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Introduction: Biological rhythm 
insights are being mined from new 

data, but you need more than a pick 
and shovel to make it at the frontier

The study of biological rhythms has changed from 
a niche field into one that has real-world impacts 
across society. Broader audiences are recognizing the 
importance of biological rhythms in their own lives or 
fields. This successful growth is in part due to the fact 

that the world has itself gone through a transforma-
tion—it has become data rich. An investigation into 
biological rhythms used to require massive efforts to 
generate enough data to capture biological effects at 
multiple time points across a cycle. Today, many such 
experiments continue, as they should. However, new 
opportunities have emerged to complement these 
works. An overwhelming abundance of ambient data 
are generated primarily for purposes unrelated to cir-
cadian studies. However, with sufficient temporal 
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resolution, researchers can dig into them to mine out 
insights about biological rhythms in the world. 
Examples include wearable device data from popula-
tions using personal sleep or fitness trackers (Smarr 
et al., 2020; Viswanath et al., 2024), social media activ-
ity (Roenneberg, 2017), livestock management 
(Aguirre et al., 2021), or urban infrastructure (Schirmer 
et  al., 2019). The emergence of this new scientific 
method—mining for findings from mountains of 
ambient or already extant data about the world—is 
exciting, as it allows us to imagine seeing biological 
rhythms interacting with environmental inputs in 
ways (and at spatiotemporal scales) never before pos-
sible (and still perhaps well beyond the scope of what 
could be funded by a normal research proposal).

While many people recognize that biological 
rhythms are fundamental to the health and well-
being of organisms and ecosystems, few actually 
make use of them by integrating them into their stan-
dard analyses. Many scientists, clinicians, or other-
wise still do not by default make decisions that take 
into account the rhythmic structures within the 
materials they deal with (e.g., medicine does not by 
default look at the time of day as critical for interpret-
ing measurements or administering medications; 
Albuquerque et al., 2021). The ubiquity of rhythms, 
on one hand, and the absence of optimization in most 
systems around these ubiquitous rhythms, on the 
other hand, mean that as data render the presence (or 
at least proxy traces) of these rhythms numerically 
accessible, they open opportunities for truly massive, 
transformative impacts in and across fields. The 
rhythms being optimized around are increasingly 
visible and tractable through these data, and so 
opportunities for improved optimizations abound 
and continue to expand.

This transformation into a data-rich world also 
means that many data types and sources are new to 
research communities, as they are new to everyone, 
and so deserve fresh consideration as to their value 
for research enterprises. Some now-digitized data 
sources make more obvious targets for biomedical 
research, such as medical records, county mortician 
logs, satellite imagery for weather, climate, and light 
at night. Some others may be less obviously useful in 
biomedical research because they appear (or are) less 
immediately related, as in computational telemetry 
data, traffic flow or collision records, and university 
learning management system (LMS) logs. Others 
might be less obvious because the analyses required 
to discern patterns were not previously accessible 
due to advances in automated analysis tasks, as in 
using large language models to assess changes in the 
frequency of textual content from social media across 
millions of users. In both cases, the data are generated 
by living systems (mostly humans, but not always, as 

in agricultural data or pest management data) and so 
if as a community we are right about the ubiquity of 
biological rhythms, these data ought to reflect or echo 
the rhythms of their creators. Even if the resulting 
rhythms’ residuals are noisy or weak, the abundance 
of data enables large-scale analyses that may reveal 
their existence with greater clarity than would be 
possible with smaller samples taken more directly. 
Especially when measuring humans in a modern 
societal context, there are so many other inputs that 
might shape an individual’s physiology and behavior 
that extracting trends from biological cycles will be 
very hard from any handful of individuals or sam-
ples, so that the presence of non-random, rhythmic 
influence may only become discretely measurable 
with measurements at scales of millions or more.

As the opportunity to find patterns from real-
world data expands, by their nature they challenge 
the way most of us were trained to do science. For 
example, the use of parametric tests like the t test rest 
on the assumption that one has to idealize a distribu-
tion to mathematically compare it to another. By con-
trast, resampling from very large data can allow for 
data-specific probabilities of finding any given set of 
observations without any need for assumptions 
about what the Platonic ideal of the distribution 
should have been. The former evolved when a scien-
tist would carry out calculations on a small set of data 
by hand. This is still useful in many cases and is the 
core of most scientific training in statistics in part due 
to cultural momentum; the latter offers a different 
and scalable alternative appropriate for science done 
on these newer, emergent sources of much larger 
datasets, where in the assumptions of the former 
approaches are likely to be inappropriate and mis-
leading. Machine learning (ML) or signal processing 
are not part of the average biology curriculum, nor 
are the various concerns that arise from data manage-
ment, cleaning, missingness, and so forth, but with-
out some exposure to data science tools, it is hard to 
gain new biological insights from these new data-
enabled opportunities.

That is not to say that every biologist or clinician 
should become a computer scientist. Far from it! 
Biological insights are critical to appropriate experi-
mental design and analysis (deciding which data to 
acquire and what to look for) as well as for feature 
engineering (curating what an algorithm needs to see 
or know to efficiently make sense of the data; Futoma 
et al., 2020). And the truth that old ways may be inap-
propriate in a new context cuts both ways. Engineers 
and computer scientists have not traditionally had 
access to large sets of data from biological systems, 
but instead principally electrical and mechanical 
ones—engineered systems from which idealized dis-
tributions might well be expected. As a result, many 
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attempts to apply engineering principles to algo-
rithms for use on biological systems (Gianfrancesco 
et al., 2018; Ledford, 2019; Futoma et al., 2020) lead to 
biases and harm due to the same failure to fit the 
more complex structures created by data from bio-
logical systems.

Luckily, research is an increasingly collaborative 
enterprise (Jones et  al., 2008; Jones, 2009). To make 
safe and meaningful headway in biological research 
with big data, it is increasingly important that biolo-
gists understand some of the tools used by data scien-
tists and data engineers. In part so that they can make 
appropriate use of new techniques and data sources, 
and in part so that they can communicate with col-
laborators with computational but not biological 
training, to enable analytic designs that appropriately 
involve insights only available to experts with experi-
ence about biological systems. The circadian commu-
nity is privileged to know that rhythms both exist 
and matter. Either as individual investigators or 
through collaboration with computational colleagues, 
the circadian community has a unique opportunity to 
transmute these myriad ambient data sources into 
sources of biological insight.

Review Overview

In this review, we seek to make clear some Big Data 
opportunities specific to biological rhythms research. 
There is not room to deeply review every technique 
and caveat, as these describe whole fields. We intend 
only to make it easier for those interested to start their 
journeys and warn them of the common pitfalls to 
watch out for. We hope this will be of interest whether 
you want to become a “dry lab” researcher or simply 
want to be able to collaborate more directly with your 
computational colleagues. Specifically, we will give 
examples of new data sources in the hopes of stimulat-
ing those interested to dig for other such sources. We 
then cover why sources like this that continue to 
emerge could be promising resources for biological 
rhythms research. We will then discuss common needs, 
such as tools and toolboxes from commonly used pro-
gramming languages, such as Python’s SciPy (Virtanen 
et al., 2020), and approaches such as parameterization 
of data for rhythms analysis, and how various forms of 
signal processing and modeling can support classical 
statistics. To support adoption of best practices along 
with these new tools, we will also discuss common 
concerns, including issues of incomplete or missing 
data, and touching on p-values in datasets where a 5% 
false discovery rate could still represent millions of 
relationships as well as using within-subject replicates 
to increase information despite challenging classical 
statistical notions of independence.

We constrain our review to materials related to 
what we believe describe less obvious resources. 
Many reviews exist about medical records, for exam-
ple, and so we will treat such well-trod ground more 
lightly here, focusing on what might be new ground 
for more readers. What this review will not cover are 
specific implementations of ML or deep learning (DL) 
algorithms. We believe focusing on the data-driven 
parameterization of biological rhythms is more rele-
vant than the application of artificial intelligence in 
and of itself for detecting structure. As researchers 
interested in biological rhythms, we know a priori 
that we want to extract information regarding cyclic-
ity in longitudinal biological data. The features or the 
information extracted from such data can be used in 
ML algorithms if we hypothesize the model may sur-
face differences between classes. However, the ML 
algorithms themselves may not inherently identify 
cyclicity. DL models would have to re-derive the 
rhythmicity or nonlinear dynamics we know are 
present in the observed signals. If the way we featur-
ize data does indeed capture rhythmicity, we would 
then want to compare these parameterizations from 
cohorts of interest rather than assume a model can 
implicitly infer the cyclic structure. A full review 
could (and probably should) be written on the appli-
cations of ML and AI to biological rhythms data, but 
that will be most impactful for those already familiar 
with appropriate parameterization.

New Data Sources

The emergence of digital devices and Internet 
infrastructure have led to many systems in the world 
generating data across time where those data did not 
exist historically. Many systems now generate data 
that capture processes in which either circadian 
rhythms play a role, or which impact the expression 
of biological rhythms. More directly, there exist 
numerous data sources from which one can search 
for and analyze rhythmic patterns related to biologi-
cal systems. There are large datasets of human health 
data, many of which include longitudinal physiologi-
cal data. Continuous monitoring via use of wireless 
devices can also be used to monitor non-human 
physiology in agricultural and ecological settings. 
For example, wireless sensors can be used to better 
understand and monitor risk factors that threaten 
livestock health; improvements in these realms have 
led to the advent of precision agriculture (Castro-
Costa et  al., 2015; Fontana et  al., 2015; Neethirajan, 
2017; Hong et  al., 2020; Zaman and Dorin, 2023). 
Continuous monitoring may also be used to monitor 
the health of household pets (Brugarolas et al., 2016; 
Mekha and Osathanunkul, 2020). All of these 
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datasets may provide time-series observations ame-
nable to novel biological rhythms insights.

