation process done by the
Particle Swarm Optimisation algorithm (97.41% of correctly
classified samples) [5].

As it is apparent from the exemplary works presented
above, there is still room for improvement, and a question

is raised as to what modification should be introduced to
achieve possibly even better results. This paper presents a
novel classification system for SEMG signals based on the
Support Vector Machine (SVM) classifier optimised by the
Cuckoo Search (CS) algorithm.TheSEMGsignals are derived
from measurements of the flexor carpi radialis and extensor
carpi radialis longus muscles and are subjected beforehand
to proper parametrisation in the time domain. The system
was used to classify six basic hand gestures: hand closing,
hand opening, wrist flexion, wrist extension, index finger
straightening, and thumb straightening. As a result, a rate of
98.12% of correctly classified samples was achieved.

2. Methods

2.1. Acquisition and Segmentation of the SEMG Signal. The
SEMG signal was measured using the NeuroTrac MyoPlus2
device from two locations on the forearm of a healthy man—
the flexor carpi radialis and extensor carpi radialis longus
muscles. Measurements were made at 16Hz.

The SEMG signal was measured while performing six
types of hand gestures: hand closing (HC), hand opening
(HO), wrist flexion (WF), wrist extension (WE), index finger
straightening (IF), and thumb straightening (T). Figure 1
presents the hand gestures performed. Each set of gestures
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Figure 1: The hand gestures tested.

consisted of twenty samples performed as a sudden change
of hand position from a relaxation state to one of the
above gestures and then holding the gesture for five seconds,
followed by return to the relaxation state. Examples of SEMG
signals collected are presented in Figure 2.

Proper segmentation of the SEMG signal is important in
case of building systems that should react to the movement
of the body. Segments that are too short lead to falsification
of results, whereas too long segments cause unnecessary
computational load when analysing signals in real time.
There are two types of segmentation which can be applied
to the SEMG signals: sliding segmentation and overlapping
segmentation. An SEMG signal segment of about 200ms
contains enough information to properly classify it, and at the
same time it is so short that the use of sliding segmentation
does not negatively affect the operation of the system [6].
However, in the case of segments longer than 200ms, it
is recommended to use the overlapping segmentation [7].
During the research described, the sliding segmentation with
a single segment of length 187.5ms was used.

2.2. SEMG Signal Feature Extraction. Selection of an appro-
priate data representation has a significant impact on the
effectiveness of a classifier. SEMG signals can be described
through three types of representation: in the time, frequency,
time-frequency, or time-scale domain [7, 8]. The time-scale
domain is not recommended for the analysis of SEMG
signals because of the large computational load it puts on
the calculations and the need to further reduce the size of
the feature set [9]. Moreover, the use of transformations in
the frequency domain is also associated with unnecessary
computational load and does not provide significantly better
results in the classification process [6, 9, 10]. Therefore, the

most commonly used representations of the SEMG signals
are those in the time domain.

The following features can be distinguished in particular
among the transformations in the time domain: mean abso-
lute value (MAV), waveform length (WL), Willison ampli-
tude (WAMP), and slope sign change (SSC). The literature
proves their high efficiency in supporting the classification
process, particularly when using a single coefficient (MAV
or WL) or their combinations (MAV, WL, and WAMP or
MAV,WL, and SSC) [6, 9]. Formulae for the aforementioned
features for a set of signal data points 𝑥

𝑖
, 𝑖 ∈ {1, 2, . . . , 𝑁}, can

be found below:

MAV = 1
𝑁

𝑁

∑

𝑖=1

𝑥𝑖
 , (1)

WL =
𝑁−1

∑

𝑖=1

𝑥𝑖+1 − 𝑥𝑖
 , (2)

WAMP =
𝑁−1

∑

𝑖=1

[𝑓 (
𝑥𝑖 − 𝑥𝑖+1

)] ,

𝑓 (𝑥) =
{

{

{

1 if 𝑥 ≥ threshold

0 otherwise,

(3)

SSC =
𝑁−1

∑

𝑖=2

[𝑓 ([𝑥
𝑖
− 𝑥
𝑖−1
] × [𝑥

𝑖
− 𝑥
𝑖+1
])] ,

𝑓 (𝑥) =
{

{

{

1 if 𝑥 ≥ threshold

0 otherwise.

(4)

A series of tests were performed to determine the best
feature (or set of features) to be used for the case described.
The results of these tests are presented in Section 3.

