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Group B Streptococcus (GBS) is one of the most common bacteria isolated in human
chorioamnionitis. Placental infection due to GBS is a major risk factor for fetal organ injuries,
preterm birth, perinatal morbidity andmortality, and life-longmultiorgan morbidities. Preclinical
and clinical studies have shown that GBS-induced infection drives polymorphonuclear (PMN)
cell infiltration within the placenta, the hallmark of human chorioamnionitis. In preclinical and
clinical studies, the upregulation of interleukin(IL)-1b in the placenta and maternal/fetal blood
was associated with a high risk of neurodevelopmental impairments in the progeny. We
hypothesized that targeted IL-1 blockade administered to the dam alleviates GBS-induced
chorioamnionitis and the downstream fetal inflammatory response syndrome (FIRS). IL-1
receptor antagonist (IL-1Ra) improved the gestational weight gain of GBS-infected dams and
did not worsen the infectious manifestations. IL-1Ra reduced the IL-1b titer in the maternal
sera of GBS-infected dams. IL-1Ra decreased the levels of IL-1b, IL-6, chemokine (C-X-C
motif) ligand 1 (CXCL1), and polymorphonuclear (PMN) infiltration in GBS-infected placenta.
IL-1Ra treatment reduced the IL-1b titer in the fetal sera of GBS-exposed fetuses. IL-1
blockade also alleviated GBS-induced FIRS and subsequent neurobehavioral impairments of
the offspring without worsening the outcome of GBS infection. Altogether, these results
showed that IL-1 plays a key role in the physiopathology of live GBS-induced chorioamnionitis
and consequent neurobehavioral impairments.

Keywords: autism spectrum disorder (ASD), cerebral palsy (CP), fetal inflammatory response syndrome (FIRS),
hyperactivity, interleukin-1 receptor antagonist, maternal immune activation, placentoprotection, neuroplacentology
Abbreviations: Ab, antibody; ADHD, Attention deficit hyperactivity disorder; ASD, Autism spectrum disorder; BHI, Brain heart
infusion; CP; cerebral palsy; CTL, Control; CXCL, Chemokine (C-X-C motif) ligand; Dc, Decidua; F, Female; FIRS, Fetal
inflammatory response syndrome; GBS, Group B Streptococcus; hr, Human recombinant; IHC, Immunohistochemistry; IL,
Interleukin; IL-1Ra, Interleukin-1 receptor antagonist; i.p., Intraperitoneally; JZ, Junctional zone; L, Labyrinth; LPS,
lipopolysaccharide; M, Male; N, Number; MIA, Maternal immune activation; NLR, Nod-like receptor; PMN, Polymorphonuclear
cells; Sec, Second; SEM, Standard error of the mean; TLR, Toll like receptor; TNF, Tumor necrosis factor; Tx, Treatment.
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INTRODUCTION

Epidemiological and preclinical studies linked intrauterine
infections, maternofetal immune activation (MIA), and
neurodevelopmental impairments in offspring (1–7). Most
experimental designs aiming to investigate the impact of MIA
triggered by bacteria have used lipopolysaccharide (LPS) from the
Gram-negative bacillus Escherichia coli – which acts mainly
through Toll-like receptor 4 (TLR4) (4, 7–12). Gram-positive
cocci like Group B Streptococcus (GBS, Streptococcus agalactiae)
use different inflammatory signaling pathways than LPS, such as
TLR2 and TLR6 and b-hemolysin/NOD-like receptor (NLR)-P3
pathway-driven placental inflammation. This pro-inflammatory
cascade induces polymorphonuclear (PMN) cell infiltration in
GBS-infected tissues, as observed in human chorioamnionitis (13–
16). Preclinical investigations have shown that GBS-induced
inflammation is associated with neurodevelopmental
impairments such as intrauterine growth retardation, cerebral
palsy- (CP), hyperactivity-, and autism spectrum disorder
(ASD)-like behaviors (17, 18). Elucidating the molecular
mechanisms involved in GBS infection and GBS-induced MIA
represents a significant health care need, as these disorders remain
very prevalent in the population despite improvements in
perinatal healthcare (19–22). As the nature of the infecting
pathogen affects MIA, it is essential to conduct pathogen-specific
studies profiling the inflammatory responses to develop
personalized treatment strategies.