In contrast to these directly health-related data, the 
vast majority of modern datasets were not generated 
with biological research in mind. Most of them do not 
directly measure biological variables (blood, gene 
expression, etc.) either. These “non-biological” data 
can nevertheless reveal important information about 
circadian rhythms. For instance, the times at which 
students log into online LMSs does not directly mea-
sure their sleep or circadian rhythms, but it is depen-
dent on their waking engagement with academic 
materials, which are in turn informed by the wake-
sleep rhythms of each student (Smarr and Schirmer, 
2018). These data can thereby serve as proxies for the 
desired signals of circadian biology. Soliciting enough 
funding to buy sleep measurement systems for thou-
sands of students, and getting them to use these 
devices every night for months, would be hard to say 
the least. When those same students generate data 
just by being students, then there is a trade-off of 
abundance of data and directness of measurement. 
Abundant measurements are not globally better than 
smaller, but more direct, measurements (if that needs 
to be said); direct measurement will forever be valu-
able, and arguably most of circadian biology as a field 
has evolved to optimize for use of direct measure-
ments. However, because data abundance is a rela-
tively new phenomenon, there are fewer instances of 
using large, ambient (extant, generated for other rea-
sons) datasets as tools with which to ask questions 
about the manifestations of biological rhythms in the 
real world. This novelty creates an opportunity for 
new research.

Many data types might fall within this category of 
“sources of proxy signals for biological rhythms.” In 
Table 1, we provide a non-exhaustive list of several 
datasets that are generally free to access by various 
means, drawing from both direct and indirect/proxy 
measurements, as well as environmental/contextual 
datasets. We hope that this table, along with a couple 
of examples that follow, gives an abstract template to 
the ways that various datasets can be put to the unin-
tended purpose of serving biological rhythms 
analyses.

As a first example, collaborators working with the 
Lincoln Park Zoo used trap camera data to model the 
level of brightness that inhibited animal movement 
through locations across Chicago at night. They then 
correlated these observations with the light level pro-
vided by the satellite images for those locations from 
Google Earth and extrapolated the corridors likely to 
be amenable to wild animals across the whole 
Chicago area. They found that a large proportion of 
the areas designated as wildlife corridors were in fact 
likely too bright to allow animals to make use of them 

(Schirmer et al., 2019). This project took pre-existing 
data and turned them into actionable policy sugges-
tions for wildlife management based on circadian 
rhythms and environmental light pollution.

Somewhat differently, longitudinal monitoring of 
infrastructure data revealed a disproportionately 
higher frequency of traffic accidents in low-income 
and minority neighborhoods compared with more 
affluent areas (Dumbaugh et al., 2020). The insights 
afforded by these data can open up new avenues for 
research, such as investigating the effects of shift-
work on the sleep patterns of minority populations, a 
factor known to contribute significantly to traffic 
accidents (Mujawar et al., 2021; Palm et al., 2023).

Step 1: get data; step 2: .  .  .; step 3:  
publish

Thinking about questions one can ask with ambi-
ent, emergent data sources is fun. Implementing 
research to carry out those analyses often sounds eas-
ier than it ends up being. The challenge is often not 
that the scientific question has to be nuanced or com-
plex. Instead, often reasonable analytic plans run into 
barriers due to the nature of the data themselves. 
Some of these problems arise prior to the researcher 
actually gathering data of interest. Problems such as 
tools for measurement and length of monitoring can 
have extended experimental consequences if not 
thoroughly considered before implementation. After 
data collection or extraction, many of these problems 
are not conceptually different from those one learns 
when practicing statistics, such as missing data and 
censoring, distributions that are not normal, and 
mediating factors underlying correlations. However, 
due to the size and complexity of many Big Data 
objects, certain best practices are the ropes, tents, and 
bear spray that are helpful to carry along with a 
shovel and pick when digging for gold in the wild 
data frontiers.

We discuss these best practices in the following 
sections. For the sake of applicability and consistency, 
we use an example of mouse core body temperature 
(CBT) from Smarr et al. (2016) to show applications of 
the methods discussed throughout this work. We 
selected a 3-day window of temperature sampled 
every minute and applied the algorithms discussed 
in subsections Considerations for Generating Data, 
Imputation, Noise, Outliers, and Data Analysis 
Techniques for Time-Series. It is worth noting that 
many of the issues discussed in the following sections 
are not unique only to Big Data analytics. We hope 
they may inform analyses broadly, but we include 
them specifically here because without these consid-
erations, those to whom Big Data analyses are new 
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are likely to fall into well-known traps and dead-
ends. The material we summarize here is neither only 
those things to consider with Big Data nor all of the 
things one can consider with Big Data, but what we 
consider an essential foundation to confidently and 
purposefully marching off into the hills of Big Data with 
some expectation of striking new findings. To support 
confidence with these concepts, we make the data and 
Python code used to generate figures available in the 
Supplementary Materials.

Considerations for Generating Data

Sampling Rate.  Some technical considerations regard-
ing data generation (or selection, in the case of preex-
isting datasets) should be made depending on the 
nature of the questions being asked. One of the most 
fundamental considerations is related to the highest 
frequency/lowest periodicity of interest (Shannon, 
1949; Refinetti et al., 2007; Klerman et al., 2017). A sig-
nal that is hypothesized to have a periodicity of 24 h 

Table 1. D ata sources (with cartoon example questions these could support).

Name Accessibility Notes Example Questions

Biological Datasets
PhysioNet (Goldberger et al., 2000) Freely available/free 

credentialed access
Demographics; lifestyle; 

sensor data; physiological 
measurements; EHR; images

Does circadian stability of vital signs 
(e.g., heart rate, blood pressure) 
improve heart failure prediction?

UK Biobank (Sudlow et al., 2015) Paid tiered access Demographics; lifestyle; genomics  
EuroBioBank (Mora et al., 2015) Contact researchers Biological samples; rare diseases; 

genomics
Which genes and variants are 

associated with a proclivity toward 
shift work and less associated 
physical/mental burnout?

Estonian Biobank (Leitsalu et al., 
2015)

Contact researchers; 
paid access

Demographics; lifestyle; genomics  

All of Us (All of Us Research 
Program Investigators et al., 2019)

Freely available; limited 
amount of free credit 
for analysis

Demographics; lifestyle; 
genomics; wearables; EHR

How do acute physical injuries 
impact activity levels, and is there a 
normative, injury-dependent, time-
till-recovery before baseline activity 
rhythms are restored?

American Gut Project (McDonald 
et al., 2018)

Contact researchers Microbiome  

Ambient Datasets
PurpleAir Limited free credit Air pollution Are there daily rhythms in specific 

pollutants, and does urban density 
flatten or amplify these rhythms?

MeteoStat (Lamprecht, 2024) Freely available Climate; weather  
Earthdata Freely available Geographic; climate; weather Do nighttime light pollution levels (via 

satellite imagery) correlate with the 
prevalence of sleep disorders?

U.S. Traffic Volume Data Freely available Hourly traffic volume  
Assorted Datasets
UCI Machine Learning Repository 

(Kelly et al., 2023)
Freely available Assorted Is there an association between time-

of-day vaccination and subsequent 
antibody titer levels and infection 
rates?

UCR Time Series Classification 
Archive (Dau et al., 2018)

Freely available Assorted In what manner does the circadian 
pattern of social media posts change 
in response to positive versus 
negative valence news?

Kaggle Freely available Assorted  
data.world (Jacob and Ortiz, 2017) Freely available Assorted  
Papers with Code Freely available Assorted How does chronotype and/or sleeping 

habits impact student performance?
Hugging Face (Lhoest et al., 2021) Freely available Assorted  
Dataset Search (Brickley et al., 2019) Freely available Assorted What is the relationship between 

sleep-wake rhythm stability and 
depression over time, accounting for 
seasonal influences?

Data Planet Freely available Assorted  
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should be sampled at least every 12 h. Put generally, 
one should sample at a minimum frequency of twice 
the hypothesized frequency of their signal of interest 
(the Nyquist Rate). This ensures that if a cyclic struc-
ture exists, a researcher should at least be able to infer 
some rhythmicity in the data. However, this is a strict 
lower bound on the sampling rate and does not guar-
antee signal reconstruction either because the phase 
of measurements might fall away from the peaks and 
troughs of the signal (e.g., sampling all of the y = 0 
values from a sine wave leads to the reconstruction of 
a flat line, not a wave) or the signal might be non-
stationary (meaning each repetition is not exactly the 
same, which is often the case in biological systems) 
(e.g., Figure 1). When dealing with nonstationary sig-
nals, it is no longer the period but the deviation of 
each period that should be considered when deter-
mining sample frequency (Refinetti, 2004). An intui-
tive example could be that detecting a 24-h rhythm in 
human sleep-wake states requires sampling at least 
every 12 h, whereas detecting differences in bed times 
across days might require sampling every few min-
utes. Another consideration is the length of time for 
which a signal is sampled. In the presence of noise, 

more samples are typically needed to confidently 
estimate signal using spectral analyses (Levine et al., 
2002). Oversampling becomes more practical to per-
form when the signal-to-noise ratio decreases. For 
example, if a cyclic signal of interest does not have 
large magnitude relative to potential noise, more data 
will need to be acquired to increase the confidence in 
differentiating the signal’s cyclicity from variance 
caused by noise itself.