2.3. Support Vector Machine Classifier. The Support Vector
Machine (SVM) is a binary supervised classifier, the aim of
which is to determine the optimal hyperplane that separates
two groups (classes) of points in space [11, 12].The hyperplane
must meet the requirement of having a maximum margin,
that is, being maximally distant from both classes.

The problem presented is nonlinear; therefore, in order to
deal with nonlinearity of the feature space particular kernel
functions are used. The most commonly used functions are
quadratic, polynomial, and radial basis functions.

Although originally the SVM was created as a binary
classifier, there are strategies, the use of which extends the
capabilities of the SVM to classify multiple classes simulta-
neously. The strategies that can be used are one against all,
everyone against everyone, and all at the same time [13]. The
strategy applied in the research reported is one against all,
in which each class is separated and compared to the others,
thereby forming a number of classifiers equal to the number
of classes analysed.The choice of the strategy is dictated by its
ease of implementation, speed, and relatively high efficiency
in comparison with the other strategies mentioned [6].
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Figure 2: Examples of SEMG signals measured. (a) Hand closing. (b) Hand opening. (c) Index finger straightening. (d)Thumb straightening.
(e) Wrist extension. (f) Wrist flexion.
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(1) Establish a 𝑑-dimensional objective function 𝑓(𝑥), 𝑥 = (𝑥
1
, . . . , 𝑥

𝑑
)
𝑇

(2) Generate initial population of 𝑛 host nests 𝑥
𝑖
(𝑖 = 1, 2, . . . , 𝑛)

(3) while end conditions are not met do
(4) Get a cuckoo randomly by Lévy flights and evaluate its quality/fitness 𝐹

𝑖

(5) Randomly choose a nest 𝑗 among the 𝑛 host nests
(6) if 𝐹

𝑖
> 𝐹
𝑗
then

(7) Replace 𝑗 by the new solution
(8) end if
(9) A fraction of worse nests are abandoned and new ones are built
(10) Keep the best solutions
(11) Rank the solutions and find the current best
(12) end while

Algorithm 1: Cuckoo Search algorithm.

2.4. Cuckoo Search Optimisation. The use of the SVM as
a classifier yields good results, especially with respect to
electromyographic signal [4, 6]. However, there still remains
the problem of proper selection of the kernel function and
the parameters of the classifier, which—tuned to a particular
case—may help in the calculation of an even better adjusted
hyperplane. This problem is nontrivial, so the common
motion is to use metaheuristic methods to solve it.

A group of metaheuristic optimisation methods, which
are gaining increased recognition, are the swarm algo-
rithms. Swarm algorithms are based on the concept of
distributed intelligence, according to which relatively low-
complex actions of many agents and their mutual interaction
lead to a new and better quality. Swarm algorithms are
used in a wide range of optimisation problems [14]. The
literature shows several examples of successful application of
swarm optimisation to tune the SVM classifier. Furthermore,
electromyographic signal classifiers benefit from this combi-
nation of methods as their classification rate is higher than
other methods compared [5].

One of the most prominent swarm algorithms is the
Cuckoo Search (CS) algorithm, developed by Yang and Deb
[15]. The CS algorithm is inspired by the brood parasitism
phenomenon seen in some species of cuckoos, which lay
their eggs in nests of birds of other species. The algorithm
applies the mechanism of Lévy flights to select subsequent
nests, which allows for proper balance between exploration
and exploitation of the search space. The main assumptions
of the algorithm are as follows:

(i) Each cuckoo lays one or more eggs (in a randomly
chosen nest) that represent coordinates of a point in
the search space, being the problem solution.

(ii) Some nests with the best value of fitness function are
moved to the next iteration.

(iii) The number of nests is fixed and at the end of
each iteration a part of them is rejected with some
probability.

Based on the above presented assumptions, an optimi-
sation algorithm was developed. Brief description of the CS
algorithms is presented in Algorithm 1.

The CS algorithm proved to be efficient in several opti-
misation tasks [14, 16]. Moreover, the CS algorithm used
as a means of choosing appropriate kernel function and
parameters for the SVM classifier proved to be improving
further the classifier’s capabilities, outperforming even the
artificial neural network classifier [17].

2.5. Optimisation Procedure for the SVM. The CS algorithm
used in the study was designed to optimise the coefficients
of the SVM classifier and choose the optimal kernel function
for a given class. The choice of the kernel function was made
from the quadratic, polynomial, and radial basis functions.