Administration of IL-1b in dams has been shown to induce
dose-dependent functional and structural changes in placental
and fetal brain tissues (23, 24). IL-1b has also been shown to be
associated with the maternofetal immune responses consequent
of LPS and GBS exposure in utero (7, 8, 25, 26). Using a
preclinical rat model of GBS-induced chorioamnionitis, we
established that GBS inoculated intraperitoneally (i.p.) to the
dam: (i) infects the placenta (24), (ii) rapidly induces the
overexpression of IL-1b in the placentas (27) (iii) and leads to
sexually dichotomous chorioamnionitis, with higher IL-1b
release and PMN recruitment in male versus litter-matched
female tissues (24, 27).

Our laboratory and others have shown end-gestational IL-1
blockade to be placento- and neuro-protective in LPS-induced
chorioamnionitis and reduce subsequent neurodevelopmental
anomalies (7, 8, 11, 28). However, no study had investigated
yet whether this maternal treatment could also be suitable in
GBS-induced chorioamnionitis and, more broadly, in an active
bacterial infection, in which IL-1 blockade might affect anti-
infectious immunity.

Initially approved by the FDA in 2001, the human
recombinant (hr) IL-1 receptor antagonist (IL-1Ra), anakinra,
is an effective therapeutic option with a short half-life and a high
safety profile already used in clinical practice for the treatment of
rheumatoid arthritis and certain autoinflammatory disorders (8,
29–32). Anakinra administration has already been shown to be
well tolerated during pregnancy, with satisfactory pregnancy
outcomes (33–37). Anakinra has also been suggested to be a
safe therapeutic option to attenuate the cytokine storm triggered
by the viral infection in pregnant women with severe Covid-19
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(38, 39). The aim of this study tests whether end-gestational
IL-1 blockade decreases GBS-induced placental and fetal
inflammation without aggravating GBS infection and prevents
neurobehavioral impairments of the offspring.
MATERIAL & METHODS

Animals
All experiments were approved by the Research Institute of
McGill University Health Centre (RI-MUHC) and performed
according to the Canadian Council on Animal Care. Pregnant
Lewis dams (n = 23) were obtained from Charles River
Laboratories (Kingston, NY, US) at gestational day (G)13.
They were housed at the RI-MUHC animal facility (Glen site,
Montreal, QC, Canada) in a controlled environment (20°C with
12 h light/dark cycle) and had access to water and food ad
libitum. All injections were performed i.p. At G19, dams were
randomized into three groups, namely: (1) CTL dams (number
(n) of dams = 6) injected with saline, (2) GBS plus saline-
inoculated dams (n = 9), and (3) GBS plus hrIL-1Ra-injected
dams (n = 8). At 36, 48, and 60 h following GBS inoculation,
dams from the GBS plus IL-1Ra group were injected either with
100 µL of sterile 0.9% saline, or with 100 µL of 10 mg/kg of IL-
1Ra (RI0322, Neo Scientific, MA, US). The same treatment
protocol of 10 mg/kg/12 h of hrIL-1Ra has been already shown
to be placento-protective and well-tolerated in a rat model of
LPS-induced chorioamnionitis (40).

Bacterial Growth Conditions
A stock of b-hemolytic capsular serotype la GBS (strain #16955),
stored at -80°C in brain heart infusion (BHI) broth with 15%
glycerol, was used for all experiments (7, 24). Bacterial
preparation was performed as previously described (24, 27).
Briefly, an aliquot containing the GBS bacteria in 0.9% of
sterile saline was kept on ice until the time of injection.
Dilutions between 10-5 and 10-10 were plated in triplicate on
BHI agar and incubated overnight at 37°C. As previously
described, the targeted final GBS dose was 108 colony-forming
units per 100 µl (24). To rule out any contamination, each GBS
dose was tested for identification on CHROMID Strepto B Agar
Plate (BioMerieux, Saint-Laurent, QC, Canada).