Sampling Length.  If one is interested in the stability of 
rhythms within a dataset, then it may not suffice to 
only have enough data to test for the existence of 
cyclicity. It is necessary to have more longitudinal 
data in order to quantify the change in some features 
that describe cycle stability over time or in response to 
some change. For example, in studies where an inter-
vention or perturbation may exist, like inducing a 
phase shift with jet lag (Vosko et al., 2010; Waterhouse 
et al., 2007; Eastman and Burgess, 2009), more data is 
needed after the perturbation to actually quantify the 
phase shift. Time-frequency methods (the balance of 
signal information from the time domain and fre-
quency domain) can be used to highlight such changes 

Figure 1. L eft: Effects of different sampling rates on the same underlying signal from 1 min sampling (top) to 24 hr sampling (bottom). 
Right: Effects of different sampling rates on an idealized 24-hour periodicity from 1 min sampling (top) to 24 hr sampling (bottom).
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but face limitations if certain thresholds of sampling 
rate and sampling length are not met. The time 
domain is the classic representation of sample ampli-
tudes taken across time, whereas the frequency 
domain is the representation of the different frequen-
cies that exist in a signal. There is an inherent trade-off 
in signal representation between the time and fre-
quency domains, otherwise known as the Uncertainty 
Principle (Folland and Sitaram, 1997). It can be suc-
cinctly described as follows: it is not possible to know 
both the amplitude and frequency of a signal with 
certainty at any arbitrary moment. Essentially, instan-
taneous signal in the time domain gives no informa-
tion about frequency composition, and instantaneous 
signal in the frequency domain gives no information 
about amplitude of the signal at specific times. Time-
frequency methods such as the short-time Fourier 
transform (STFT) (Gnyubkin, 2010; Xu et  al., 2020), 
wavelet transform (WT) (Price et al., 2008; Leise, 2015; 
Nounou et  al., 2012), and Hilbert-Huang Transform 
(HHT) (Huang et al., 1998) are capable of highlighting 
the analyses where one is interested in how frequency 
properties of a signal change through time. However, 
a better time resolution necessitates a poorer fre-
quency resolution and vice versa. While the time-fre-
quency methods can allow researchers to hone in on 
the cyclic characteristics of a signal pre/during/post a 
perturbation, a greater sample length is needed to 
achieve statistical power depending on which param-
eters/variables are being compared. For example, if a 
hypothesis were that circadian temperature ampli-
tude/stability decreases after traveling across time 
zones (i.e., jet lag), then at least 2 days of temperature 
data would need to be sampled before and after trav-
eling as a minimum threshold for assessing changes 
in frequency. This is not to imply that stability always 
re-emerges within 2 days (which would only happen 
after very small shifts), but rather is meant to high-
light a spectral “floor” of data needed to infer cyclic 
parameter changes. The intuition for this goes back to 
the Uncertainty Principle: because characteristics of a 
signal can vary in both frequency composition and 
time (especially in signals with additional noise), sam-
pling for only a day after a perturbation makes it dif-
ficult to disambiguate between a cycle and a linear 
trend in signal amplitude over the duration of the day. 
Two days would provide a minimum assurance that 
the 1-day cycle has persisted for 2 days. However, 
similar to the Nyquist Rate, this does not guarantee 
that the signal of interest can be extracted from noisy 
data, so repeated measures across additional days 
provide greater precision when measuring oscillation 
parameters, as in period and phase.

Data Orthogonality.  Having multiple data streams can 
equip a researcher with the ability to better account 
for variance/behavior of the observed system (Bae 

and Androulakis, 2018; Díez-Noguera, 2013), just as 
one might measure expression of both Per and Bmal 
genes to establish the phase of a given circadian oscil-
lator. Sometimes, measuring multiple outputs (data 
modalities) like this provides confirmation of an 
expected pattern, as with the Per and Bmal example. 
Often though, modalities are chosen for their lack of 
association. The more independent information a new 
modality provides compared to those already 
included in a dataset, the additional uniqueness that 
modality then adds to contextualizing a system. When 
one seeks to reduce the amount of data being pro-
cessed, then the data streams/dimensions should be 
chosen so that they do not share a large amount of 
linear variance with each other. When there is zero lin-
ear variance shared, the two modalities are said to be 
orthogonal, as in being contained entirely on uncor-
related axes. Many methods exist to establish orthog-
onality of modalities. A priori, the data streams can 
largely be decided based on prior work, domain 
expertise, and feasibility of acquisition. A posteriori, 
methods such as principal components analysis (Jol-
liffe and Cadima, 2016) or Graphical LASSO (Fried-
man et al., 2008) can be used to evaluate a reduced set 
of linearly independent features. (Note: Graphical 
LASSO is typically used when the amount of vari-
ables is larger than the number of samples, such as in 
the case of tissue gene expression data.) It is important 
to note that these methods will only identify potential 
linear relationships. Any nonlinear function between 
2 variables x and y that is actually causal, for example 
y x= 2, would be identified as likely being linearly 
independent from each other despite the fact that 
there is a direct mapping between them. As such, 
researchers should practice caution when making 
assumptions of linearity with their variables of inter-
est. In addition, sometimes it is useful to keep vari-
ables that are not wholly independent because there 
are specific instances in which their independence 
changes and that is the issue of interest. For example, 
when studying jet lag, many circadian outputs should 
be correlated before the circadian shift. If one wants to 
study how internal desynchrony emerges and then 
resolves following a shift, then an experimenter would 
not want to throw out variables with some correlation 
within the dataset. Their domain expertise informs 
them that that correlation is itself a feature of interest 
that will change in time and generate its own meaning-
ful signal to be analyzed.

Imputation

Sources of Missingness.  As data grow in observations 
and time resolution, the likelihood of missing data 
increases. For example, researchers may occasionally 
fail to manually record observations at finer time 
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resolutions. Devices, while largely immune to human 
error, may fail to record data for many reasons, some 
of which include limitations in storage, depleted bat-
tery life, or issues with wireless connectivity. Unbe-
knownst to the researchers, devices may further 
engage in “under the hood” arbitration of data qual-
ity, where data deemed by the device as implausible 
or too noisy will be marked “missing.” One may 
manage these missing observations such that they 
can retain as much data (and by extension, statistical 
power) as possible through data imputation. Data 
imputation involves replacing missing or unknown 
observations in a dataset with plausible values 
(Donders et al., 2006).

There are different qualities of data missingness: 
data may be “missing completely at random” 
(MCAR), “missing at random” (MAR), and/or “miss-
ing not at random” (MNAR) (Donders et  al., 2006; 
Moritz et  al., 2015; Newgard and Lewis, 2015; 
Papageorgiou et  al., 2018). We compare these cases 
using the example of wearable devices recording 
actigraphy data. For MCAR data, there is no system-
atic reason for missing values, and missing values are 
independent of other variables. An example of data 
MCAR is intermittent, seemingly random failures of 
wearable sensors to record actigraphy data. When 
data is MAR, missingness is correlated with other 
variables. In univariate time-series data, time is the 
only other observable variable that may influence 
missingness (Moritz et al., 2015). For example, indi-
viduals may be more likely to utilize wearable devices 
on non-work days when they are not restricted by 
workplace dress or safety codes. The pattern of data 
missingness becomes evident in this scenario since it 
stratifies data by day of week or weekends and week-
days. In contrast, data that are MNAR are correlated 
with unknown or unobservable factors, such as in the 
event where we cannot observe rule-based, “under 
the hood” data elimination. For example, large 
instantaneous changes in actigraphy may be flagged 
by the sensor as implausible anomalies and thus all 
values above a certain threshold are systematically 
discarded. Unaccounted for sociodemographic fac-
tors may also play a role in MNAR data, which is 
worth keeping in mind when thinking about the gen-
eralizability of findings from data mining efforts. For 
example, it may be infeasible for individuals with 
little disposable income to utilize wearable devices 
compared to those with greater access to disposable 
income. The non-random structure of missingness 
may not be captured within the dataset being ana-
lyzed (if, to continue the disposable income example, 
socioeconomic status is not curated within the data-
set), but may be able to be assessed anyway if the 
metadata of the dataset are available (e.g., if the site 
of collection is an affluent hospital system, socioeco-
nomic imbalance may be inferred, if not recalculated 

by population distribution statistics). We recapitulate 
these modes of missingness in Figure 2a.

Single Imputation.  Time-series analysis methods often 
require continuous, complete datasets. Because miss-
ing or unrecorded data are not uncommon in longitu-
dinal data, analysis of only “complete” data may lead 
to great data attrition or biased statistical analyses if 
data are missing in a systematic manner (Graham, 
2009; Zhang, 2016). Data imputation offers methods 
for addressing these missing values and retaining a 
more complete dataset. The simplest approach to 
imputation may be single imputation, which involves 
replacing missing values with a single value. A com-
mon method for single imputation involves replacing 
missing values with a measure of central tendency 
(e.g., mean or median) from the non-missing values 
(Graham, 2009; Zhang, 2016; Dziura et al., 2013; Fig-
ure 2b and 2g). Population or sample measures of 
central tendency may be used, though imputation 
using sample-specific values (i.e., imputing missing 
observations from an individual using their own 
non-missing data) is often superior to population val-
ues (Engels and Diehr, 2003). The observation prior to 
a missing value(s) may be carried forward to fill in 
missing values, which leverages the dependent 
nature of time-series data; back-filling values may be 
warranted if missing values appear at the start of a 
time-series (Moritz et  al., 2015; Dziura et  al., 2013; 
Figure 2c and 2h). It is important to note that imputa-
tion approaches that duplicate the same values many 
times can bias and artificially remove variance of the 
dataset, especially when a large number of data 
points are missing (i.e., with enough filling in by the 
mean, one is eventually meaningfully reducing the 
standard deviation of the resultant filled dataset; 
Haziza, 2009). Moreover, if the time-series has mean-
ingful oscillations (e.g., daily rhythms), then imput-
ing with the mean may corrupt the pattern even 
when it does not meaningfully change the gross sta-
tistical description of the dataset.

Time-Series-Friendly Imputation.  Slightly more com-
plex methods can help maintain the variability and 
trends in time-series data: linear interpolation can be 
used to estimate values over short stretches of miss-
ingness by drawing a straight line between the non-
missing points immediately preceding and succeeding 
the stretch of missing values; however, this approach 
may not be optimal for longer stretches of missing 
data, especially in a context where the missing mea-
surements can be expected to be changing nonlinearly 
or non-randomly through time (Weed et  al., 2022; 
Kornelsen and Coulibaly, 2014; Junninen et al., 2004; 
Figure 2d and 2i). To impute longer stretches of oscil-
lating data, one may replace missing data with data 
from the same time periods from the previous day or 
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Figure 2. T ypes of data missingness and methods of addressing missingness. (a) Data MCAR, MAR, and MNAR depicted as open scat-
ter points. (b) Mean and rolling mean imputation; pale blue lines: artificially missing observations. (c) Forwardfilling and backfilling 
imputation. (d) Linear interpolation imputation. (e) SARIMA imputation with data downsampled to 288 observations for computational 
efficiency. (f) Time-of-day mean imputation. (g-k) Distributions of ground-truth data values (blue) and body temperature values with 
imputed values obtained from the methods on the left-hand side of each corresponding subpanel.
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with aggregate (e.g., mean, median) time-of-day 
matched values from multiple days (or whatever the 
periodicity of the data may be; for example, if some-
one is missing minute-level data all day on a Tuesday, 
it might make sense to impute that missing day by 
inference from that participant’s previous Tuesdays’ 
values at those missing times, rather than global aver-
ages or even inferences from all days of the week) 
(Tonon et al., 2022; Weed et al., 2022; Figure 2f and 2k).

