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Abstract

Analysis of motor performance variability in tasks with redundancy affords insight about synergies underlying central
nervous system (CNS) control. Preferential distribution of variability in ways that minimally affect task performance suggests
sophisticated neural control. Unfortunately, in the analysis of variability the choice of coordinates used to represent multi-
dimensional data may profoundly affect analysis, introducing an arbitrariness which compromises its conclusions. This
paper assesses the influence of coordinates. Methods based on analyzing a covariance matrix are fundamentally dependent
on an investigator’s choices. Two reasons are identified: using anisotropy of a covariance matrix as evidence of preferential
distribution of variability; and using orthogonality to quantify relevance of variability to task performance. Both are
exquisitely sensitive to coordinates. Unless coordinates are known a priori, these methods do not support unambiguous
inferences about CNS control. An alternative method uses a two-level approach where variability in task execution
(expressed in one coordinate frame) is mapped by a function to its result (expressed in another coordinate frame). An
analysis of variability in execution using this function to quantify performance at the level of results offers substantially less
sensitivity to coordinates than analysis of a covariance matrix of execution variables. This is an initial step towards
developing coordinate-invariant analysis methods for movement neuroscience.

Citation: Sternad D, Park S-W, Müller H, Hogan N (2010) Coordinate Dependence of Variability Analysis. PLoS Comput Biol 6(4): e1000751. doi:10.1371/
journal.pcbi.1000751

Editor: Karl J. Friston, University College London, United Kingdom

Received July 7, 2009; Accepted March 19, 2010; Published April 22, 2010

Copyright: � 2010 Sternad et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the National Science Foundation, BCS-0096543 and PAC-0450218 (http://www.nsf.gov/); National Institutes of Health
R01HD045639 (http://www.nichd.nih.gov/), the New York State Spinal Cord Injury Center of Research Excellence (CO19772), the Toyota Motor Company’s Partner
Robot Division, and the Eric P. and Evelyn E. Newman Fund. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dagmar@neu.edu

Introduction

A study of multivariable behavior naturally raises the question

of which reference frames the central nervous system (CNS) may

use to coordinate its actions. For example, Morasso [1] studied

planar reaching movements and showed that translation and

rotation of the start and target positions evoked systematic variation of

joint kinematics (angles of shoulder and elbow) but much less

variation of hand kinematics (Cartesian coordinates of the hand).

This indicated that hand motion in ‘‘visual space’’ is an important

consideration in central coordination of these movements. That

implied a need for the CNS to transform between representations

in different coordinates, e.g. visual to motor, as one challenge of

coordination and control. Evidence that at least one such

transformation is implemented in the parietal cortex was presented

by Andersen and Zipser [2]. Soechting and Flanders [3] provide a

comprehensive review of other evidence from eye, head, and body

movements elicited by vestibular and visual stimuli and arm

movements with their neural correlates in motor cortex.

Stochastic variation provides another source of evidence about how

the CNS may control and coordinate behavior. Patterns in

variability—especially when they are invariant across experimen-

tal conditions—can reveal underlying control strategies that are

inaccessible to direct measurement. The structure of variability

over repeated performances can be especially meaningful when a

task is redundant, i.e., the task presents a multiplicity of equivalent

ways to achieve the same end goal. A paradigmatic example is

multi-joint movement, where the limbs have more degrees of

freedom than minimally required to perform an intended task.

Structure in this variability can reveal the organization of the

neuromechanical control system. In a study of the postural

responses of cats to tilting of their support surface, Lacquaniti and

Maioli [4,5] showed that while three joint angles of the limbs

(scapula, shoulder and elbow of the forepaw; hip, knee and ankle

of the hindpaw) exhibited a large variability (on the order of 30u)
they co-varied to lie close to a plane within the three-dimensional

configuration space. This is presented as evidence of a synergy that

reduces the dimensionality of the control problem—one solution

to the ‘‘degrees-of-freedom’’ problem [6].

An obvious but critical fact is that the structure of observed

variability is defined in a space with coordinates selected by the

researcher. There is no a priori reason to believe that these external

coordinates are the same as any internal coordinates of a putative

neural representation. For example, in the analysis of multi-joint

limb movements, these coordinates may be the angles of the

biomechanically defined joints. However, joint angles can be

described following many different conventions as many standard

textbooks in biomechanics and robotics document [7,8]. While
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these alternative angle conventions provide equivalent descriptions

of physical reality, the choice becomes important when the focus is

on inferring CNS control strategies for multi-joint movement

generation. In fact, the question of which coordinates or control

variables may be represented in the CNS is a deep and difficult

problem that lies at the heart of the study of motor control. Until

that question is answered, the coordinates for data analysis remain

a choice of the experimenter. If this choice should affect the

outcome of the analysis, an uncomfortable arbitrariness would

result.

In which coordinate space should patterns be sought? Does the

structure of variability change when the problem is described in

alternative coordinates? To what degree do the conclusions drawn

from analyses in alternative coordinates agree? In this paper we

show that some widely-used methods of analysis intended to

illuminate CNS control are exquisitely sensitive to assumed

coordinates and cannot provide unambiguous inferences about

control. We further show that an alternative method which

includes two levels of variables—those that characterize task

execution and those that quantify its result, with a function or

mapping relating the two—promises to be less sensitive.

Methods

Using the example of a redundant reaching task we simulated

performance variability in two different joint angle coordinates

that have been used in the literature. In accordance with the most

widely-used methods, analysis of variability was based on the data

covariance matrix. Because these approaches proved to be

exquisitely sensitive to coordinate choice, we first analyzed the

influence of linear coordinate transformations on orthogonality, a

core assumption of covariance-based analysis. We then used the

special eigenstructure of a covariance matrix to analyze the

influence of linear coordinate transformations on the anisotropy of

a data distribution, another core assumption of covariance-based

analysis.

An alternative method based on two sets of variables (one

describing how a task is executed, the other describing the

corresponding result) was analyzed by examining the geometric

structure of the function relating these two levels. In particular, we

studied the manifold defined by the extremal values of this

function and the curvature of the function in the neighborhood of

that manifold. We analyzed the sensitivity of both of these

geometric features to general transformations of the coordinates

chosen for the execution variables.

To ground the abstract analysis in realistic data, we computed

the three different quantitative features of performance variability–

Tolerance, Noise, and Covariation (TNC)–in exemplary data of

one subject performing a throwing task. The task and the method

of computing these measures are detailed in Cohen and Sternad

(2009). To test the sensitivity of this TNC method to the

coordinates chosen for the execution variables, we considered

two plausible choices that are related by a non-trivial nonlinear

transformation. We conducted the analysis in these two coordinate

frames and compared the resulting variation observed in 2,880

performance attempts over a period of 16 days. To understand the

outcome of this comparison we analyzed the sensitivity of these

three measures of performance variability to linear and nonlinear

transformations of the coordinates chosen for the execution

variables.