Gestational Monitoring, Caesarian-Section
and Tissue Sampling
Dams were weighed twice per day and regularly observed to
detect any sickness behavior. Maternal weight gain was
calculated by subtracting the weight measured at G22 minus
the weight at G18. Dams underwent C-sections at G22 (72 h
post-inoculation). This time point was chosen based on previous
sequential measures of the inflammatory markers in this model,
showing that the placental and fetal expression peaks occurred at
72 h post-GBS i.p. inoculation (24). Maternal/fetal blood and
placentas were collected, processed and stored as previously
described (24). Briefly, C-sections were performed while dams
remained under deep anesthesia (2% isoflurane, 1.5% O2). Alive
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fetuses were collected along with their associated placenta. The
weight of each fetus and placentas was measured. Fetal and
maternal blood were collected in Lithium Heparin Gel Separator
tubes (BD Microtainer blood collection tubes, BD, NJ, US), then
centrifuged, aliquoted and stored at -80°C until analysis. The
number of dead and alive fetuses was used to determine the
mortality rate per litter. Placentas were separated from
the fetuses and cut on the median coronal plan (23, 24).

Histopathology and
Immunohistochemistry
Fixed samples were processed, paraffin-embedded, and two
adjacent 5-mm thick sections were used per slide (VWR,
Mississauga, ON, Canada) for in-situ analysis. Placental PMN
infiltration was studied by IHC, as described (23, 24). Rabbit
anti-PMN antibody (Ab) (CLA51140, 1:100; Cedarlane Lab, ON,
Canada) and mouse horseradish peroxidase (HRP)- conjugated
anti-rabbit (sc-2357, 1:100, Santa Cruz Biotechnology, TX, US)
were used as the primary and secondary Ab, respectively, to
identify PMN in placental tissues. Diaminobenzidine molecule
(DAB) (Roche, Indianapolis, IN, US) was used to detect IHC
staining. Tissues were counterstained with hematoxylin. An
additional set of slides was processed similarly without each
primary Ab as a negative control.

Image Analysis and Quantification
A NanoZoomer Digital Pathology (NDP) scanner (NanoZoomer
2.0RS, Hamamatsu Photonics) was used to scan slides. As
previously described, densities were measured in the three
different compartments (decidua, junctional zone, and
labyrinth) of placentas as previously described (23). Briefly,
PMN cells were counted in five fields in the labyrinth, five in
the junctional zone, and three in the decidua. PMN cell densities
were determined by dividing the counted number of PMNs by
the field area. The mean value of PMN cell density per placental
compartment was used in the statistical analysis.

Placental Protein Extraction and
Cytokine Quantification
Pierce BCA protein kit (Thermo Scientific, ON, Canada) was
used to extract total protein from placentas. Bradford Protein
Assay (Bio-Rad, ON, Canada) was used to quantify the whole
isolated proteins. The protein suspension was aliquoted in 120 ml
and kept at -80°C until analysis. Following the manufacturer’s
instructions, pro-inflammatory cytokines were quantified using
rat ELISA kits for IL-1b, IL-6, tumor necrosis factor (TNF-a),
and Chemokine (C-X-C motif) ligand 1 (CXCL1) (R&D System,
MN, US). ELISA results for placentas were calculated with
protein concentration per individual sample. Fetal sera from
males and females were pooled by sex within the same litter
before performing ELISA assays, as only a limited amount of
serum could be obtained per fetus.

Behavioral Tests
For each subject in the study, a 10-day no-testing period was
respected between subsequent behavioral experiments. All
Frontiers in Endocrinology | www.frontiersin.org 3
behavioral experiments were performed between 8 and 11 AM
(i.e., during the daylight schedule).

Nest-seeking behavior is an olfactory discrimination test
mediated by olfactory cues from the home cage bedding, and a
recognized test to assess social-odor recognition of pups to find
their mother (41). At P9, rodents rely on their olfactory system to
communicate and discover the surrounding environment.
Nest-seeking is a commonly used test to measure social-
communication skills, maternal attachment and sensory
integration, whose defects are key symptoms of ASD (42, 43).
The test was performed as described (27).

The Open field test was performed to assess spontaneous
locomotor activity in a novel environment, as described (27, 44).
Briefly, the pup was placed in a corner, facing the center of the
open field apparatus, and was allowed to explore for 5 min.
Tracking and recording of locomotor activities started as soon as
the animal was placed in the apparatus (Any-Maze Video
Tracking System, Stoelting Co, Wood Dale, IL, USA). Different
parameters were analyzed; namely, the total distance travelled,
and duration of mobility.