Other approaches that take into account the local, 
potentially nonlinear structure of time-series data 
include imputation based on moving averages 
(Wijesekara and Liyanage, 2020) and Seasonal Auto
regressive Integrated Moving Average (SARIMA) 
models (Duangchaemkarn et al., 2022). Moving aver-
ages use surrounding, non-missing observations to 
impute a central missing value. This method can be 
applied across a time-series to impute shorter gaps in 
the data (Figure 2b and 2g). However, unless one uti-
lizes previously imputed values, there may not be any 
available data to impute with across long stretches of 
missingness. SARIMA models, more commonly dis-
cussed as statistical analysis tools (refer to subsection 
Statistical Models for more in-depth description of a 
SARIMA model), can be used to predict missing val-
ues based on past, representative values (Figure 2e and 
2j). SARIMA models may infer which values are more 
representative and likely at a given point by utilizing a 
user-specified “seasonality” component, which is an 
encoding of the expected periodicity of the data.

Multiple Imputation.  The inferences drawn from datas-
ets filled in using single imputation may heavily rely 
upon the imputation method used. If that method 
turns out to generate artifacts that affect analyses, then 
these methods may lead to false precision of results 
(Donders et  al., 2006; Li et  al., 2015). To reduce the 
potential harm of any one imputation choice, multiple 
imputation is used to compare the outcomes from sev-
eral imputations of the same dataset and their subse-
quent (identical) analysis (Donders et al., 2006; Li et al., 
2015; White et  al., 2011). From these analyses, the 
parameters (e.g., the MESOR of a biological time-
series) obtained from each imputed dataset can be 
aggregated into an estimate that is more likely to con-
tain the true value of the parameter than any one 
imputation method alone. Some programs (e.g., SAS) 
will have multiple imputation functions built in. Anal-
yses are run on each imputed dataset (one set per 
imputation method used) and then the estimated out-
comes can be presented as a distribution based on the 
methods used. The intention is to accurately reflect 
uncertainty and to ensure the results of the analysis are 
not overly shaped by the choice of imputation method.

For multivariate datasets, more informed (albeit 
more complex) imputations can be made by consider-
ing the values of the adjacent non-missing variables 

and what value the missing value tends to take on 
when those specific non-missing values are present. 
In other words, imputed values of multivariate data-
sets can be obtained by conditioning the imputation 
on the distribution of other variables in the dataset: if 
the value for modality A and C are known where the 
value for modality B is missing, then various meth-
ods can be used to make a probabilistic inference of 
the missing value in modality B based on other places 
in the data where all three modalities are present 
(e.g., if heart rate is higher than usual at a time when 
activity is missing, one may infer that activity is like-
wise probably higher than usual). For univariate 
data, the approaches to imputation avoid this com-
plexity since time is the only other observable longi-
tudinal variable. Even so, there remain more and less 
complex methods of imputing multiple plausible 
datasets for multiple imputation. We argue that even 
the simpler method of imputing values, such as using 
time-of-day means or medians, can make for a valu-
able first-pass at generating multiple imputed datas-
ets for multiple imputation. In the interest of space, 
we do not explore more complex imputation meth-
ods here, but see Adhikari et  al. (2022) or Kazijevs 
and Samad (2023) for further information.

p-Values and Effect Size

For biologists who work with vast amounts of 
data, 2 issues lead to challenging the way p-values 
are intuited. First, with larger Ns per comparison, sta-
tistical tests are more likely to reveal significance due 
to the commensurate increase in statistical power 
alone. Second, having more data often means one can 
make more different comparisons; with a false dis-
covery rate of 5% (p = 0.05), we expect many false 
“significances” when making hundreds or thousands 
of comparisons. This is a problem that was faced by 
genetic researchers years ago (as in testing the signifi-
cance of thousands of positions in the genome 
between 2 phenotypes), but which is becoming more 
common as large datasets become available in more 
biological domains. Having longer time-series that 
are sampled frequently or more individuals in a 
study can make it much easier to reach significance in 
any comparison. Take, for example, CBT data sam-
pled from a mouse every minute. The true mean of 
this mouse’s CBT distribution is 36 °C. If a second 
mouse has a true mean CBT of 36.05 °C, as more data 
are sampled from each mouse, at some point a statis-
tical test will reach significance (p <  0.05) for testing a 
difference of means. Even if we correct for multiple 
comparisons appropriately, we will simply find more 
significant effects with more data. The difference 
between the true means for the 2 mice might be highly 
significant, but is quite small and arguably not of 
practical relevance. The (corrected) p-value only 
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captures how confident we are in rejecting the null 
hypothesis, but it does not reveal the practical util-
ity of that rejection. One solution to both problems 
is therefore to compare not just p-values, but the 
combination of p-values and effect sizes.

Effect sizes are used as approximations of the “use-
fulness” of a finding. That is, they provide estima-
tions of how far apart 2 distributions are from each 
other. A p-value reveals a significant effect, but an 
effect size reveals the magnitude of that effect. If we 
refer back to the example of the 2 true CBT means of 
the mice, the effect size (roughly, the difference of the 
true means) has not changed, but we have sampled 
enough data (and amassed enough statistical power) 
to identify a difference. Because significance can often 
be found in large datasets due to statistical overpow-
ering, we highly recommend adopting volcano plot-
related practices from genomics and reporting effect 
sizes along with significance and test statistics so that 
reviewers and/or readers may infer how impactful a 
finding really is (Wodrich et al., 2021). There are many 
effect size estimates available; for the sake of brevity, 
we will list only Cohen’s d (Cohen, 1988), odds ratio 
(Szumilas, 2010), and Cliff’s δ (Cliff, 1993) and encour-
age interested readers to investigate the assumptions 
underlying their chosen effect size measure(s).

Noise

We can imagine the observation of a time-series as 
sampling from an underlying process that generates 
that time-series. In the evolution of temporal data, there 
are components of the process that change in more 
expected ways (e.g., the circadian oscillation of CBT), 
components that are deterministic but unobservable 
that affect the signal (e.g., transient perturbations in 
core temperature due to changes in physical activity), 
and components that are due just to a researcher using 
an imperfect sensor to detect a signal.

The processes observed from experimental time-
series data can be interpreted in 2 primary ways: (1) 
deterministic (Birkhoff, 1927) or (2) stochastic (Doob, 
1990). A deterministic process is a process in which 
there is no randomness involved (i.e., if the underly-
ing equation of the process is known, it is possible to 
predict all values of a process; for example, a pure 
sine wave). A stochastic process is a process in which 
there is at least one random variable that affects 
observations. The random variable need not reflect 
the “true” behavior of the value of interest in a study, 
but could represent any unknown random quantity 
that affects the value of interest. Two pertinent exam-
ples of random variables in time-series are measure-
ment noise and process noise (Kalman, 1960). 
Measurement noise is uncertainty in the measure-
ment of the observed variable due to variability in 

precision, such as a test’s confidence in the concen-
tration of cortisol is ±2 µg/dL and a sensor can esti-
mate temperature within ± 0.25 °C. Process noise is 
uncertainty in the state variable. The state variable is 
something that is hidden from the observer (e.g., 
blood cortisol concentration when only saliva is 
measured, sleep state when only actigraphy is avail-
able). Any variable, both exogenous and endoge-
nous, that cannot be accounted for but can impact 
variable of interest can be considered process noise 
(e.g., mild acute stress responses might not be mea-
sured across a day, but would nevertheless lead to 
transient increases in cortisol, and so affect the mea-
sured shape of that day’s cortisol concentrations). It 
is of note that process noise is not necessarily “use-
less” perturbation that affects the variable of interest. 
Many biological conditions and processes have vary-
ing magnitudes of process noise and, when all else is 
accounted for, these magnitudes may differentiate 
levels of system complexity (Costa et  al., 2002; 
Mazzocchi, 2008). In practice, nearly all time-series 
contain stochasticity due to uncertainty in the esti-
mation of an underlying “true” value. It is then valu-
able to identify if one’s noise removal process is 
accidentally omitting process noise (which may 
assist in understanding system complexity) along 
with random noise. While parameterizing process 
noise can be difficult, there are many methods avail-
able to handle random noise. We provide some 
examples in the following sections.

Noise Removal—Time Domain.  After filling in missing 
values, one may remove noise from the dataset. One 
straightforward approach to removing instanta-
neous, high-amplitude noise (i.e., spiky, high-fre-
quency noise) relative to the rest of the time-series 
and highlighting long-term fluctuations is with a 
moving average filter, where data is averaged over a 
moving window of pre-specified size (Alsberg et al., 
1997; Nounou et al., 2012; Wang et al., 2016; An and 
Stylios, 2020; Figure 3a). This is a simple example of a 
low-pass filter, which serves to attenuate short-term, 
high-frequency fluctuations in data. One may also 
use this moving window approach but calculate a 
moving median to further attenuate the effect of 
extreme outliers (Arce, 1998). Other moving average 
methods may weigh observations unevenly, often 
giving more influence to recent observations or obser-
vations closer to the center of the moving window 
(e.g., how you slept 10 days ago is informative for 
how you feel today, but less so than how you slept 
last night) (Hyndman et al., 2008; Nounou et al., 2012; 
Ghalyan et al., 2018; Figure 3a). While moving-aver-
age methods serve to attenuate high-frequency noise, 
there exist filters to attenuate low frequencies (i.e., 
high-pass filters) and frequencies within certain 
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ranges (i.e., band-pass filters); one’s de-noising needs 
depend on the problem at hand (Xie et al., 2021).