Results

Covariance-Based Analysis
One reasonable approach to identifying structure in variability

is to focus on the covariance matrix derived from a set of

observations. This is at the heart of principal component analysis

and also many other related methods. The difficulties are perhaps

best illustrated by the so-called Un-Controlled Manifold (UCM)

method which purports to identify features of CNS control based

on analysis of variability [9,10,11,12]. Using multi-joint reaching

as an exemplary task, the problem is how n execution variables

(e.g., seven upper-extremity degrees of freedom, assuming the

shoulder is at a fixed location in space and that the hand and

fingers may be treated as a single rigid body) are coordinated to

achieve an m-dimensional result (e.g., location of the hand in

external Euclidean space with three degrees of freedom). Given

n.m, a multiplicity of solutions exist that equally satisfy the task

requirement. Further, for every particular hand location, the set of

solutions form a manifold in the space of execution variables, e.g.,

joint angles. This manifold may be visualized as analogous to a

curved surface in execution space; every point on the surface

corresponds to a combination of joint angles that yield the same

hand location. Changes of the joint angles that are coordinated to

remain on that surface do not change the hand location.

To seek evidence of CNS control strategies, the UCM method

examines variability over repeated performances. To simplify

analysis, a locally linear approximation to the manifold is defined.

Specifically, the result variable (hand position in space) is

mathematically defined as a function of the execution variables (joint

angles). The Jacobian matrix of that function—a matrix of partial

derivatives of each result variable (hand position coordinate) with

respect to each execution variable (joint angle)—is defined. In

general, the Jacobian matrix varies with limb configuration but it

can be evaluated at any point to yield a matrix of constants. In

UCM analysis, the Jacobian matrix is typically evaluated at the

mean of the observed distribution of execution variables. Using

standard methods of linear algebra the Jacobian matrix is analyzed

to identify its kernel or nullspace. The nullspace may be visualized as

analogous to a plane that is tangent to the curved manifold at the

Author Summary

Over the past decade the identification of synergies has
become a prominent theme in motor neuroscience. Like
other aspects of neural organization (e.g., vision) the
control of coordinated movement is almost certainly
hierarchical with synergies a key feature of this hypothesis.
In pursuit of identifying synergies, whether flexible or
hard-wired in biomechanical or physiological structures,
many studies have analyzed variability with techniques of
dimensionality reduction such as principal component
analysis. Results have been interpreted as evidence for
controlled variables in motor control. Our paper demon-
strates that such analyses and conclusions based on these
methods are exquisitely sensitive to the coordinates of the
variables that are the basis for this analysis. As these
coordinates are often chosen for convenience of measure-
ment or analysis, any conclusions about neural control are
therefore ambiguous at best. The development of
coordinate-independent analyses was an important step
in the development of modern physics. Here we highlight
the problems induced by coordinate-dependency in
studies of neural control and present initial steps towards
coordinate-independent analyses relevant to computa-
tional biology. We critically examine an alternative method
proposed to analyze variability for identification of
structure and show that it is significantly less sensitive to
assumed coordinates than conventional analyses.
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evaluation point. It defines the ‘‘do-not-matter’’ directions: small

changes of the execution variables about that point which are

coordinated in such a way as to remain within that plane do not

matter because they produce negligible changes in the result

[13,14]. Conversely, all deviations in the orthogonal complement of this

nullspace affect the result. The orthogonal complement may be

visualized as analogous to directions perpendicular to the tangent

plane described above.

Scholz and Schöner [10] hypothesized that if execution

variability is smaller in those directions for which the result is

more sensitive to deviations than in those directions for which

deviations do not matter, control is indicated. To quantify the

degree of control, execution variability is projected onto the

nullspace (the do-not-matter directions) and onto its orthogonal

complement. If the variability per degree of freedom in the do-not-

matter directions is larger than in the orthogonal directions, this is

taken as evidence of skill, as control is not exerted where it does

not matter. Hence, the manifold (and its tangent, defined by the

nullspace of the Jacobian matrix) are termed the uncontrolled

manifold [15].

In the early papers an explicit goal was to identify variables that

may be controlled by the CNS. Using a shooting task as an

example, Scholz, Schöner and Latash (2000) hypothesized that

rather than controlling all elements of the arm directly, a

candidate controlled variable was the orientation of the pistol

barrel, as it ultimately determines the accuracy of pointing. An

alternative variable was the center of mass of the arm

configuration. Using these quantities to define the hypothesized

task, and treating joint angles as execution variables, joint angle

variability at selected points along the limb trajectory was assessed

with respect to its effect on these two alternative result variables.

Relatively more variability in the do-not-matter directions was

taken as support for the orientation of the pistol barrel as the more

likely candidate for a controlled variable than the center of mass of

the arm.

The idea that the CNS focuses its control effort on variables that

matter while allowing inevitable variability to be distributed along

do-not-matter directions has considerable conceptual appeal. The

same feature can be generated by a stochastic optimal feedback

control strategy [16,17] which has been proposed as a theory of

CNS control. Unfortunately, although these studies pursue an

important question in a hypothesis-driven way, this analysis of a

covariance matrix has major weaknesses as we detail below. Given

the general appeal of the idea, we also attempt to identify a means

to overcome these weaknesses.

Dependence on Coordinate Choice
To illustrate the general problem, consider a simplified

hypothetical pointing task: reaching in the horizontal plane to

point to a line. Assume the thorax is stationary and only the

shoulder and elbow joints may move, so that the upper extremity

may be modeled with only two segments. Assume the line is

oriented diagonally with respect to a line through the shoulders

(Figure 1A). Successful pointing is achieved by moving the hand to

any location along the line. Because placing the hand at every

location on a line achieves the same zero error, the task may

successfully be completed with infinitely many combinations of

joint angles.

Next, consider how the joint angles may be defined: two

common conventions found in the literature are illustrated in the

figure: ‘‘absolute’’ coordinates measured with respect to a

stationary frame; and ‘‘relative’’ coordinates measured with

respect to adjacent limb segments. Figure 1A illustrates absolute

joint angles; the orientation of the upper arm, a1, and forearm, a2,

are both measured with respect to the same stationary reference, a

line through the shoulders. Alternatively, Figure 1B illustrates

relative joint angles; the orientation of the upper arm, r1, is

measured as before but the orientation of the forearm, r2 is

measured with respect to a movable reference, the orientation of

the upper arm. These are only two of an uncountably infinite set of

alternatives, any of which fully define the configuration of the

upper extremity. However, these two alternatives are related by

simple linear equations: r1~a1 and r2~a2{a1 (see Figure 1B).

Absolute angles are advantageous because the forward kine-

matic equations expressing hand location in the horizontal plane

as a function of limb configuration have a particularly compact

form which simplifies computation of the Jacobian matrix (Scholz

& Schöner, 1999). Note, however, that among the infinity of

alternatives, there is no principled reason aside from computa-

tional convenience for giving primacy to either of these two

conventions.

Assume a hypothetical set of 500 trials that scatter the hand

location on and around the target line. If this set of data is

represented in the space of relative angle coordinates, they exhibit

the anisotropic distribution visible in Figure 1C. The color code

denotes deviations from the target line, with darker colors referring

to larger distances. The curved white line denotes the UCM, the

set of joint angle combinations for which the endpoint is exactly on

the target line and the deviation is zero. The dashed straight line

denotes the nullspace of the Jacobian matrix evaluated at the

mean of the data distribution, providing a linear approximation

that is tangent to the UCM at that point. According to the

rationale of the UCM method, this data distribution has structure

such that the projection onto the UCM or its linearization is larger

than the projection onto its orthogonal complement. The putative

interpretation would be that this performance shows an ability to

identify and take advantage of the redundancy of the task; the

variability is not randomly scattered but channeled preferentially

along the do-not-matter direction.