Statistical Analysis
The mean of two to three males and three females fetuses or pups
per treated dam was used as n = 1 per sex and per litter to prevent
the artificial samples size increase caused by treating each rat
from the same litter as an independent subject. All data were
collected from four individual experiments. Statistical analysis
and figure representation were performed using GraphPad Prism
software version 8 (San Diego, CA, USA). Shapiro-Wilk test was
performed in order to assess the normality of the data. Data were
normally distributed when the p-value was superior to 0.05. One-
way ANOVA with Dunnett’s multiple comparisons or Kruskal-
Wallis test with Dunn’s multiple comparisons were performed
when samples were normally or non-normally distributed,
respectively, with treatment as the fixed factor. Outliers were
defined and removed by Grubbs’s test. The level of significance
was set at *p < 0.05 or **p < 0.01 for all parameters. Data are
presented as the adjusted mean ± standard error of the
mean (SEM).
RESULTS

Impact of the IL-1Ra Treatment on
Maternal Weight Gain and
Pro-Inflammatory Response in the
Maternal Circulation
GBS-infected dams showed decreased maternal weight gain
compared to the CTL group (Figure 1A). No difference in
maternal weight was detected between the GBS vs GBS plus
IL-1Ra group (Figure 1A). IL-1Ra reduced the amount of
circulating IL-1ß in the maternal sera of GBS-infected dams
compared to uninfected dams (Figure 1B). No treatment effect
was detected for the maternal levels of circulating CXCL1 and
TNF-a (Figures 1C, D).
July 2022 | Volume 13 | Article 833121
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IL-1Ra Interfered With GBS-Induced
Pro-Inflammatory Response
in the Placentas
IL-1Ra significantly decreased the levels of IL-1ß in placentas
associated with male and female fetuses in utero-exposed to GBS
(Figure 2A). IL-1Ra also significantly decreased IL-6 titers in male
placentas and showed trend toward reduction in female placentas in
utero-exposed to GBS (Figure 2B). There was a significant decrease
in CXCL1 concentrations in GBS plus IL-1Ra- compared to GBS-
exposedmale placentas; a trend toward such a decrease was detected
in placentas associated with female fetuses (Figure 2C). IL-1Ra did
not significantly affect the concentration of TNF-a in placentas in
utero-exposed to GBS (Figure 2D).
Effects of IL-1Ra Treatment on PMN
Infiltration in GBS-Infected Placentas
IL-1Ra treatment reduced the PMN cell density in all GBS-
infected placental compartments (Figures 3A, B) of both sexes,
Frontiers in Endocrinology | www.frontiersin.org 4
namely the decidua (Figure 3C), labyrinth (Figure 3D) and
junctional zone (Figure 3E).

IL-1Ra Reduced the Levels of Circulating
IL-1ß in GBS-Exposed Fetuses
GBS-induced chorioamnionitis significantly increased the level
of circulating IL-1ß in fetal sera compared to saline-exposed
subjects (Figure 4A). The IL-1Ra treatment induced a trend
toward a reduction of IL-1ß titers in the fetal sera in GBS-
exposed fetuses (Figure 4A). No difference was detected in the
levels of CXCL1 in the fetal sera between experimental
conditions (Figure 4B).

No Adverse Effect of IL-1Ra Was
Observed on Placental and Fetal Weight,
Maternofetal Infection Sickness Behavior
and Fetal Mortality
Modest but significant variations of placental, fetal weight and
fetal/placental ratio were observed in female placental and fetal
A B

DC

FIGURE 1 | Maternal IL-1Ra treatment increased gain weight and reduced IL-1b released within the sera of GBS-infected dams. Comparison of mean maternal
weight from G18 to G22 (A). Mean maternal serum concentration of IL-1b (B), CXCL1 (C) and, TNF-a (D) quantified by ELISA between CTL, GBS, and GBS plus
IL-1Ra-exposed dams at 72 h post-GBS infection. Data were collected from three individual experiments. Analyses were performed between the experimental
groups using Kruskal-Wallis test with Dunn’s multiple comparisons; *p < 0.05. Bars show mean ± SEM. Number (n) of dams: CTL (n = 6), GBS (n = 9), and GBS
plus IL-1Ra (n = 8); n of serum samples: CTL (n = 4-6), GBS (n = 6-9), and GBS plus IL-1Ra (n = 6-8). CTL, control; ELISA, enzyme-linked immunosorbent assay;
CXCL1, chemokine (C-X-C motif) ligand 1; G, gestational day; GBS, group B Streptococcus; IL-1Ra, IL-1 receptor antagonist; SEM, standard error of the mean.
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tissues from the GBS plus IL-1Ra group compared to the GBS
group (Figures 5A–C). In females only, IL-Ra brought back
fetal/placental ratio to CTL level (Figure 5C). There was no
increased mortality, no difference in sickness-related behavior,
and no premature delivery observed between the three
experimental conditions, showing that IL-1 blockade did not
aggravate GBS infection in dams (data not shown). No change in
the maternal weight gain was observed in GBS plus IL-1Ra
compared to the GBS dams (Figure 1A). Litter size was
identical between GBS plus IL-1Ra- versus GBS-exposed dams
(Figure 6A). The fetal mortality rate was identical between GBS
versus GBS plus IL-1Ra groups (Figure 6B).