Figure 3 presents a generalised experimentation proce-
dure scheme and the procedure is as follows:

(1) The whole dataset is divided into the main training
and testing sets.

(2) The CS algorithm iterations start. Each cuckoo con-
tains a solution, that is, the SVM kernel function and
its parameters, coded as integers (the kernels) and
real numbers (the parameters). Every fitness function
evaluation, an SVM network is trained using the
coded solution and randomly chosen training set and
then the network is tested with the other part of the
main training dataset, thus providing a classification
rate.

(3) After performing the CS optimisation, the best solu-
tion found is used as the SVM parameters for classi-
fying the testing set (i.e., generalising), thus providing
the final result.

Therefore, the optimisation algorithm uses the correct
classification rate of the training set during 10-fold cross-
validation as its fitness function. If the same result was
obtained, each solution was compared further by the number
of support vectors.

3. Results and Discussion

The study was divided into two parts. In the first part, the
quality of classification by using the SVMwith various kernel
functions was cross-examined with several sets of features
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Figure 3: Schematic of the experimentation procedure.



6 Computational and Mathematical Methods in Medicine

Table 1: Percent of correctly classified samples by the SupportVector
Machine with the quadratic kernel.

Features used HC HO WF WE IF T Mean
MAV 97.01 94.01 99.32 99.21 96.93 92.8 96.58
WL 85.01 83.13 89.89 88.3 84.14 82.73 85.53
MAV +WL +
WAMP 92.16 87.88 98.51 98.06 93.89 90.2 93.45

MAV +WL +
SSC 91.67 85.13 98.04 97.79 92.36 88.54 92.26

Table 2: Percent of correctly classified samples by the Support
Vector Machine with the polynomial kernel.

Features used HC HO WF WE IF T Mean
MAV 96.8 94.28 99.52 99.01 97.81 93.36 96.81
WL 83.65 81.32 89.67 87.25 85.01 81.8 84.78
MAV +WL +
WAMP 89.39 86.83 98.67 97.72 93.27 89.8 92.61

MAV +WL +
SSC 86.82 82.58 97.87 97.54 91.61 86.38 90.47

Table 3: Percent of correctly classified samples by the Support
Vector Machine with the radial basis function kernel.

Features used HC HO WF WE IF T Mean
MAV 97.3 94.6 98.83 98.61 97.97 93.47 96.8
WL 84.36 83.43 88.98 87.73 85.09 83.34 85.49
MAV +WL +
WAMP 89.58 88.42 95.21 95.17 94.92 92.76 92.68

MAV +WL +
SSC 90.9 86.03 98.24 97.82 92.28 87.94 92.2

Table 4: Percent of correctly classified samples by the Support
Vector Machine optimised by the Cuckoo Search algorithm.

HC HO WF WE IF T Mean
97.97 96.53 99.56 99.33 98.12 97.22 98.12

that describe the bioelectrical activity of muscles obtained
(Tables 1, 2, and 3). In the second part, the SVM-CS classifier
developed was tested using the best feature set chosen from
the previous tests (Table 4). The SEMG measurements col-
lected were divided into learning and testing groups, making
every time a random selection of samples.

Based on the classification results collected for different
features that describe the SEMG signal, it can be stated that
the best of them is the characterisation made on the basis of
the mean absolute value of the signal. The average correct
classification rate was above 96% for each kernel function
tested.However, it can be assumed that this result was affected
by the small number of SEMG channels being considered and
the small range of hand gestures performed. If a more com-
plex study was performed using SEMGmultichannel motion
detection, the information that the other features provide
may be useful. In this case, the introduction of unnecessary
amount of information for the classifier probably resulted in

its overfitting. It should be also noted that there is no single
kernel function, for which the results are clearly the best.

The results of the SVM-CS classification system devel-
oped show that the additional optimisation of SVM param-
eters positively affects its efficiency. In certain cases (wrist
flexion and extension), the results did not exceed what was
previously shown. However, the overall average correct clas-
sification rate of 98.12% distinguishes the method presented.

Positive effects of the optimisation algorithm can be also
seen in the number of support vectors created during the
training process. Their average number per class was 5.01,
which compared to the best result of the classifier without
additional optimisation (22.1) is a major improvement. It
should be alsomentioned that the average standard deviation
of the results obtained by the SVM-SC classifier amounted
to 0.004, which is more than an order of magnitude smaller
than the smallest standard deviation obtained with the
SVM classifier without optimisation.This again confirms the
reliability of the SVM-SC classifier presented.