This interpretation would be premature. Consider Figure 1D,

which shows exactly the same 500 data points but represented in

the space of absolute joint angles: The data distribution which was

previously anisotropic and well-aligned with the UCM becomes

isotropic simply due to this change of coordinates. According to

the logic of the UCM method, the putative interpretation would

now be that the data shows no signs of this particular skill. Clearly,

both interpretations cannot be supported simultaneously. In the

absence of an objective argument for choosing one joint angle

definition over another, any conclusion or interpretation drawn

from this analysis would be quite arbitrary. In fact, when the data

is represented in the space of hand coordinates shown in Figure 1E,

any directional structure of its distribution disappears completely.

(For simplicity of exposition, a bivariate Gaussian distribution with

equal variance in both directions and mean on the target line was

assumed.) Any claim that this data variability illuminates how the

CNS organizes its control of behavior would be specious at best.

To check this qualitative impression with quantitative analysis,

we randomly selected 100 data points from the set of 500 and

conducted UMC analysis. The random selection was repeated 10

times with replacement and the same analysis was performed.

Following Scholz and Schöner (1999), we report the results as the

ratio of parallel over orthogonal variance. Table 1 summarizes the

means and standard errors of the results. Evidently, the UCM

ratio is very different for the two coordinate choices. For

comparison, we also analyzed TNC components for both

coordinate choices, which will be described below.

Despite this sensitivity the core idea remains appealing: a

preferential distribution of performance variability along do-not-

Coordinate Dependence of Variability Analysis
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Figure 1. Sketch of a two-joint arm reaching to a target line as a simple example for a redundant task. The target line is defined in
extrinsic coordinates, x, y. A: Illustration of absolute angle definitions of the shoulder and elbow joint, a1 and a2 , with respect to the shoulder axis. The
relation between joint angles and extrinsic hand coordinates is given by the equations where l1 and l2 refer to the respective segment lengths, both

Coordinate Dependence of Variability Analysis
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matter directions suggests skilful CNS control. With a view to

overcoming these weaknesses, we identify two reasons why this

analysis is sensitive to coordinates: it relies on orthogonality; and it

relies on anisotropic distribution of data.

Orthogonality
As reviewed above, central to the UCM approach is the

projection of performance variability into the nullspace of the

Jacobian matrix and its orthogonal complement. Unfortunately,

orthogonality is exquisitely sensitive to the coordinates of the space

within which it is defined. Figure 2 illustrates this fact: simply

changing the scale of the abscissa (multiplying by a constant)

changes an orthogonal intersection of straight lines to an

intersection at an angle.

Is this a realistic concern? An argument might be made that

joint angles should always have the same units. While a joint space

with homogenous units is physically reasonable, the physical

identity of angular displacements of different joints does not

guarantee that they are represented as identical in the CNS. One

hypothetical alternative is that joint angles may be represented in

the CNS scaled by their range of motion. Different joints have

different ranges of motion such that 30 degrees may constitute

100% of maximum range in one joint but only 50% in another. If

this were the case, orthogonal directions in a physically-defined

space would no longer be orthogonal when transformed into a

space that is meaningful to the CNS.

The fundamental problem is that orthogonality requires a metric

(a function defining the distance between two points in a space) yet

plausible coordinates of CNS representations may not admit a

metric. For example, Todd and colleagues present convincing

evidence that visual space does not have a metric structure [18,19].

Behavioral evidence of an equivalent finding for the motor system

was provided by Fasse and colleagues who showed that at least

some aspects of human perceptual-motor behavior do not admit a

metric structure [20]. To underscore the behavioral evidence, if

joint angles are perceived with respect to an external spatial

reference, as reported by Soechting and Ross [21] then they cannot

admit a metric because finite rotations with respect to an extrinsic

spatial reference do not commute and hence violate one of the

fundamental requirements to define a space with a metric. In sum,

an assumption of orthogonality requires far more structure than

may reliably be assumed of CNS representations and hence does

not provide a sound basis from which to study CNS control.

Anisotropy of the Data Distribution
As summarized above, the UCM method tests an experimental

data distribution for direction-dependent or anisotropic variance

in order to assess support for its hypotheses. However, anisotropy

of a covariance matrix can always be eliminated by a sequence of

coordinate transformations (see Text S1). Figure 3 illustrates this

basic fact. Panel A shows a hypothetical data distribution in x, y

space. The ellipse denotes the covariance of this distribution. The

solid line represents a hypothetical uncontrolled manifold that cuts

through the distribution at an angle slightly different from the

major axis of the ellipse. Applying simple vector addition, this

distribution can be shifted so that its mean coincides with the

origin of new coordinates denoted by x9, y9 (Figure 3B). With a

simple coordinate rotation, the major axis of the distribution can

be aligned with one of the coordinate axes, now defined as x0, y0

(Figure 3C). Finally, re-scaling these axes so that the major and

minor axes of the ellipse are equal yields new coordinates, now

denoted by x90, y90, in which the covariance is completely isotropic

(Figure 3D). In sum, for any data distribution, alternative

coordinates can always be found in which the directional

dependence of variance disappears.

If analysis of covariance matrix anisotropy is applied to seek

evidence for the coordinates of CNS control, then this line of

argument is troublesome. A set of coordinates is assumed for the

execution variables; a particular form of data anisotropy is

presented as evidence that those coordinates are, in fact, used by

the CNS—but the anisotropy of the data is completely determined

by the coordinates initially assumed. There are always alternative

coordinates in which the data anisotropy may be eliminated.

There are even alternative coordinates in which data anisotropy

may be constructed to argue for the opposite conclusion. Unless

the coordinates of execution space are objectively known a priori,

the presence of data anisotropy cannot serve as evidence of

control.

These concerns are by no means confined to the UCM method.

Covariance-based analyses of variability are in widespread use.

They include principal component analysis, factor analysis, ridge

regression, proper orthogonal decomposition, linear discriminant

analysis, Karhunen-Loève or Hotelling transform, the Isomap

method, and non-negative matrix factorization [22,23,24]. Most of

them depend similarly on assumptions about coordinates. In the

study of motor control, covariance-based analysis has been used to

infer synergies underlying multi-dimensional motor behavior

40 cm in the simulation. B: Relative joint angle definitions, r1 and r2 . C: Simulated data displayed in the space of the relative joint angles, r1 and r2 .
The color code denotes deviations from the target line, with darker colors referring to larger distances. The curved white line denotes the UCM, the
set of solutions for which the end-effector is exactly on the target line. The dashed straight line denotes the nullspace of the Jacobian matrix
evaluated at the mean of the data distribution, providing a linear approximation that is tangent to the UCM at that point. The data are aligned with
the direction of the nullspace, i.e. show structure. D: The same simulated data displayed in the space of the absolute joint angles, a1 and a2 . The same
data are now not aligned with the direction of the nullspace, i.e. do not show structure. E: The same set of data displayed in extrinsic hand space, in
which it was generated to have an isotropic random distribution with its mean centered on the target line.
doi:10.1371/journal.pcbi.1000751.g001

Table 1. Results of UCM and TNC analyses of the data shown in Figure 1C and 1D (absolute and relative joint angle coordinates).