Effect of IL-1Ra on Behavioral Tests
In the nest-seeking test at P9, our results showed that the
concomitant in utero exposure to GBS infection with IL-1Ra
prevented the subsequent increase in the latency to reach the
familiar odor observed in GBS-exposed male as well as female
Frontiers in Endocrinology | www.frontiersin.org 5
offspring (Figure 7A). In the open field test at P20, our results
showed that the concomitant in utero exposure to GBS infection
with IL-1Ra prevented the increased duration of mobility and
total distance travelled in female, but not male, offspring in
utero-exposed to GBS (Figures 7B, C).
DISCUSSION

Key Findings
This study aimed to test the effect of end-gestational IL-1
blockade in the context of GBS-induced chorioamnionitis. The
IL-1 blockade has been shown to be both placento- and feto-
protective in an MIA model using the LPS from Escherichia coli
(40, 45–47). However, no study has yet investigated whether such
intervention would also be effective in chorioamnionitis
triggered by GBS. Our results demonstrated the key role of IL-
1 in driving GBS-induced chorioamnionitis through (i)
A B

DC

FIGURE 2 | Administration of IL-1Ra to the dam decreased the levels of pro-inflammatory cytokines within GBS-infected placentas. Mean concentration of IL-1b
(A), IL-6 (B), CXCL1 (C), and TNF-a (D) in placentas at 72 h quantified by ELISA. Data were collected from four individual experiments. Statistical analyses were
done by one-way ANOVA or Kruskal-Wallis test with Dunnett’s or Dunn’s multiple comparisons multiple between the experimental groups (CTL, GBS, and GBS plus
IL-1Ra); *p < 0.05. Bars show mean ± SEM. Number (n) of male and female placentas: CTL (male and female, n = 3-6), GBS (male and female, n = 4-7), and GBS
plus IL-1Ra, (male and female, n = 6-7). CXCL1, chemokine (C-X-C motif) ligand 1; ELISA, enzyme-linked immunosorbent assay; F, female; GBS, group B
Streptococcus; IL, interleukin; IL-1Ra, IL-1 receptor antagonist; M, male; SEM, standard error of the mean; Tx, treatment.
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upregulating pro-inflammatory cytokines and chemokines, (ii)
increasing PMN infiltration in the decidua and labyrinth, (iii)
inducing a FIRS within the labyrinth as well as downstream
within the fetal sera, and (v) reducing neurobehavioral
impairments in male and female offspring. Finally, on IL-1Ra,
GBS infection remained self-limited, and infected dams did not
present any sign of infectious aggravation compared to sole
GBS infection.

Previous Studies
Preclinical studies of GBS-induced sepsis showed that GBS-driven
inflammation was mainly driven by TLR2/6 and b-hemolysin/
(NLR)-P3 pathways and IL-1 (13–16). Pathogen-induced
placental inflammation was previously addressed with non-GBS
models of MIA, using mainly inactivated bacteria and pathogen
components involved in chorioamnionitis mainly via ligands/
receptors such as LPS/TLR4 (12, 48–52). Our findings are
Frontiers in Endocrinology | www.frontiersin.org 6
consistent with the placento-protective efficacy and safety of IL-1
blockade as shown in other preclinical models using LPS from E.
coli (TLR4 agonist), lipoteichoic acid or Pam3CysSerLys4 (TLR2
agonists) as inducers of MIA in pregnant mice, rat, rhesus macaque
and sheep models (5, 8, 9, 53). This study demonstrated benefits
against the pro-inflammatory immune response triggered by GBS-
induced chorioamnionitis and showed that hrIL-1Ra was well-
tolerated in a model of end-gestational infection. This preclinical
study, added to previous research using other pathogen components
as immune triggers during gestation, would bring us to the
threshold of assessing the feasibility of a phase 2 randomized
controlled trial as a repurpose of an already FDA-approved agent
(28, 46).