Another approach to de-noising data is by fitting 
neighboring observations to regression models 
(Cleveland and Loader, 1996). Here, subsets of neigh-
boring observations within a window of pre-specified 
size are fit to a regression with the goal of obtaining a 

de-noised estimate of the center observation. 
Compared with moving average methods, regression 
models for de-noising tend to maintain local fluctua-
tions in the time-series (contingent on regression 
order) rather than long-term trends. Two examples of 
local regression methods are LOcally Weighted 
Scatterplot Smoothing (LOWESS), which is a weighted 

Figure 3. M ethods for de-noising data. (a) Moving average and exponentially weighted moving average. (b) LOWESS and Savitzky-
Golay filter. (c) Continuous WT and (d) continuous WT coefficient magnitudes prior to zeroing coefficients of amplitude <0.20. (e) FFT 
and (f) FFT scaled amplitude prior to zeroing coefficients of amplitude <0.40.
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linear regression, and LOcally Estimated Scatterplot 
Smoothing (LOESS), which is similar to LOWESS, 
though the former typically fits observations to a sec-
ond-order regression (Moosavi et al., 2018; Figure 3b). 
A more general instance of regressions for de-noising 
is the Savitzky-Golay filter, which fits neighboring 
observations to an unweighted, nth-order polynomial 
(Savitzky and Golay, 1964; Komsta, 2009; Azami et al., 
2012; Figure 3b). A Savitsky-Golay filter of order zero 
is equivalent to a simple moving average, as a constant 
value is fit to the observations in a given window. The 
extent to which the variability of data is maintained by 
these localized regression methods can be manipu-
lated by specifying the order of the regression and the 
window size in which the regression will occur.

Noise Removal—Frequency Domain.  In biological 
rhythms research, it is usually the case that time-
series of interest are comprised of oscillations that 
occur at certain frequencies (or periodicities). Some 
frequency components of these data may be more 
prominent than others, such as the 24-h circadian 
rhythm characteristic of many biological processes. 
When one knows which frequencies are of interest 
and which are likely to be noise (or at least, not of 
interest), the contributions of unwanted frequencies 
can be addressed and attenuated via the frequency 
domain rather than the time domain.

Signal processing methods used for time-frequency 
analysis, such as the Fast Fourier transform (FFT; 
Walker, 1997; O’Haver, 1997; Wahab et al., 2021) and 
WT (Ergen, 2012; Taswell, 2000), can also serve as fre-
quency domain-based de-noising tools (refer to sub-
section Fast Fourier Transform and Wavelet Transform 
for time-frequency methods as tools for analysis). In 
the case of the FFT, the time-series is first converted 
into the frequency domain (Figure 3c). Undesirable 
frequency components can then be attenuated before 
inverting the FFT to recover the de-noised time-series 
(Figure 3d). The WT (continuous or discrete) serves a 
similar role, with a notable difference being that it 
converts the time-series into a time-frequency repre-
sentation (Figure 3e). Low-magnitude wavelet coeffi-
cients can then be attenuated before inverting the WT 
to recover the de-noised time-series (Figure 3f).

Outliers

Outliers are the clearest example of those topics men-
tioned in the Introduction that are not at all specific to 
Big Data—everyone reading this has dealt with outliers. 
However, it bears special consideration, as any cleaning 
done in Big Data must be algorithmic—it cannot be 
done by hand due to the scale of the data being cleaned. 
Even seeing enough outliers to understand what should 
be cleaned can be hard, as seeing all of any Big Data 

object is its own challenge. Therefore, we expand on 
systematic ways of considering outliers here. The con-
cept of an “outlier” has been succinctly described by 
Hawkins (1980) as an observation that deviates so 
greatly from other observations that it appears to have 
been generated by a different underlying mechanism 
and is not representative of the process being measured. 
Outliers are, in a way, closely related to noise. Noise can 
be characterized as all the underlying processes that 
influence observations that would best be attenuated to 
amplify the underlying signal of interest (Ranga Suri 
et al., 2019). While both outliers and noisy observations 
contribute to deviations from the researcher’s idealized 
dataset, outliers tend to deviate far more from other 
observations than noisy observations. Detection and 
subsequent interrogation of outliers may reveal impor-
tant (and often interesting) information about the data, 
such as incorrect distributional assumptions or distinct 
subcategories of observations (Domański, 2020; Smiti, 
2020; Kotu and Deshpande, 2014).

It is especially important to detect and deal with 
outliers prior to analyses, as outlier values may 
greatly impact statistics computed from the data, 
such as the commonly reported sample mean (Huber, 
1981). There are 3 commonly cited types of outliers: 
point, contextual, and collective outliers (Chandola 
et al., 2009; Braei and Wagner, 2020). Point outliers are 
observations that are out of range with respect to all 
other observations in a dataset (Figure 4a and 4c), 
while contextual outliers are anomalous with respect 
to the neighboring observations, but might not be out 
of range for the whole dataset (Figure 4b and 4d). 
Contextual outliers are especially common in oscillat-
ing data, where the local expected range may be sub-
stantially smaller than the full dataset range (we 
detected daytime fevers during the 2020 COVID-19 
pandemic by this method: elevated daytime skin 
temperatures associated with fevers were well within 
the normal range of all data, but very high and easily 
detectable compared to the much smaller range of 
waketime skin temperatures; Smarr et  al., 2020). 
Collective outliers are sequences or clusters of obser-
vations that together deviate from the overall dataset; 
the individual observations that comprise collective 
outliers are not necessarily themselves point or con-
textual outliers but collectively deviate from the 
norm. For example, charging one’s wearable device 
often acutely raises the temperature of the device. 
This rise in device temperature may be captured and 
recorded as a sequence of (erroneous) skin tempera-
ture observations that steeply rise before being cut 
off, as the device ceases to record any further data. In 
the following section, we cover approaches to man-
aging point and contextual outliers as the identifica-
tion of collective outliers is a more complex task that 
may require more domain-specific knowledge.
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Figure 4. T ypes of outliers and methods for outlier detection. (a) Red dots: artificially added point outliers and (b) local outliers; the 
original minute-level data was downsampled to 288 observations to emphasize the contribution of outliers to the (c and d) distribution of 
observations. (e) Downsampled data colored by standard deviations of difference from the sample mean. (f) Downsampled data colored 
by MADs of difference from the sample median. (g) Outlier detection using LOF and (h) k-NN, using 5 neighbors and showing the top 
90th+ percentile of “outlier-ness.”
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Simple Heuristics.  Statistical approaches to outlier 
detection are a common method of detecting point 
outliers in data (Kriegel et  al., 2010). One common 
rule-of-thumb approach to detecting point outliers 
involves discarding observations exceeding ±2 to 3 
standard deviations from the sample mean (Grubbs, 
1969; Hodge and Austin, 2004; Cousineau and Chart-
ier, 2010; Leys et  al., 2013; Figure 4e). While this 
approach is a compelling heuristic, it relies on having 
prior knowledge of the underlying distribution of the 
data (Domański, 2020; Alimohammadi and Nancy 
Chen, 2022). Furthermore, this approach incorporates 
all data, including outliers, into the sample mean and 
standard deviation. As a result, the bounds for non-
outlier data may be too permissive of extreme values 
due to their influence on the mean and standard devi-
ation which comprise those bounds.

Rather than sample means and standard devia-
tions, a more robust approach is to use the median 
and mean absolute deviation (MAD), respectively 
(Leys et al., 2013; Figure 4f), removing or proportion-
ally penalizing observations that deviate more than 
an arbitrarily predetermined threshold (e.g., ± 3 stan-
dard deviations or MADs; Mehrang et  al., 2015). 
Similarly, one may utilize the interquartile range 
(IQR), where values IQR*1 5.  less than quartile 1 or 
IQR*1 5.  greater than quartile 3 are deemed outliers 
(Smiti, 2020; Hodge and Austin, 2004).

Outliers With Respect to Time.  Local observations that 
deviate from neighboring points may not be extreme 
enough to be detected by the above methods (Blázquez-
García et al., 2021). In such cases, these methods can be 
used within moving windows to allow for local resolu-
tion. Better still are approaches that rely on the local-
ized structure of a time-series to identify contextual 
outliers (Kotu and Deshpande, 2014). Local outlier fac-
tor (LOF; Breunig et al., 2000; Chen et al., 2010) quanti-
fies the “outlier-ness” of an observation as a function 
of how isolated it is compared with its k-nearest neigh-
bors (Figure 4g). LOF is an example of a density-based 
approach to outlier detection. On the other hand, 
k-Nearest Neighbors (Ramaswamy et al., 2000; Hauta-
maki et al., 2004; Yu et al., 2014; Dang et al., 2015) is a 
distance-based measure, where a greater average dis-
tance between the observation and its k-nearest neigh-
bors suggests greater outlier-ness (Figure 4h). 
Time-series data in particular may benefit from meth-
ods to identify contextual outliers since the expected 
range of observation values may be highly dependent 
on the time of data collection.

Expert Input.  Finally, domain expertise may be used 
for rule-based outlier detection to filter out improba-
ble values that may have occurred due to instrumen-
tation or researcher error (Sejr and Schneider-Kamp, 

2021; Salgado et al., 2016). For example, sub-physio-
logical values of skin temperature or heart rate as 
recorded by a wearable device may indicate that an 
individual recently removed the wearable device as 
the device continued to record. Recognizing these 
implausible values would require the input of indi-
viduals who have sufficient knowledge of the system 
being measured to make an appropriate inference (in 
this example, human physiology).

Beyond Outlier Removal.  Once outliers have been 
identified and removed, one must decide whether or 
not to impute any newly missing values. Important 
factors to consider when making this decision may 
include data attrition in instances where complete 
data is required and the quality of the data imputa-
tions would be based upon. Subsection Imputation 
details possible methods of imputation.