UCM analysis TNC analysis

kkkkkkkkkUCMk ==========\\\\UCM (%) Tolerance cost (mm) Noise cost (mm) Covariation cost (mm)

absolute 101.663.7 0.4860.09 5.9160.38 0.0860.01

relative 227.068.7 0.4860.09 5.9160.38 4.2560.28

Entries show the mean 6 standard error of each measure based on 10 independent random samples of 100 points each drawn with replacement from the 500
hypothetical data points. Both the UCM results and Covariation cost are sensitive to the choice of coordinates. In contrast, Tolerance cost and Noise cost are unaffected.
doi:10.1371/journal.pcbi.1000751.t001
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[12,25,26] and many others). For example, Cusumano and Cesari

[27] proposed an analysis of variability with respect to a Goal-

Equivalent Manifold (GEM, formally equivalent to the UCM).

While some details of the GEM method differ from the UCM

method (e.g., the use of a singular-value decomposition), most

steps are similar—most importantly the analysis of a covariance

matrix with respect to the nullspace of a Jacobian matrix.

Although the authors do not interpret their findings as identifying

the coordinates of CNS control, their results similarly rely on

orthogonality and data anisotropy and hence are exquisitely

sensitive to the coordinates assumed for the analysis.

In the same vein, Todorov and colleagues have developed a

stochastic optimal feedback control framework where, again,

variability in the execution of redundant tasks is evaluated to

adduce evidence of feedback control [16,17]. Deviations from a

desired target behavior that are preferentially distributed along do-

not-matter directions are taken as evidence of optimal control

following a Minimum Intervention Principle. As before, although

this is an intuitively appealing idea and uses sophisticated

mathematical tools, experimental evidence derived from analysis

of a covariance matrix is fundamentally sensitive to assumed

coordinates. Unless the coordinates of control are objectively

known a priori, anisotropy of a covariance matrix cannot provide

reliable evidence.

The TNC Method and the Solution Manifold
Can alternative methods be formulated which are less sensitive

to coordinates? Sternad and colleagues introduced the so-called

TNC analysis (Tolerance – Noise – Covariation) with the goal of

quantifying skilled performance and how it changes with practice

[28,29,30,31]. In TNC analysis, variability in performance is

parsed into three components: Tolerance (or T cost) quantifies to

what degree variability is in regions of execution space that are

tolerant of error; Noise (or N cost) quantifies to what degree

random variation affects performance; Covariation (or C cost)

quantifies to what degree covariation among execution variables

takes advantage of the structure of the manifold of solutions. The

principal goal of this method is to afford a more differentiated view

of how the acquisition of skill not only decreases variability but also

takes advantage of the structure of the task. Adjusting execution

variability affords three conceptually at least different routes to

improve performance, and T cost, N cost, and C cost are measures

of these three distinct strategies.

In addition, the TNC method differs from those discussed above

in one key aspect: instead of evaluating the structure of a

covariance matrix in the space of execution variables, the

quantification of variability is performed in the space of the result

variable(s) [29,32]. In a well-posed task, result variables typically

have an unambiguous physical meaning and are expressed in a

space with a natural, physically-meaningful metric. For that

reason, a suitably formulated analysis of performance variability in

the space of result variables may be insensitive to their coordinates.

In the following we assess the sensitivity of the TNC method

presented in Cohen and Sternad (2009) to the experimenter’s

choice of coordinates.

TNC analysis begins with a model of the task, unambiguously

described in physical variables that are measured. For example,

analyzing a challenging throwing task where a subject throws a

tethered ball around a central post to hit a target, execution is

fully determined by two variables (for a detailed description of the

task see [28]. They may be the angular position and velocity of

the hand at the moment of release of the ball, though other

variables may also be chosen (see below). Together they define a

two-dimensional execution space, X. Given these execution vari-

ables, the subsequent ball trajectory—and hence the outcome of

any throw—is fully determined from elementary mechanical

physics. The result of any particular execution is an error,

specifically, the closest approach of the ball to the target. It

defines a one-dimensional result space, R. The task is redundant as

multiple combinations of the two execution variables yield the

Figure 2. Illustration how orthogonality depends on the chosen scale of the coordinates. Simple multiplication of the x-axis units with a
constant factor 0.5 distorts the orthogonal direction in the original x,y space.
doi:10.1371/journal.pcbi.1000751.g002

Coordinate Dependence of Variability Analysis
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same result; a function f : X?R is readily identified which

describes a ‘‘many-to-one’’ map from execution space into result

space.

Perfect execution of this task with zero error defines the solution

manifold shown in white in Figures 1C, 1D and 4. Non-zero errors

are defined by the result function f and determine a landscape—an

elongated ‘‘valley’’ with the solution manifold as its bottom—with

error magnitudes expressed in colors with darker denoting larger

errors (for details see Cohen & Sternad, 2009). The solution

manifold (and, indeed, the entire result function) is highly

nonlinear because the tether pulls the ball towards the central

post, giving it a curved flight path. To be strictly correct, the

nonlinear result function is itself a 2D manifold in the 3D space

formed by the composition of the result and execution spaces,

R|X . However, to facilitate comparison with related methods, in

this paper we reserve the term ‘‘manifold’’ for the zero error result

Figure 3. Illustration how simple matrix operations transform an anisotropic data set into an isotropic data set. A: Data set with
covariance and a mean defined at my and mx; the linearized solution manifold, UCM, is shown by the solid line. The data show anisotropy in alignment
with the UCM. B: A linear shift centers the data to the origin of new coordinates, x9, y9. C: A rotation of the data aligns the major axis of the data with
one coordinate to determine the new coordinates x0,y0. D: A final operation shrinks the major axis to obtain an isotropic distribution in the new
coordinates, x09,y09.
doi:10.1371/journal.pcbi.1000751.g003
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(the solution manifold) though, technically, it defines a 1D sub-

manifold of the 2D result function. The solution manifold, SM, is

formally equivalent to the UCM and the GEM. Note that the

existence of a solution manifold (UCM or GEM or SM) with a

dimension of one or higher is a requirement for a task to be

redundant.

An important point is that the definition of the solution

manifold is independent of any assumptions about the coordinates

of execution space. It is always possible to establish a complete equivalence

between the solution manifolds expressed in any two alternative choices for

execution space coordinates. The reason is simple: if we visualize the

result function as a 2D landscape in 3D space, the solution

Figure 4. Skittles task and result function in two different coordinates. A: Top-down view of the work space of the skittles task with the
manipulandum at the bottom. The dashed line denotes the trajectory of the ball as it goes through the target with zero error. The center circle is an
obstacle to ensure non-trivial ball releases. The two execution variables of the manipulandum are defined in polar coordinates, angle and angular
velocity at release, h and _hh. B: Three-dimensional rendering of the corresponding execution and result space. The grey shades code the error
magnitude with white showing zero error and darker grey shades increasing non-zero error. C: The two execution variables defined in Cartesian
coordinates, v-x and v-y. D: Three-dimensional rendering of the corresponding execution and result space.
doi:10.1371/journal.pcbi.1000751.g004
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manifold is always at the ‘‘bottom of the valley’’. While the curve

corresponding to the bottom of the valley may appear different

with different coordinates of execution space, it always corre-

sponds to zero result. This is illustrated in Figure 4, which depicts

the result function of the skittles task for two plausible choices of

the execution variables: the angular position and velocity of the

hand at the moment of release of the ball, which may loosely be

termed polar coordinates (Figure 4A); and two orthogonal

components of the velocity of the hand at the moment of release,

which may be termed Cartesian coordinates (Figure 4B). The

corresponding result functions are shown in Figures 4C and D,

respectively. Because the relation between these two coordinate

frames is nonlinear, each result function is a distorted copy of the

other and the solution manifold traces a different curve in each

space. However, in both cases, the solution manifold corresponds

to identically zero result—it is at the bottom of the valley. Of

course, because the UCM, GEM and SM are equivalent, all enjoy

this property. However, the UCM and GEM methods confine

their variability analysis to execution space and take no advantage

of this fact.