Clinical trials of anti-inflammatory interventions in the hope to
protect maternofetal organs - especially the fetal brain - against
pathogen-induced inflammatory responses have been disappointing
mainly because of their lack of efficacy (54, 55). Newborns from
A B

D EC

FIGURE 3 | Administration of IL-1Ra to the dam alleviated PMN infiltration in GBS-infected placentas. Coronal section of a rat CTL placenta stained by IHC using
PMNs Ab, black dashed lines define the placental compartments [decidua (Dc), junctional zone (JZ), and labyrinth (Lb)] (A). Representative images of PMN (arrows)
infiltrates in the Dc, JZ, and Lb of placentas at 72 h post-GBS inoculation (B). Mean density (n of field = 3-5/compartment, field unit = mm2) of PMNs identified by
IHC in the Dc (C), Lb (D), and Jz (E). Data were collected from four individual experiments. Statistical analyses were performed by one-way ANOVA or Kruskal-Wallis
test with Dunnett’s or Dunn’s multiple comparisons multiple between the experimental groups (CTL, GBS, and GBS plus IL-1Ra); *p < 0.05, **p < 0.01, ***p ≤ 0.001,
****p ≤ 0.0001. Bars show mean ± SEM. Number (n) of male and female placentas: CTL [male (n = 3); female (n = 3)], GBS [male (n = 5); female (n = 5)] and, GBS
plus IL-1Ra [male (n = 6), female (n = 6)]. Ab, antibody; Dc, decidua; F, female; GBS, group B Streptococcus; IL-1Ra, IL-1 receptor antagonist; Jz: junctional zone;
Lb: labyrinth; M, male; n, number; PMN, polymorphonuclear cell; SEM, standard error of the mean Tx, treatment.
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mothers at high risk of infections did not show better
neurobehavioral outcomes when treated in utero by sole antibiotic
administration (56, 57). Administration of antibiotics
before preterm birth did not alleviate some unfavourable
neurobehavioral outcomes but increased by two-fold the
occurrence of CP (54). The adverse effects of antibiotics might
result from possible exacerbation of pathogen-induced
inflammatory responses as observed in the same preclinical model
of end-gestational GBS infection, in which there was an antibiotic-
induced release of pro-inflammatory components (58). Trials of
administration of corticosteroids to pregnant mothers or postnatally
to newborns showed that corticosteroids do not improve some
neurobehavioral outcomes and even result in adverse effects in
specific therapeutic designs (59–62). A recent phase 3 randomized
and placebo-controlled trial assessed the efficacy of erythropoietin
onmortality and neurological sequelae of preterm newborns; results
did not show any difference between treated versus placebo groups
Frontiers in Endocrinology | www.frontiersin.org 7
(63). These disappointing outcomes support the need to investigate
the potential benefit of more targeted immunomodulators, such as
IL-1Ra, to find a better compromise between the benefits and risks
of drugs used during the perinatal period. In this regard, we chose to
test the role of in utero blockade of IL-1 during GBS infection of
dams on the nest-seeking behavior of the offspring. The nest-
seeking test evaluates impaired communication skills, maternal
attachment and sensory integration in pups, which are recognized
autistic-like traits in rodent models. Previous works showed that
male, but not female, pups in utero exposed to GBS develop autistic-
like traits, and among them an increased latency in finding the
familiar odor of their nest (23). Our experiments show that IL-1 has
a key role in such FIRS-induced autistic-like traits. Previous works
showed that in utero exposure to GBS triggered a hyperactive-like
behavior (23) in female offspring. Interestingly, our results show that
IL-1 is also at play in the FIRS-induced hyperactive behavior in
female offspring.
A B

FIGURE 4 | Administration of IL-1Ra to the dam reduced the levels of IL-1b in fetal sera. Mean titres of IL-1b (A), and CXCL1 (B) in circulating fetal sera. Data were
collected from four individual experiments. Analyses were done by one-way ANOVA test between the experimental groups (CTL, GBS, and GBS plus IL-1Ra) when
treatment was significant; *p < 0.05. Number (n) of male and female fetuses: CTL (n = 4-6), GBS (n = 5-7), and GBS plus IL-1Ra (n = 5-7). Bars show mean ± SEM.
CTL, control; CXCL1, chemokine (C-X-C motif) ligand 1; GBS, group B Streptococcus; IL-1, interleukin-1; IL-1Ra, IL-1 receptor antagonist; SEM, standard error of
the mean; Tx, treatment.
A B C