Phase Alignment

To compare multiple time-series, one may require 
more information than just timestamps. While data 
may be aligned in “clock time,” this does not guaran-
tee phase alignment. For example, long-distance 
travel is known to induce physiological jet lag, where 
internal biological rhythms are out of phase with the 
external environment and with each other. Two indi-
viduals subject to identical external environments but 
with different chronotypes may be consistently out of 
phase with each other with respect to physiology even 
without jet lag (Baehr et al., 2000; Lack et al., 2009). 
The more misaligned individuals that are combined 
into an average, the less representative is that average, 
with the extreme example being that the mean of 
many misaligned sine waves is a flat line. This sug-
gests that accounting for phase differences is neces-
sary to allow for the comparison of other characteristics 
of time-series, such as differences in amplitude at a 
particular phase, especially in large datasets where a 
wide range of phase alignments are likely to exist.

While the degree to which a time-series is periodic 
may depend on one’s specific method for determin-
ing periodicity, intuitively a periodic time-series can 
be expected to repeat at regular intervals (Deckard 
et  al., 2013). This property of periodic time-series 
allows them to be effectively aligned with other time-
series of similar periodicity. For example, a simple, 
first-pass approach to alignment of periodic time-
series includes cross-correlation. The cross-correla-
tion of time-series allows one to find an optimal time 
lag that maximizes the correlation between the 2 sig-
nals (Dean and Dunsmuir, 2016; Menke, 2022). This 
time lag can then be applied as an offset to one of the 
time-series to align them at the point of maximal 
cross-correlation, such that they are more closely 
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aligned with respect to phase. For less stably periodic 
(or even aperiodic) data, dynamic time warping 
(DTW) can provide an alignment between 2 time-
series such that one time-series can be compressed or 
dilated to best align (minimize difference or error) 
with the other (Müller, 2007; Giorgino, 2009; Skutkova 
et al., 2013; Smarr and Kriegsfeld, 2022). Furthermore, 
the DTW provides a distance value between time-
series, which can be used as a similarity metric. Time-
series that share common defining features (such as 
the characteristic troughs and peak of a QRS complex 
of a sinus rhythm) may be aligned using functional 
data analysis approaches (Wu et  al., 2024). In these 
cases, one may prioritize alignment based on these 
defining “landmarks” that are present across all 
observations. In cases where prominent landmarks 
may not be present and there is little phase shift 
between observations such that the mean time-series 
across all observations is fairly representative of indi-
vidual observations, alignment by minimizing the 
distance between each time-series and the mean time-
series across all observations may be a feasible, intui-
tive approach to alignment.

Data Analysis Techniques for Time-Series

Once the proper preprocessing due diligence has 
been performed on the time-series of interest, it is 
then possible to transition into utilizing analysis tech-
niques that can extract meaningful representations of 
cyclic data for hypothesis testing. The following 
methods, while certainly not exhaustive, are aimed at 
collecting a set of variables that can be used for statis-
tical comparisons between an experimental time-
series and a possible control time-series.

Cosinor Regression.  Cosinor regression is a powerful, 
interpretable tool to parameterize an oscillatory  
signal into periodicity, acrophase, amplitude, and 
midline estimating statistic of rhythm (MESOR) 

(Cornelissen, 2014; Bingham et  al., 1982). Cosinor 
methods also provide confidence intervals on the 
estimated parameters of the model, allowing for rela-
tively straightforward ways of testing hypotheses 
related to signal rhythmicity. A major assumption of 
cosinor methods for realizations with multiple cycles 
is that the parameters of the function do not vary in 
time (e.g., the signal is assumed to be stationary; that 
is, has constant values for the parameters), and that 
the signal has a monotonically increasing, linear evo-
lution of phase. While there are nonlinear extensions 
of this method (Marquardt, 1963), they are less easily 
understood. The ease of the cosinor method is the 
simple interpretation of its parameters. This method 
is often used when estimates of periodicity and/or 
phase are known. For example, cosinor-derived circa-
dian amplitude of melatonin and cortisol was found 
to be lower in heart failure patients compared to con-
trol (Crnko et al., 2023).

Fast Fourier Transform and Wavelet Transform.  While 
cosinor methods are typically used to test for hypoth-
esized periodicities (e.g., circadian/ultradian 
rhythms), FFT and WT can decompose a signal into 
(theoretically) all underlying periodicities. FFT and 
WT also make assumptions of linear evolution of 
phase. However, FFT removes all time information 
and in return provides frequency information about a 
signal (Walker, 1997; Gnyubkin, 2010). This can be an 
optimal tool for individuals who hypothesize that 
there may be hidden periodicities in longitudinal 
data (e.g., multiple ultradian rhythms in a novel data-
set that are not necessarily multiples of a dominant 
cosinor rhythm). However, since the FFT is unable to 
disentangle rhythms that appear/disappear depend-
ing on a larger rhythm (e.g., ultradian rhythms that 
only appear during a certain phase/window of a cir-
cadian rhythm), it is not necessarily able to capture a 
time-dependent hidden periodicity. The WT accounts 
for time-dependent rhythmicity and can show how 

Figure 5. L eft: Identifying significant peaks from a periodogram (orange circles) when compared to the null hypothesis noise floor of 
multiple shuffles (gray shaded area). Middle: Unfiltered logarithm of the absolute amplitude of the continuous wavelet transform for 
three days of data. Right: Same continuous wavelet transform, but differenced against 1.5 times the interquartile range above the 75th 
percentile. Non-zero values indicate amplitudes that exceed the threshold for significance.
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frequency content changes with time, but the inter-
pretation becomes more difficult (Walker, 1997; Liò, 
2003; Leise, 2013).

In the 2D case (FFT), the output is power at differ-
ent frequencies. In the case of a signal with a strong 
24-h periodicity, there would be a peak at that period-
icity in the FFT. If one wanted to test the null hypoth-
esis that there is no 24-h rhythm, they would compare 
the power at the periodicity of interest to the power 
of the FFT at relatively flat regions (noise) by either 
doing a simple test to see if the 24-h power is about 2 
standard deviations outside of the noise (95% confi-
dence), or greater than 1.5 times the IQR above the 
75th percentile, or by randomly sampling from the 
FFT multiple times to get a null distribution of power 
to compare against (e.g., Figure 5, Left). The same 
approach can be used in the 3D case (i.e., frequency × 
time × power WT surfaces) where the peaks are now 
“hills.” Comparing the power of the hills against the 
relatively low power of the flat parts of the WT pro-
vides a similar test to the FFT case. Peak finding 
within specific frequency bands on the resultant sur-
faces can also be used to identify peaks and troughs 
of cycles within frequencies, as in detecting daily 
modulation of ultradian rhythms in mouse locomo-
tion, heart rate, and temperature (Smarr et al., 2019) 
(e.g., Figure 5, Middle, Right).

Mode Decomposition.  Mode decomposition (MD) 
attempts to decompose a time-series into a subset of 
intrinsic mode functions (IMFs) that, when summed 
together, reconstitute the original signal within some 
margin of error. As the FFT and WT can be thought of 
as a summation of multiple underlying rhythms in 
the frequency domain, MD can be thought of as 
rhythm summation in the time domain. The different 
versions of MD (Empirical, Variational, etc.) were all 
designed to overcome the issues of the FFT and WT 
in the presence of signals with nonstationarity and 
nonlinearity. This method is highly recommended for 
researchers who would want to disentangle different 
rhythms in the time domain rather than having to 
create a spectral filter in the frequency domain. It is 
incredibly powerful if underlying periodicities are 
already known a priori and the purpose of using the 
MD algorithms is to highlight the nonstationarity/
nonlinearity of the underlying signals (e.g., separat-
ing a circadian-dependent ultradian signal in the 
time domain and quantifying how its phase evolu-
tion is not linear in time). Empirical MD (EMD) is a 
data-driven approach: there are no theoretical har-
monic/oscillatory components that are being fitted to 
the signal of interest (Quinn et al., 2021). It makes no 
assumptions about the underlying generator of the 
signal, making it relatively easy to use (at the risk of 
requiring more in-depth interpretations!). This 

method is typically used in instances where the num-
ber of underlying oscillations is not known a priori 
and there is some interest in adaptability to nonsta-
tionary signals (Ortiz et al., 2020). The algorithm iter-
atively calculates temporal envelopes (i.e., outlines 
the extremes) around the original signal based on 
peaks and troughs and then differences these enve-
lopes from the original signal. This process is repeated 
until a locally smooth IMF is constructed prior to cal-
culating the next IMF (e.g., Figure 6, Left). For exam-
ple, a longitudinal signal may have multiple ultradian 
rhythms, a circadian rhythm, a weekly rhythm, and a 
seasonal rhythm (to name a few). EMD would theo-
retically be able to disentangle each of these rhythms 
from each other and return each time domain IMF 
back to the researcher. This is a viable option for 
researchers that may think a spectral filter (e.g., low-
pass, bandpass, highpass) may be inappropriate for 
their data. One could interpret this algorithm as itera-
tively filtering out different frequencies of oscilla-
tions, making it useful for interrogating only the 
oscillation of interest (e.g., a roughly 24-h cycle).

Variational MD (VMD) takes a predetermined 
number of IMFs prior to attempting to find the enve-
lopes of the power spectrum that best capture the 
time-varying signals (Dragomiretskiy and Zosso, 
2013). While EMD operates recursively on the time 
domain signal, VMD concurrently and adaptively 
finds the relevant bands of a power spectrum that can 
reconstitute a signal, thus balancing the errors 
between them (Figure 6, Right). This method is typi-
cally used when the number of underlying oscilla-
tions is known or estimated a priori, thus constraining 
the nonstationary/nonlinear analysis to a smaller 
subset of theory-driven IMFs. This is particularly use-
ful when there are “coupled” rhythmic relationships, 
such as respiration having an effect on blood pressure 
waveforms (Hadiyoso et  al., 2020)—not only is the 
blood pressure waveform recovered, but the respira-
tory waveform can be extracted independently.