The TNC method analyzes observed performance in the

context of the result function and distinguishes several related

aspects of imperfect performance. First, it is commonly observed

that subjects do not use the entire solution manifold, even though

all combinations of execution variables that lie on it yield equally

perfect performance. Instead, performance attempts tend to be

clustered around a preferred location on the solution manifold

(Cohen & Sternad, 2009), most likely because different locations

have different tolerance of errors. Tolerance cost provides a measure

of how observed performance exploits error tolerance by shifting

the observed data distribution to different locations in execution

space and evaluating the greatest ensuing improvement in average

result. Second, subjects are not only inaccurate but also imprecise.

Noise cost provides a measure of how this random scatter around

the mean execution affects performance. Noise cost is calculated

by shrinking the set of data incrementally and uniformly towards

its mean in execution space. The greatest improvement in average

result that ensues is taken as Noise cost. Third, even if variable

errors are not reduced, they may be structured to advantage.

Covariation cost provides a measure of how observed performance

capitalizes on the structure of the solution manifold. It is calculated

by recombining observed data in execution space and evaluating

any improvement in average result. The important point for

present purposes is that these three features of performance

variability are estimated in result space, in units of the result

variable. They are expressed as costs indicating how much

observed performance could have been improved by an

appropriate change of tolerance, noise and covariation.

Curvature of the Solution Manifold
One obvious reason to prefer some locations on the solution

manifold over others is the sensitivity of the result to variability (or,

equivalently, tolerance of error). This is determined in part by the

mechanical physics of the task, expressed as the curvature of the

result function. Figures 4C and 4D show the result function of the

skittles task (depicted as a plan view of a curved valley). Due to the

nonlinear mechanics of the task, the immediate neighborhood of

the solution manifold has different curvature at different positions,

making some locations more tolerant of errors than others. Note

that all locations on the solution manifold have identical height

and there is no global minimum or ‘‘best’’ location based on error

alone. It is the ‘‘width’’ of the valley that varies with location (or,

equivalently, how close its bottom is to being flat). Looking beyond

the one-dimensional solution manifold to the many-dimensional

result function opens up additional ways to quantify the

consequences of variability, such as to assess the effect of curvature

on error tolerance.

Remarkably, important features of the result function’s

curvature are completely independent of any assumptions about the

coordinates of execution space. As discussed above, the solution

manifold itself is independent of coordinates. In addition, if the

result function smoothly maps execution space into result space,

the Hessian matrix (a matrix of second partial derivatives) of that

map evaluated at any point determines its curvature at that point.

Because the result function is real-valued and continuous, its

Hessian matrix is real-valued and symmetric and has real

eigenvalues. The eigenvalues determine the maximum and

minimum curvatures (known as principal curvatures) of the result

function. However, the result (error) is identically zero at all points

on the solution manifold and is positive at all other points.

Therefore we may deduce that: (i) the smallest principal curvature

is always zero; (ii) the largest principal curvature is always non-

negative. As a result, the Gaussian curvature (the product of the

principal curvatures) of the result function is identically zero at all

points along the solution manifold. For any coordinates that may be used

for execution space, the Gaussian curvature on the solution manifold is zero.

Coordinate Sensitivity of TNC Analysis
These geometric considerations justify a guarded optimism that

methods based on analyzing subject performance in the context of

a result function may enjoy less sensitivity to the coordinates

assumed for execution space. Does empirical evidence support this

conjecture? While the result function for the skittles task is derived

from simple mechanical physics, the same physical principles can

be expressed in many alternative coordinate systems. One

reasonable candidate is the ‘‘polar’’ coordinate frame used above

(and detailed in Figure 4A and 4C)—angle and angular velocity at

the moment of release. An equally reasonable alternative is the

Cartesian components of linear velocity at the moment of release

(detailed in Figure 4B and 4D). Either pair of variables fully

determines the subsequent ball trajectory and the ensuing error at

the target. Note that the relation between these two coordinate

systems is significantly more challenging than the simple linear

transformation between absolute and relative joint angles in the

hypothetical example of Figure 1.

To assess the sensitivity of TNC analysis to this coordinate

transformation, we calculated Tolerance, Noise, and Covariation

costs for a particular set of experimental data expressed in polar

and Cartesian coordinates. The specific data were taken from a

study by Cohen and Sternad (2009) and represent one expert

subject practicing the skittles task for 16 days with 180 throws on

each day. The study was approved by the Institutional Review

Board of Pennsylvania State University (IRB#: 16237). As

expected, a pronounced learning curve is observed in the distance

error data (Figure 5A). The daily average of the three different

costs together with their standard deviations are displayed in

Figures 5B, 5C and 5D, respectively. The cost calculations

performed in polar and Cartesian coordinates are shown in dashed

and solid lines respectively.

The greatest influence of coordinates is on Tolerance cost on

day 1, when the error is also highest. By day 2 this influence has

largely disappeared and the error has declined dramatically (the

largest day-to-day performance improvement observed). As is

typical, this subject’s initial execution attempts on day 1 were

widely scattered, covering a large range of execution space. Over

this range, the relation between the different coordinates is highly

nonlinear. On subsequent days the execution attempts were more

tightly clustered covering a smaller range of execution space (as
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evidenced by the decline of Noise cost over the first few days).

Over this narrower range, the relation between the different

coordinates is closer to linear. As we show below, while Tolerance

cost may be affected by a nonlinear transformation of coordinates,

it is completely insensitive to any linear transformation of

coordinates. More tightly clustered execution attempts yield

smaller Noise cost; the transformation between coordinates

becomes progressively closer to linear; and the choice of

coordinates has progressively less influence on the analysis.

Indeed, from about day 10 onwards, Tolerance costs are

effectively indistinguishable in the different coordinates. Noise

costs and Covariation costs are also remarkably similar.

In sum, although the choice of coordinates produces some early

quantitative differences, the qualitative trends for each of the three

costs are remarkably similar and the quantitative differences

vanish as skill improves. Although these two coordinate frames are

substantially different and nonlinearly related, those features of the

data analysis that convey the most potential meaning for studies of

motor coordination and learning—the order-of-magnitude differ-

ences, the overall trend over successive days, the rank-ordering of

the costs—are largely unaffected.

Influence of Coordinate Transformations
Is this insensitivity to coordinates a general property of TNC

analysis or a fortuitous outcome of analyzing a ‘‘favorable’’ data

set? In the following we consider each part of TNC analysis in

turn.