4. Conclusions

The paper presents a novel classification system developed
to distinguish six types of hand gestures based on surface
electromyographic signals acquired from the flexor carpi
radialis and extensor carpi radialis longus muscles. The
system presented is built upon the Support Vector Machine
classifier and the Cuckoo Search optimisation algorithm.
The purpose of the Cuckoo Search algorithm is to choose
appropriate kernel function and its parameters.

The system developed is compared with a standard
Support Vector Machine classifier. The average correct clas-
sification rate of the new system is 98.12%, which is better by
1.31% compared to the best result obtained by the Support
Vector Machine classifier without additional optimisation.
Moreover, judging by the standard deviation of the results, the
optimised classifier is amore reliable solution for the problem
presented.

It is also shown that with the set of signals provided
the best feature to distinguish hand movements is the mean
absolute value of the SEMG signal.

Due to the use of the Cuckoo Search algorithm as an
additional optimiser for the classifier’s parameters, this paper
presents the first such method applied to the SEMG signal
analysis.
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recognition for realtime biosignal interfacing,” in Proceedings of
the 13th International Conference on Intelligent User Interfaces
(IUI ’08), pp. 30–39, ACM, January 2008.

[2] A. Subasi, “Classification of EMG signals using combined fea-
tures and soft computing techniques,” Applied Soft Computing
Journal, vol. 12, no. 8, pp. 2188–2198, 2012.



Computational and Mathematical Methods in Medicine 7

[3] J.-U. Chu, I. Moon, Y.-J. Lee, S.-K. Kim, and M.-S. Mun,
“A supervised feature-projection-based real-time EMG pat-
tern recognition for multifunction myoelectric hand control,”
IEEE/ASME Transactions on Mechatronics, vol. 12, no. 3, pp.
282–290, 2007.

[4] M.-F. Lucas, A. Gaufriau, S. Pascual, C. Doncarli, and D. Farina,
“Multi-channel surface EMG classification using support vector
machines and signal-based wavelet optimization,” Biomedical
Signal Processing and Control, vol. 3, no. 2, pp. 169–174, 2008.

[5] A. Subasi, “Classification of EMG signals using PSO optimized
SVM for diagnosis of neuromuscular disorders,” Computers in
Biology and Medicine, vol. 43, no. 5, pp. 576–586, 2013.

[6] M. A. Oskoei and H. Hu, “Support vector machine-based
classification scheme for myoelectric control applied to upper
limb,” IEEE Transactions on Biomedical Engineering, vol. 55, no.
8, article 7, pp. 1956–1965, 2008.

[7] M. A. Oskoei and H. Hu, “Myoelectric control systems—a
survey,” Biomedical Signal Processing and Control, vol. 2, no. 4,
pp. 275–294, 2007.

[8] M. Zecca, S. Micera, M. C. Carrozza, and P. Dario, “Control of
multifunctional prosthetic hands by processing the electromyo-
graphic signal,” Critical Reviews in Biomedical Engineering, vol.
30, no. 4-6, pp. 459–485, 2002.

[9] A. Phinyomark, P. Phukpattaranont, and C. Limsakul, “Feature
reduction and selection for EMG signal classification,” Expert
Systems with Applications, vol. 39, no. 8, pp. 7420–7431, 2012.

[10] X. Chen, X. Zhang, Z.-Y. Zhao, J.-H. Yang, V. Lantz, and K.-
Q. Wang, “Multiple hand gesture recognition based on surface
EMG signal,” in Proceedings of the 1st International Conference
on Bioinformatics and Biomedical Engineering (ICBBE ’07), pp.
506–509, Wuhan, China, July 2007.

[11] B. E. Boser, I.M.Guyon, andV.N.Vapnik, “A training algorithm
for optimal margin classifiers,” in Proceedings of the 5th Annual
Workshop on Computational Learning Theory (COLT ’92), pp.
144–152, ACM, Pittsburgh, Pa, USA, July 1992.

[12] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273–297, 1995.

[13] M. N. Kapp, R. Sabourin, and P. Maupin, “A dynamic model
selection strategy for support vector machine classifiers,”
Applied Soft Computing Journal, vol. 12, no. 8, pp. 2550–2565,
2012.

[14] X.-S. Yang and S. Deb, “Cuckoo search: recent advances and
applications,” Neural Computing and Applications, vol. 24, no.
1, pp. 169–174, 2014.

[15] X.-S. Yang and S. Deb, “Cuckoo search via Lévy flights,” in
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