A benefit of having decomposed IMFs (possible 
from multiple variables as well) is that it is then pos-
sible to identify potential phase relationships or cou-
pling between different frequencies of signals. If one 
wanted to find the effect that circadian phase has on 
the amplitude of an ultradian rhythm, they could 
compare peak amplitudes in the ultradian IMF with 
phase extracted from the circadian IMF. The benefit 
of performing this in the time domain is that poten-
tial outliers and nonstationarity can be accounted for, 
which is more difficult to correct in the frequency 
domain (Hadiyoso et  al., 2020). For example, if the 
effect of more physical activity on core temperature 
rising changes as a function of circadian phase, and 
physical activity is itself primarily following ultra-
dian rhythmicity during wakefulness, the IMFs 
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provide a convenient way of evaluating the ultradian 
amplitude differences against time of day itself.

Networks and Stability.  If the primary oscillatory com-
ponents are identified/known, the topology and/or 
stability of the oscillations can be interrogated if it is 
hypothesized that the components are coupled—the 
change in phase of one signal may impact the phase of 
another. One such method of parameterizing oscilla-
tory stability is the Kuramoto (1975) model, which 
supposes that a system of coupled oscillators may 
have some level of phase dependence. We recommend 
this model if researchers are interested in multiple inter-
dependent oscillators. More specifically, it is capable of 
modeling multiple coupled oscillators within a sys-
tem. Two examples are (1) multiple interacting ultra-
dian/circadian hormones within an organism, or (2) 
many organisms each with their own circadian behav-
ior/phases that interact with each other. Global met-
rics of stability (Kuramoto Order Parameter) as well as 
local metrics of coupling (elements in the adjacency 
matrix) can be used to understand the behavior of a 
single system (or compare across multiple systems). 
Such approaches have been used to simulate 

and interrogate the generation and disruption of 
suprachiasmatic nucleus oscillations at the micro (Gu 
et al., 2016) and macro (Goltsev et al., 2022) scales.

Signal Complexity and Nonlinearity.  Rhythmicity can 
often be interpreted as process functions whose val-
ues oscillate in time (e.g., sine, cosine, square, saw-
tooth). However, states (values) of a system can recur 
with any arbitrary deterministic and/or stochastic 
process. For example, while one might expect 
entrained circadian rhythms to have a periodicity of 
24 h, free running rhythms might only have an aver-
age period, with some variance day to day, and even 
bouts of sudden change in period (Mills et al., 1974). 
Even less regular, ultradian rhythms, as in pulses of 
cortisol in humans which occur every few hours in the 
morning (Spiga et al., 2014), may not be truly periodic 
in many cases, but emergent from feedback systems 
that are not tightly regulated in time, or may be sensi-
tive to perturbations from other inputs. Recurrence 
plots are suitable in these instances where metrics of 
recurrence are of interest but these process functions 
are not known. A recurrence plot attempts to high-
light structure by identifying time-series samples that 

Figure 6. L eft: Example of EMD algorithm output. EMD produces IMFs in increasing frequencies. As it removes the higher-frequency 
peak/trough envelopes detected in the time-domain, the IMFs capture lower- frequency oscillatory components. Right: VMD algorithm 
output. While VMD can concurrently generate the different underlying IMFs of a signal, most algorithms will output the lowest fre-
quency IMF first.
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are close together based on a higher-dimensional 
embedding of the data. To elaborate on the meaning 
of structure in a “higher” dimensional time-series: 
any arbitrary value can recur in a time-series, but his-
torical values can contextualize states (e.g., the state 
with coordinates of (3, 2) is fundamentally different 
than the state with coordinates (10, 2) even though 2 is 
the second value in both coordinates). Each historical 
(and current) value becomes its own dimension, thus 
“wrapping” the time-series into a higher-dimensional 
spatial representation (e.g., Figure 7, Left). The recur-
rence plot can then be used to visualize the points in 
time where specific high-dimensional states of the 
time-series recur with each other. The concept of state 
then refers to the values of the dimensions after per-
forming a time-delay embedding of the time-series of 
interest (see Taken’s Theorem (Takens, 1981)). Two 
components are required to perform a time-delay 
embedding: a time-delay (τ ) and an embedding 
dimension (often denoted as m or p).

Given a univariate time-series, one can embed the 
time-series in a higher-dimensional space by using 
time-lagged values of that same time-series. The time-
delay (τ ) determines how many steps back each 
embedding dimension will be (Fraser and Swinney, 
1986; Sauer et al., 1991; Kim et al., 1999). The number 
of prior values used determines the embedding 
dimension (i.e., an embedding dimension of 3 indi-
cates that the state of the time-series in the embedded 
space can be determined from x x xt t t, ,� �� �� �2  (Rhodes 
and Morari, 1997; Cao, 1997; Krakovská et al., 2015). It 
is then possible to perform recurrence quantification 
analysis (RQA) on this embedded structure. RQA 
attempts to featurize aspects of the complexity and/
or nonlinearity of a time-series by identifying similar 

states in the high-dimensional space. Both the raw 
distance (e.g., Figure 7, Middle) and thresholded dis-
tance (e.g., Figure 7, Right) can be used to identify 
metrics of stability, determinism, and/or laminarity 
(Webber and Zbilut, 1994; Marwan and Kurths, 2002; 
Marwan, 2008) that convey unique information about 
how the high-dimensional signal evolves in time. 
Since it is capable of encoding information about non-
linear cyclicity, it can be viewed (with a slight stretch 
of the imagination) as a nonlinear corollary to spectral 
analysis. Complex hormonal interactions are one such 
example of nonlinear cyclicity. Insulin and glucagon 
are produced in response to circulating blood-glucose 
levels—insulin to sequester glucose into cells and glu-
cagon to release stored glucose (Stagner et al., 1980). 
Because their concentrations rise and fall throughout 
the day, spectral analysis would reveal cyclicity. 
However, the apparent cyclicity is an emergent prop-
erty of the amplitude relationships between insulin, 
glucagon, and glucose concentrations. Nonlinear 
analyses are capable of highlighting rhythmic-appear-
ing phenomena that are actually amplitude relation-
ships arising from complex interactions.

Cyclicity in Discrete State Transitions.  Sometimes cyclic-
ity can be modeled as transitions between discrete 
states, instead of a cyclic evolution of a continuous vari-
able (e.g., having different kinds of sleep patterns across 
nights; Viswanath et al., 2024). Each state can be imag-
ined as a node in a network, and the transition from one 
state to another can be represented as a probability. 
States could be identified by domain-knowledge cutoffs 
(e.g., actigraphy values above 30 indicate moderate 
activity states), temporary conditions (e.g., awake vs 
asleep), or even as the combinations of quantile cutoffs 

Figure 7. L eft: A time-delay embedding of the mouse temperature with lags of 322 minutes between dimensions. A lag of 322 minutes 
was chosen by the false nearest neighbors algorithm described in Rhodes and Morari (1997). While only three dimensions spatial dimen-
sions can be plotted, the 4th dimension is the color of the points. Middle: A distance plot of the 4-dimensional temperature data where 
each cell is colored by the distance every point in the 4-D space is to every other point. Lighter regions indicate that the states are further 
apart; darker indicates that they are closer together. Diagonal lines off of the identity line indicate longer stretches of time when the sig-
nal recurs with a similar trajectory to a trajectory in the past.Right: A binary version of the distance matrix where values are threshholded 
by a distance of 1. Black cells indicate that states are similar enough to be determined a recurrence. This is the data structure commonly 
used to extract global features of non-linear recurrence.
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of multivariate data (e.g., 75th percentile of temperature 
and 25th percentile of activity is unique from 50th percen-
tile of temperature and 25th percentile of activity). The 
values and directions of these transitions give indica-
tions about the propensity for a system to evolve down 
a path, or to what extent a system is robust to perturba-
tion. The Markov Model is a common tool to evaluate 
global properties of discrete state transitions (Huang 
et al., 2018; Perez-Atencio et al., 2018). In a first-order 
Markov Model, the transition to the next state is depen-
dent only on the current state. That is, there need not be 
any knowledge about the past except for the current 
state of a system in order to make a prediction about the 
next state. This has both positive and negative conse-
quences. On the positive side, it makes the model robust 
to nonstationarity of variables (Xiao et  al., 2005). The 
intuition behind this is that even if the average of a 
value changes over time due to an external perturbation 
(such as physical activity level affecting body tempera-
ture), the model can still approximate the likely next 
transition after the perturbation. However, this only 
works if the model was able to observe all possible 
states during the fitting phase. If the new state is physi-
ologically relevant but has not been in observed, the 
model will just project it to the nearest state. A down-
side is that unless rhythmicity is explicitly incorporated 
as a variable into the system (e.g., time of day, light 
intensity), then global cyclicity (such as that can be 
modeled with a sine/cosine) cannot be evaluated 
within the Markov fitting process. This, however, does 
not preclude analyzing rhythmicity with cosinor, FFT, 
or WT on the state estimates after the model has been fit 
to the data. A clear benefit when using a Markov Model 

in instances where a researcher wishes to compare 
global properties of time-series between samples is that 
the model essentially transforms an entire time-series 
into a 2D matrix (Figure 8, Left), where each row and 
column represent a source node and sink node, respec-
tively (Rabiner, 1989) (e.g., Figure 8, Right). If each node 
has an important relation to the hypothesis being tested 
between samples, one could directly compare row-col-
umn values (the probability of transitioning from Node 
A to Node B is higher in the control group vs the experi-
mental group), column sums (Node C is globally more 
of a sink in the control group), or maximum probability 
across a row (Node B has a more stable set of transition 
probabilities in the experimental group) to investigate 
differences in transition properties. Just as with fre-
quency, time-frequency, and nonlinear transformations, 
the discrete state transformation allows for novel 
approaches toward identifying rhythmicity in state 
changes that may be less obvious in the time domain 
alone.