Covariation cost. To calculate Covariation cost, pairs of

observed data points are re-combined by exchanging one of their

coordinate values. This operation has no effect on the marginal

distributions of the observations but it may improve the result. A

search procedure finds the pairings that yield the minimum

average result. The difference between the original average result

and the minimum is Covariation cost (for a more detailed

description of calculations see Cohen & Sternad, 2009). This

procedure provides a measure of the alignment (or misalignment)

Figure 5. Comparison of Tolerance, Noise and Covariation costs in two coordinate frames (data of one subject from Cohen &
Sternad, 2009). A: Average distance error plotted across 16 days of practice gives evidence of performance improvement. The error bars denote
standard error. B: Average Tolerance cost over the 16 days of practice. C: Average Noise cost over the 16 days of practice. D: Average Covariation cost
over the 16 days of practice. In B, C and D the dashed lines denote polar coordinates, the solid lines denote Cartesian coordinates. Error bars denote
standard deviations. Variance was computed using a bootstrap procedure: 100 samples from the total set of 180 data were randomly drawn (with
replacement) and the costs were calculated; this procedure was repeated 100 times with different samples. In either coordinate frame the results
show qualitative agreement as discussed in the text.
doi:10.1371/journal.pcbi.1000751.g005
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of a subject’s performance attempts with the solution manifold.

Note, however, that unlike UCM or other covariance matrix

factorization methods, it does not require the data distribution to

be anisotropic. Neither does it depend on orthogonality, as the

measure of closeness to the solution manifold is determined by

comparing averages in result space.

Unfortunately, because marginal distributions are projections of

the observed data distribution onto the coordinate axes, this

Covariation cost is sensitive to a rotation of the coordinate axes of

execution space. To illustrate, suppose a particular distribution of

observations is clustered in a region where the solution manifold is

only mildly curved (which is often the case). If the coordinate axes

are rotated so that the roughly-straight section of the solution

manifold is parallel to the coordinate axes, then re-combining

pairs of data points will have minimal effect on the average cost. In

this example it would always be possible to find a coordinate frame

in which Covariation cost was essentially zero—no matter what

the Covariation cost was in the originally chosen coordinates. This

problem is illustrated in the hypothetical example of Figure 1. In

either coordinates, the solution manifold is only mildly curved. In

relative joint angles a substantial Covariation cost is observed, but

in absolute joint angles it is many times smaller (see Table 1,

column 4).

Although this measure exhibits an undesirable sensitivity to

coordinates, the origin of that sensitivity is evident. Consequently,

those conditions under which sensitivity to coordinates is minimal

are readily identified: provided the solution manifold has a

predominantly diagonal disposition in the region of execution

space occupied by the data, the particular choice of execution

coordinates will make little difference. That is consistent with the

observation that Covariation cost shows a similar trend to decrease

with practice in either polar or Cartesian coordinates—in both of

the coordinates considered, the observed executions occupy a

region of the solution manifold which is predominantly oriented

diagonally (Figure 6). Of course, a measure that would be

completely independent of the choice of coordinates is clearly

desirable. One possible way that might be accomplished is

considered in the discussion.

Noise cost. Noise cost is computed by progressively

contracting the distribution of performance attempts in

execution space towards its mean in a series of small steps. At

each step, the average result is evaluated and the greatest

improvement in average result that ensues is Noise cost. In

general, the distribution of a set of attempts may vary with the

coordinates assumed for execution space. For example, if two

coordinate frames are nonlinearly related (e.g., polar and

Cartesian coordinates), then the mean of the distribution in the

two coordinates will, in general, correspond to different values of

the result. Theoretically, then, Noise cost depends on coordinates

but in practice the sensitivity may be small. In Text S2 we present

a brief analysis showing that if the result function curvature is small

in the region occupied by experimental data, then Noise cost is

minimally affected by a linear transformation of execution

coordinates. In other words, if the curved surface of the result

function may be approximated competently by a tangent plane in

the region occupied by the data, then a linear coordinate

transformation will have no material effect on Noise cost. In that

case the Noise cost calculation would be indifferent to a change

from absolute to relative angles (see Figure 1) that may profoundly

affect covariance-based analyses (see Table 1, column 3).

This argument may be extended to nonlinear coordinate

transformations. If they, too, have sufficiently small curvature in

the region occupied by experimental data, Noise cost will be

minimally affected. Pragmatically, experimental observations are

often clustered in a small region of execution space. Furthermore,

as subjects acquire skill they tend to cluster their performance even

more closely. Consequently, we may expect Noise cost to be at

worst weakly sensitive to coordinates, and become progressively

less sensitive as subjects acquire skill. This is consistent with the

insensitivity of Noise cost to polar or Cartesian coordinates shown

in Figure 5.

Tolerance cost. Tolerance cost is computed by translating an

observed set of performance attempts to a new location in

execution space without changing its distribution and evaluating

the corresponding average result. This is repeated for translations

to all points on a grid covering an experimentally reasonable range

Figure 6. Exemplary data in polar (A) and Cartesian (B) coordinates. The data are one block of 60 performance attempts on the second day
of practice by the same subject shown in Figure 5. In both coordinate systems the data cluster in a region where the solution manifold (white) is
mildly curved and approximately diagonal.
doi:10.1371/journal.pcbi.1000751.g006
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of execution space to find the translation that yields the minimum

average result. The difference between the original average result

and the minimum is Tolerance cost. In Text S2 we present a brief

analysis showing that Tolerance cost is completely unaffected by

any linear transformation of execution coordinates. This is a large

class of transformations; it includes rotation, dilation, contraction

and shearing of the coordinate axes. In particular, the Tolerance

cost calculation is indifferent to a change from absolute to relative

angles (see Figure 1) that profoundly affects covariance-based

analysis (see Table 1, column 2).

As with Noise cost, a nonlinear transformation of coordinates—

such as between the polar and Cartesian coordinates—may affect

Tolerance cost; a translation of the data distribution that does not

change its shape in one coordinate frame may change its shape in

another frame. However, as with Noise cost, if the data occupy a

region in which the curvature of the nonlinear coordinate

transformation is sufficiently small, Tolerance cost is minimally

affected. This is consistent with the insensitivity of Tolerance cost

to polar or Cartesian coordinates shown in Figure 5.

Discussion

Redundancy in the execution of a given motor task presents

alternatives to the central nervous system and affords an

opportunity for sophisticated control. If some elements of the

neuromuscular system are no longer available, such as due to

injury, the system can maintain its functionality; it is robust. Given

that complex multi-level systems typically have noise, redundancy

also provides ways to cope with this noise and channel it into

directions that have minimal effect on achieving the task goal.

Hence it is reasonable to hypothesize that skilled performers take

advantage of this redundancy and align their actions with the

solution manifold corresponding to a given task goal, i.e. the space

in which noise and variability have little or no effect on the end

result. Consequently, analysis of variability in such redundant tasks

promises insight into the CNS control system. For example,

evidence that behavior adapts to take advantage of the solution

manifold in execution space sheds light on what the CNS

controls—not execution variables per se but combinations thereof.

Further, the decomposition into three factors which change with

different time histories, as shown in the TNC analysis of the

exemplary data, provides insight about routes for change that are

otherwise not visible.