FIGURE 5 | Impact of IL-1Ra on fetal and placental weight in response to GBS infection. IL-1Ra positively controls the fetal and placental weight in response to
GBS infection. Mean of placental weight (A), fetus weight (B) and the ratio of fetus placenta at G22 (C). Number (n) of placentas: CTL (male [n = 43), female (n =
23)], GBS [male (n = 38), female (n = 43)], and GBS plus IL-1Ra [male (n = 33), female (n = 32)]. Data were collected from four individual experiments. Analyses were
done by ANOVA test separately for males and females with Dunnett’s multiple comparisons between groups (CTL, GBS, and GBS plus IL-1Ra) when treatment was
significant. *p < 0.05, **p < 01, ****p ≤ 0.001 Bars show mean ± SEM. F, female; G, gestational day; GBS, group B Streptococcus; IL-1Ra, IL-1 receptor antagonist;
M, male; SEM, standard error of the mean.
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Limitations
In this novel preclinical research, we showed the benefit of
maternal human recombinant IL-1Ra intervention to control
the GBS-induced MIA. However, our work presents some
limitations. Firstly, we did not address on which tissue beyond
the placenta and cell type(s) (e.g. maternal versus fetal white
blood cells, white blood cell type, or placental cell) the IL-1
blockade exerts its effect and in which extent IL-1Ra crosses the
placental barrier in the context of GBS infection. These
important mechanistic aspects will remain to be investigated.
Secondly, our study showed sex-specific differences in some
impacts of the IL-1Ra treatment, but we did not address the
mechanism underpinning it. For instance, sex hormones such as
androgen peaking in rat fetuses at the end of gestation, estrogen,
or glucocorticoid, which have been reported to be differentially
expressed in male versus female placenta and other developing
Frontiers in Endocrinology | www.frontiersin.org 8
organs, might play a role in the sex differences we noticed (64,
65). However, the complex study of such possible involvement of
hormones in regulating the sex-dichotomic developmental
inflammatory response is beyond the goal of the present study
and will be addressed in subsequent research. Thirdly, beyond
the brain, the impact of IL-1 blockade on the prevention of the
MIA-induced fetal multiorgan - e.g. bronchopulmonary
dysplasia, retinopathy, necrotizing enterocolitis - defects
remains another essential subsequent research topic.

Future Directions
Maternal hr IL-1Ra therapy, using doses already recommended
for human inflammatory diseases, may meet the safety/efficacy
criteria to launch a phase II placento- and neuro-protective
clinical trial (37, 66). However, the translation from animals to
humans requires caution as cytokines are involved in many
A B

FIGURE 6 | Litter size and fetal mortality. Mean number of alive fetuses per litter (A), percentage of dead fetuses per litter (B). Number (n) of litters: CTL (n = 6), GBS (n
= 9) and, GBS plus IL-1Ra (n = 7). Data were collected from four individual experiments. Analyses were done by ANOVA test separately for males and females. Dunnett’s
multiple comparisons were done between groups (CTL, GBS, and GBS plus IL-1Ra). Bars show mean ± SEM. GBS, group B Streptococcus; IL-1Ra, IL-1 receptor
antagonist; n, number; SEM, standard error of the mean.
A B C

FIGURE 7 | Effect of IL-1Ra on reducing neurobehavioral impairments in male and female offspring. Time of latency to reach familiar odor (A), Duration of mobility
(B), Total distance travelled (C). Data were collected from three individual experiments. Statistical analyses were done by one-way ANOVA or Kruskal-Wallis test with
Dunnett’s or Dunn’s multiple comparisons multiple between the experimental groups (CTL, GBS, and GBS plus IL-1Ra); *p < 0.05, **p < 01. Bars show mean ±
SEM. Number (n) of male and female: CTL (male and female, n = 6-11), GBS (male and female, n = 7- 10), and GBS plus IL-1Ra, (male and female, n = 4-8). Bars
show mean ± SEM. F, female; GBS, group B Streptococcus; IL, interleukin; IL-1Ra, IL-1 receptor antagonist; M, male; n, number; SEM, standard error of the mean;
Tx, treatment.
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neurodevelopmental mechanisms and other physiological
functions (67).
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