Modeling Temporal and Rhythmic Data

Extracting features from analysis such as statistical 
modes, rates of change, and/or correlation allows us 
to use straightforward statistics on time-series-derived 
features instead of complex statistics on raw temporal 
data. This extraction of features is called featurization. 
However, due to the lossy nature of featurization, we 
often cannot reconstruct the original time-series from 
features alone. In circumstances where a researcher is 
interested in time-series reconstruction, forecasting, 

Figure 8.  1st Order Markov Model. Left: transition matrix; Right: associated graphical visualization. Nodes/states: purple. Edges/transi-
tion probabilities: orange.



Soltani et al. / Circadian data science   163

or causality, the mathematical modeling of the tempo-
ral data may be more suitable.

If a time-series itself is a set of observations, the 
purpose of the mathematical model is to find a likely 
mathematical construct that describes the evolution 
of those observations. For observations that are sam-
pled from a pure sine wave, a model can be as simple 
as the amplitude, frequency, and phase offset of a sine 
function. Biological systems are more complex than 
singular, unperturbed oscillations, so we next exam-
ine families of models that aim to account for this 
complexity.

Statistical Models.  Two fundamental time-series model 
types are moving average (MA) and autoregressive 
(AR) (Shumway and Stoffer, 2000; Box et al., 1994). Put 
simply, while they both use prior observations to pre-
dict future observations, the MA model utilizes a linear 
combination of the historical error terms whereas the 
AR model utilizes a linear combination of the histori-
cal observations themselves. These models are useful 
to researchers if they believe there is both a long-term 
dependence (such as a rhythm) and underlying time-
dependence or noise effects. These models are espe-
cially powerful on data that have not been 
oversampled from a process. For example, if a 
researcher is interested in some circadian foraging 
behavior of animals but also in how hourly-level activ-
ity measures of animals affect future values, then sam-
pling at the 1-h rate would be practical to create an AR 
model that incorporates those effects. The most com-
monly used variant of these models is actually a com-
bination of the two: the Autoregressive Integrated 
Moving Average (ARIMA) model. The number of 
autoregressive terms depends both on the apparent 
complexity of a signal and the frequency of sampling 
relative to its dynamics. For example, one would have 
to use many autoregressive coefficients to capture the 
effect of prior samples from an electrocardiogram 
(ECG) waveform sampled at 256 Hz because not much 
information occurs over 1/256 sec. This quality makes 
ARIMA models less interpretable when the amount of 
historical terms needed grows, which would be neces-
sary if one wanted to capture rhythmic or cyclic rela-
tionships in their data. One would need at least as 
many lags as the periodicity of their signal. More mod-
ern extensions of the ARIMA model have been devel-
oped to explicitly capture cyclic components without 
needing to dramatically increase the amount of param-
eters needed. While we will not expound on all models 
that precipitated from MA and AR models, we call out 
a model that incorporates their linear dependencies 
with estimates of cyclicity (often termed seasonality in 
other domains): the SARIMA model (Duangchaem-
karn et al., 2022; Perone, 2022). The seasonality compo-
nent extends the linear model to incorporate historical 

data from lags that are multiplicatives of seasonalities 
of interest (e.g., if data is sampled every minute, and it 
is clear that there is a 1-h oscillation in the data, then 
the seasonality would incorporate a linear combina-
tion of data from time t t t n- - * - *60 2 60 60, , ..., ). The coeffi-
cients obtained from these models can be interrogated 
to determine the lags with the greatest impact on pre-
dicting future values.

Encoding Phase.  Many time-series behave in ways 
that are dependent on the phase, or state, of exoge-
nous variables (Gander et  al., 1986; Rietveld et  al., 
1993). Depending on the system being analyzed, one 
could interpret phase effects as values of zeitgebers 
such as light exposure, ambient temperature, medica-
tions, or even day of the week. These variables pro-
vide additional context to the behavior of a time-series 
and can sometimes lead to more robust interpretation 
of the data. For example, elevated distal skin temper-
ature during the night may appear aberrant com-
pared to prior nights, but knowing that that there 
may be irregular effects of behavior due to it being a 
weekend instead of a weekday could provide addi-
tional information that the value is not as aberrant as 
believed, or is at least confounded by external vari-
ables. As long as these exogenous variables can be 
encoded, they can be included in models to poten-
tially improve performance. It is important to note 
that since they are passed in as variables to the mod-
els, they abide by the assumed constraints of the 
models as well, such as linearity in SARIMA models.

Model Validation.  Oftentimes, many models are cre-
ated in order to converge on a proposed optimal solu-
tion. It then becomes essential to have pipelines and 
evaluation metrics that are used to compare the mod-
els to each other. The first step is ensure there are a 
subset of data/samples that the models will never see 
(often referred to as the “test set”). The selection of 
this data depends both on how many unique realiza-
tions of the model exist (i.e., how many different 
time-series have been generated from the same sys-
tem of interest). In the situation where there is only 
one realization, a test set can be created by taking 
multiple subsets from the same sample (Sidey-Gib-
bons and Sidey-Gibbons, 2019). When there are mul-
tiple realizations, a researcher can always choose to 
leave out some last set of data to be tested on from 
each realization, but could also employ the same 
resampling technique from the prior method to fur-
ther extend the test set. For the training of a model, 
the aim is to minimize the value of a cost function, 
such as mean squared error, by iterating on different 
values for model parameters. There are many out-of-
the-box cost functions for different purposes (Hynd-
man et al., 2008; Hodson, 2022), but they all evaluate 



164  JOURNAL OF BIOLOGICAL RHYTHMS / April 2025

how well the predicted values from a model actually 
fit against the observed data. During the testing 
phase, the predicted values are evaluated against 
data that the model has never seen. There is a com-
mon issue where the error during the training phase 
of the model is very low, but the testing error is very 
high. This is an indication of model overfitting. Essen-
tially, the model is capable of fitting the training data 
so well that it cannot generalize to unseen data. One 
way to combat overfitting is to reduce the amount of 
parameters in the model, making it less likely to want 
to fit to noisier or less informative portions of the data 
(Ying, 2019). Keeping track of aggregate testing error 
allows the researcher to then evaluate performance 
across models and samples in order to hone in on a 
subset of models that best suit to their needs.

Conclusion

In this review, we hope to emphasize that the avail-
ability of large datasets, analysis tools, and online 
resources should be empowering—not limiting—for 
those who are interested in making use of computa-
tional methods in the study of biological rhythms. 
With this in mind, we provided an overview of the 
diversity of emerging datasets (a small sampling, 
very far from exhaustive), commonly used data 
cleaning, alignment, and analysis methods. We 
emphasize that the material we covered in this review 
is neither definitive nor exhaustive. Moreover, we 
intentionally covered well-established, commonly 
used methods that are available out-of-the-box from 
commonly used programming languages, or which 
are straightforward to implement for individuals 
with limited experience in computational methods. 
We encourage readers to further explore methods 
appropriate for their specific use cases.

In addition to these more mechanical insights, we 
would also like to emphasize that large amounts of 
data come with pitfalls that are more conceptual. Big 
Data grant high (often absurd) statistical power, 
which in turn yield inflated significance in statistical 
hypothesis testing. This can lead to spurious, false 
discoveries and wasted time chasing ghosts. It is 
advisable to use and report measures of effect size to 
complement statistical hypothesis testing, so that sig-
nificant findings are accompanied by meaningfully 
large magnitudes. Related but different, while many 
individuals may be represented in large datasets, 
those individuals may not proportionally represent 
different demographic groups. Nor will every demo-
graphic be covered proportionally thoroughly. That is 
to say, even in Big Data, one should never assume 
complete coverage of a population, nor misinterpret 
the presence of significant findings for equal value 

(e.g., effect size) across diverse populations. For 
example, some human physiology datasets are gener-
ated on-site, leading to the characteristics of the study 
sample being hyper-localized and findings difficult 
to replicate at other sites. More broadly stated, the 
demographic and socioeconomic composition of 
individuals from one dataset would be challenging to 
replicate in another. Furthermore, subgroups of indi-
viduals may have less available data than others, 
leading to decreased confidence in the conclusions 
drawn from analyzing their data. For these reasons, 
one needs to be cognizant of overstating findings 
from analyses of large datasets when those findings 
may not extrapolate to other populations or have 
lower ecological validity.

Relevant data and powerful methods are necessary, 
but insufficient, to effectively interpret and understand 
biologically rhythmic phenomena. It is only when 
those necessities are utilized by domain experts that 
phenomenological findings evolve into generalizable 
knowledge. We hope that broadly introducing datasets 
and methods to the biological rhythms community will 
lead to creative problem-solving techniques and novel 
questions in data that have yet to be interrogated for 
rhythmic structure. Keeping with our aims, we provide 
a list of out-of-the-box implementations (in program-
ming languages Python and MATLAB) of the methods 
outlined in this review (Suppl. Table S1). We also pro-
vide a practical flowchart that guides the reader 
through the process of analyzing time-series data 
(Suppl. Fig. S1). We again stress that these resources are 
neither definitive nor exhaustive but simply serve as 
useful quick-start guides to time-series analysis.

As a final note, it is worth reiterating that one of 
the opportunities provided by big data and data ana-
lytic approaches is that many such datasets and tools 
are free. There are also emerging systems to support 
free (or with very cheap initial cost) cyberinfrastruc-
ture to support access to datasets and processing 
power across academic institutes and communities. A 
leading example is the National Research Platform 
(Smarr et al., 2018; National Research Platform, 2024), 
an NSF-supported initiative providing pooled 
resources across dozens of institutes across the United 
States and a growing number of partner institutes in 
other countries. As not only data but also tools to pro-
cess and analyze those data become more broadly 
and evenly distributed, we anticipate the emergence 
of additional opportunities to engage with histori-
cally underrepresented communities for whom 
research may have previously been inaccessible due 
to cost barriers associated with clinical or laboratory 
research. As data-enabled opportunities for new 
knowledge grow, collaborations between circadian 
biologists and data scientists will accelerate the rate 
at which such opportunities can be realized.
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