Though numerous studies have tried to pursue these questions

via analysis of variability, a problem arises when covariance is the

only basis of this line of investigation. Specifically, we showed that

methods based on analysis of a covariance matrix are exquisitely

sensitive to the coordinates within which the analysis is conducted.

This is no small consideration as covariance-based methods are

ubiquitous in movement neuroscience and other disciplines.

However, their sensitivity to assumed and measured coordinates

confers an uncomfortable arbitrariness on their outcome and

motivates the work presented here—an initial attempt to assess the

coordinate dependence of alternative methods of analysis.

One way to cut this Gordian knot might be to find out in

advance which coordinates are relevant for the nervous system.

Unfortunately, in behavioral research this is unlikely; the variables

that are meaningful to the CNS are typically not known a priori.

Indeed, to identify which variables the CNS may control is one of

the central questions of motor neuroscience.

An alternative is to rely on statistics of higher order than

covariance. An example is the so-called ‘‘infomax’’ algorithm

introduced by Bell and Sejnowski [33]. It is a self-organizing

learning algorithm that maximizes entropy of the output of a

single-layer neural network. The authors reported that it

converges to independent component analysis (ICA) of the input

signals and accomplishes ‘‘blind source separation’’ (i.e. teasing

apart independent sources of a composite signal without a priori

knowledge of the source characteristics). However, in a more

recent paper Xi, Chicharo, Tsoi, and Siu [34] demonstrated that

the infomax algorithm is not able to separate signal sources if the

data are not first de-correlated. Furthermore, the authors report

that de-correlation alone is often sufficient for blind source

separation. Because de-correlation depends only on the data

covariance matrix (it corresponds to the first two steps illustrated in

Figure 3, panels A through C), these results indicate that the

infomax algorithm is also sensitive to the experimenter’s assumed

coordinates.

The infomax algorithm is only one of many approaches to ICA.

A general survey is provided by Hyvärinen and Oja [35] who

emphasize that a non-Gaussian data distribution is essential.

Consequently, a change of variables that ‘‘distorts’’ an original

data distribution so that it becomes Gaussian will disable ICA,

whether performed by infomax or any other algorithm. However,

for continuous univariate data distributions it is always possible to

identify a (nonlinear) change of variables such that the transformed

data follows a Gaussian distribution; for multivariate distributions

a proof is more challenging. While ICA may afford advantages in

particular cases, the central problem remains: the analysis depends

on the experimenter’s choice of coordinates.

Another way to circumvent the problem of coordinate

sensitivity may be to ground the analysis in that set of coordinates

which renders variability of the initial performance isotropic or,

equivalently, focus only on the change of anisotropy. Several

studies have aimed to identify functional synergies and their

development with practice or recovery after injury in this way

[12,36,37,38]. If the coordinates are (re-)defined such that the

initial or reference data have an isotropic covariance matrix, then

any changes will be revealed as increases in the anisotropy. While

this would appear to address the immediate difficulty, this

coordinate set will likely differ between individuals, rendering

comparisons between individuals problematic or even impossible.

It is not even clear whether it would support comparison between

the same individual’s performance on different occasions or on

different tasks. Essentially, the choice of the reference observation

used to define the initial coordinates re-introduces the problem of

arbitrariness; it would be equally appropriate to choose the

coordinates for isotropy at any other reference point.

Towards Coordinate-Independent Methods
In physics it is generally expected that descriptions of natural

phenomena should not depend on an arbitrary choice of the

coordinates in which the descriptions are cast. This principle has

thus far received little consideration in movement neuroscience,

which is surprising given that neuroscience similarly seeks

fundamental descriptions of the function of the neuromuscular

system. Because the tensor calculus is one of the classical methods

to formulate analysis independent of coordinate frames, the

‘‘tensor theories’’ of sensory-motor transformations within the

CNS (proposed by Pellionisz and Llinas [39]) might appear to

address this matter. Unfortunately, as detailed in the review by

Arbib and Amari [40], their use of tensor calculus was at best

metaphorical and could not achieve the required independence of

coordinate frames.

Sensorimotor transformations within the CNS might alterna-

tively be approximated by a weighted combination of suitable

basis functions, an approach that could plausibly be implemented

by e.g. three-layer networks of neurons. Soechting and Flanders
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(1992) point out that ‘‘…activity in intervening (hidden) layers

need not be in any frame of reference…’’. Pouget and Sejnowski

[41] propose that single neuron responses serve as basis functions

which ‘‘have the advantage of not depending on any coordinate

system or reference frame.’’ The substance of this statement is that

the different nonlinear functions required to represent the same

sensory event or motor response in different reference frames may

be approximated as different linear combinations of the same set

of basis functions. As a result, the different representations are

related by linear transformations. However, this does not achieve

the required independence of coordinates that we seek. The

‘‘relative’’ and ‘‘absolute’’ joint angles considered in the example

of Figure 1 are related by a linear transformation, yet the

difference between them profoundly affects an analysis of the

distribution of experimental observations.

An important distinction should be made between the

coordinates of a putative internal neural representation and the

coordinates of external observations of behavior that may be used to

infer neural processes. Because the complexity of the central

nervous system and the limitations of available measurements

create boundless opportunities for confusion, it seems prudent

(perhaps even mandatory) to seek descriptions and analysis

techniques that are minimally affected by an investigator’s

choice—however sensible—of measures and coordinates. If that

should prove to be impractical, it is at least necessary to

understand how a change of coordinates may affect the

conclusions drawn; this was the primary motivation for the study

reported here.

Given the difficulties inherent in any method based on

covariance, we considered an alternative analysis of data structure,

the TNC method. One of its distinguishing features is that

quantitative assessment of structure in execution variability is

evaluated in the space of the result (see Müller and Sternad, 2009).

The key point is that while different coordinates of execution space

may be chosen, the result does not change. In the example cited

above, the result space was one-dimensional (the distance of closest

approach to the target) but that is not essential. Though the clarity

of one-dimensional measures of task success affords substantial

advantages, multi-dimensional result spaces could be envisioned.

Alternative result measures are discussed in Müller and Sternad

(2003). However, in any unambiguously defined task, the result

space should admit a natural metric so that any improvement (or

decline) in performance could be identified unambiguously. For

example, in the hand space depicted in Figure 1E, distance is

naturally quantified by the usual Euclidean metric. Therefore,

orthogonality is uniquely defined in hand space. In addition,

physical distance is invariant under changes of hand coordinates.

If the experimenter chose to use, say, polar coordinates to quantify

hand position, a different well-defined metric (obtained by suitably

transforming the Euclidean metric) applies to these coordinates. In

some tasks it might be advantageous to define a result space whose

elements were the complete time-histories of performance

attempts. To be defined unambiguously, this result space should

be an infinite-dimensional Hilbert space. Though we anticipate no

fundamental barriers to dealing with these more challenging cases,

their analysis is deferred.

Provided the result space has a well-defined metric, any analysis

of behavior confined to result space may be made completely

independent of the choice of its coordinates. For example, though

Lacquaniti and Maioli (1994b) arrive at their main result (planar

co-variation of joint angles) by principal component analysis in the

space of joint angles (which is sensitive to the choice of joint angles)

this may be interpreted in terms of CNS control of leg length and

orientation (Maioli & Poppele, 1991). While the existence of any

metric for any configuration space of joint angles is debatable,

there is a natural choice for the location of the forepaw or hindpaw

relative to the shoulder or hip: the Euclidean distance between the

proximal joint and its distal support. Insofar as conclusions are

drawn from observations of minimal variability of foot trajectory

in space [42], they are also insensitive to the choice of spatial

coordinates. However, it would be difficult to extract convincing

evidence of synergies or how the CNS may solve the problem of

controlling redundant degrees of freedom from any analysis that is

confined to result space alone. For that reason TNC analysis maps

execution space onto result space.

Sensitivity to coordinate transformations is only brought about

by operations that are performed in execution space. In TNC

analysis, those operations consist of translation, uniform shrinking,

and re-combination of the observed data. Linear transformations

of the execution coordinates do not affect the translation used to

calculate Tolerance cost. For example the change from absolute to

relative joint angles, which profoundly affected UCM analysis,

makes no difference whatsoever. This is not to say that Tolerance

cost is indifferent to all coordinate changes; it is clearly affected by

nonlinear coordinate transformations. Its sensitivity is determined

by how much a nonlinear coordinate transformation departs from

linearity over the region of analysis. Sufficiently ‘‘gentle’’

transformations (i.e., those sufficiently close to linear) will have

little influence. We presented empirical evidence suggesting that a

nonlinear transformation between polar and Cartesian coordinates

has minimal effect. Nonetheless, it would be advantageous to

develop a (revised) measure of tolerance that was insensitive to

coordinates. That is a topic of ongoing investigation.

Linear transformations of the execution coordinates are

expected to have little effect on the shrinking operation used to

calculate Noise cost. In this case, the sensitivity to coordinates will

be determined by the curvature of the result function over the

region occupied by the data. Again, empirical evidence suggests

that a nonlinear transformation between polar and Cartesian

coordinates has little effect.

As described above, the re-combination operation used to

calculate Covariation cost is fundamentally sensitive to rotation of

the coordinate axes [43,44]. Even so, this measure has some

singular merits: it is not affected by the core weaknesses of methods

based on covariance matrix factorization because (i) it makes no

use of orthogonality, and (ii) it does not require anisotropic

distribution of the data. It is therefore worth considering how it

might be improved.

Revised Covariation Cost
As outlined previously, the reason Covariation cost is sensitive

to coordinates is clear. The difficulty is illustrated in Figure 7.

Panels A and E depict how any two observations x1, y1 and x2, y2

(schematically shown as two filled dots) may be re-combined to

produce new data x1, y2 and x2, y1 (shown as open circles).

Exchanging their x-coordinates (or y-coordinates) does not change

the marginal data distributions but might change the correspond-

ing results. If the solution manifold and adjacent lines of constant

result are (approximately) straight and aligned parallel to one of

the coordinate axes as in Figure 7A–D, this re-combination will

have no effect. As a result, Covariation cost will be (approximately)

zero. Figure 7B–D illustrates this for schematic data with a

distribution that is completely misaligned with the solution

manifold (Figure 7B), or exhibits no apparent alignment

(Figure 7C), or is well-aligned with the solution manifold

(Figure 7D). In contrast, if the solution manifold and adjacent

lines of constant result are (approximately) straight but aligned

diagonally with respect to the coordinates as in Figure 7E–H, then
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recombination of x- and y-elements can substantially improve the

average result. The effect will be greatest if the data distribution is

aligned along a direction different from the solution manifold

(illustrated in Figure 7F), intermediate, if it exhibits no apparent

alignment (Figure 7G), and close to zero if it is well-aligned with

the solution manifold (Figure 7H).

This suggests an obvious way that Covariation cost may be

revised to minimize its sensitivity to coordinates: For any choice of

Figure 7. Schematic illustration of the Covariation cost calculation and how it depends on the solution manifold orientation. A–D: If
the solution manifold is oriented parallel to the x-axis, exchange of coordinates of two exemplary points x1,y1 and x2,y2 does not lead to an
improvement in average result. Panels B, C, and D show that this holds for three different distributions. E–H: In contrast, if the solution manifold is
oriented diagonally, exchange of coordinates of two exemplary points x1,y1 and x2,y2 leads to an improvement in average result. This improvement
will be greatest if the data distribution is aligned along a direction different from the solution manifold (F); intermediate if it exhibits no apparent
alignment (G); and close to zero if it is well-aligned with the solution manifold (H).
doi:10.1371/journal.pcbi.1000751.g007
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execution coordinates, a rectangular region may be identified that

bounds some appropriately large proportion of the marginal data

distributions (less than 100% to minimize the influence of outliers).

Within that region the best straight-line approximation to the

solution manifold may be found. From that information, a rotation

of the coordinate axes may be identified to define a new

coordinate frame in which the solution manifold approximately

intersects opposite corners of the rectangular region containing the

(new) marginal data distributions. Provided the solution manifold

is mildly curved throughout the region occupied by the data, the

recombination procedure described previously will yield a (revised)

Covariation cost that will approach zero only if the data is

distributed along the solution manifold. Furthermore, this revised

Covariation cost will be insensitive to the initial choice of

execution coordinates, provided again that the solution manifold

is approximately straight throughout the region occupied by the

data.

This revised measure of covariation adds a step to the analysis to

circumvent problems due to an untoward relation between the

coordinate axes (chosen by the experimenter) and the solution

manifold (defined by the physics of the task). Essentially this

revision recognizes the original weakness and turns it to

advantage. Nonetheless, it may not confer complete insensitivity

to coordinates. A method to do so is a topic of ongoing

investigation.

Importance of the Result Function
The heart of TNC analysis is identification of a result function.

In a well-posed task, the goal is explicit and meaningful and

presents an unambiguous, objective benchmark for evaluating

performance. Incorporating the result function avoids implicit

limitations on an analysis of variability. For example, the result

function determines the consequences of both inaccuracy (constant

error) and imprecision (variable error) for task performance. In

contrast, covariance matrix factorization methods are necessarily

performed on deviations around a mean, and must remain silent

on the consequences of constant error.

Geometric details of the result function may be particularly

informative. Though manifestly true, it may not be obvious that all

perfect solutions are not equivalent but may differ in their

forgiveness of error. Recognizing this fact is potentially a rich

source of new insight into central nervous system control,

suggesting new perspectives and hypotheses. For example, it

seems reasonable to postulate that actors may ‘‘exploit’’ variability

to assess error tolerance. This is consistent with the hypothesis that

variability is necessary to explore execution space and find good

solutions [45,46,47,48]. This hypothesis may be rendered explicit

by observing that variability affords a way to assess the curvature

of the result function, and may be testable by offering a way to

quantify error tolerance via the result function curvature.

This hypothesis is strongly reminiscent of the concept of

‘‘persistent excitation’’ that is essential for effective adaptive

control [49]. An essential point is that, if this hypothesis is correct,

the best strategy may not be to confine variability in the directions

that affect task performance to its irreducible minimum and

channel the remainder to the do-not-matter directions. As

described above, the curvature of the result function along the

do-not-matter directions (the solution manifold) is identically zero,

so variability in this direction adds little new information. Instead,

tolerance of error depends on directions independent of the do-

not-matter directions. Variability in these ‘‘do-matter’’ directions

may be essential to identify the best location along the solution

manifold at which to cluster performance. Exploration of this

possibility is a topic of ongoing investigation.
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