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Memoryless drop breakup in turbulence
Alberto Vela-Martín1*† and Marc Avila1,2*†

The breakup of drops and bubbles in turbulent fluids is a key mechanism in many environmental and engineer-
ing processes. Even in the well-studied dilute case, quantitative descriptions of drop fragmentation remain
elusive, and empirical models continue to proliferate. We here investigate drop breakup by leveraging a
novel computer code, which enables the generation of ensembles of experiments with thousands of indepen-
dent, fully resolved simulations. We show that in homogeneous isotropic turbulence breakup is a memoryless
process whose rate depends only on the Weber number. A simple model based on the computed breakup rates
can accurately predict experimental measurements and demonstrates that dilute emulsions evolve through a
continuous fragmentation process with exponentially increasing time scales. Our results suggest a nonvanish-
ing breakup rate below the critical Kolmogorov-Hinze diameter, challenging the current paradigm of inertial
drop fragmentation.
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INTRODUCTION
The dynamics of drops and bubbles in turbulence plays an impor-
tant role in the emulsification of immiscible liquids in food indus-
tries (1, 2), sprays and atomization in combustion (3, 4), rain
formation in clouds (5), rainfall (6), and the liquid-gas exchange
in the oceans (7–9). In these examples, the disperse phase breaks
down into smaller fluid particles due to the ambient turbulence,
but coalescence can increase their size. The competition between
these two processes controls the particle size distributions, which
determine important properties of immiscible mixtures such as
the interfacial area.

The theoretical foundations for the breakup of fluid particles
larger than the viscous scale in turbulence (η = ν3/4/ε1/4, where ε
is the kinetic energy dissipation and ν the kinematic viscosity of
the carrier fluid) were laid out by Kolmogorov (10) and Hinze
(11). They assumed that a particle of diameter d is deformed by tur-
bulent velocity fluctuations up to the same scale, Δu2ðdÞ � ðɛdÞ2=3,
and postulated that breakup would occur when the kinetic energy of
these fluctuations exceeded the interfacial energy. This occurs when
the dimensionless Weber number (We = ρ ε2/3 d5/3/σ, where ρ is the
density of the carrier phase and σ is the surface tension) exceeds a
critical value of order unity (10, 11). Accordingly, breakup is inhib-
ited when the diameter falls below the corresponding critical (Kol-
mogorov-Hinze) diameter

dKH ¼ C
ρ
σ

� �� 3=5
ɛ� 2=5 ð1Þ

where C is a constant. Hinze (11) fitted this equation to experimen-
tal measurements of d95, the diameter below which 95% of the
volume of the disperse phase is contained, and obtained good agree-
ment for C = 0.725. Although deviations from this value have been
reported in the literature (12–15), the Kolmogorov-Hinze diameter
dKH is extremely useful because it can be used to estimate d95 from
material properties and the dissipation only. The latter can be

estimated from the power input or from standard single-phase com-
putational fluid dynamics simulations of the experimental
device (12).

Despite its remarkable success and widespread use, the approach
pioneered by Kolmogorov and Hinze does not provide information
on the time scale of the fragmentation process, which is essential to
predict the evolution of the particle size distributions. In sprays or in
emulsions, it is very difficult to track individual drops, and extract-
ing breakup rates from the evolution of the size distributions is ex-
tremely challenging (16). Hence, there have been a number of
experimental studies in which single drops (or bubbles) are injected
and tracked as they pass a turbulent flow region (3, 17–23). In such
experiments, fluid particles are deformed by turbulence and may
break before exiting the turbulent region. However, there is no com-
monly accepted method to determine breakup rates from the exper-
imental data, and the results disagree quantitatively (24). Possible
sources of discrepancies are different flow setups and observation
times, insufficient statistics, or the methodology to extract the
breakup rate. In a nutshell, the dynamics of breakup remains
poorly understood (2), and phenomenological models continue to
proliferate in the literature (15, 18, 25–29). In this work, we show
that drop breakup in homogeneous isotropic turbulence obeys a
memoryless process whose rate depends only on the Weber
number. We determined the scaling of the breakup rate and ob-
tained simple, accurate predictions of the evolution of drop size dis-
tributions in the dilute regime.

RESULTS
We leveraged our novel pseudo-spectral Graphich Processing Unit
(GPU) code described and validated in (30) and (31) to perform
more than 30,000 independent simulations of drop breakup at
several We and Reynolds numbers, Reλ = λu′/ν, where
λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15ðɛ=νÞ

p
u0 is the Taylor microscale, and u′ is the root mean

square of the velocity fluctuations (see Table 1 for a summary of all
simulations). The procedure for each simulation was as follows. A
single spherical drop of diameter d ≫ η was placed in a turbulent
carrier fluid and was let to evolve. The drop deformed, while visiting
regions of intense turbulence, and relaxed back toward a sphere in
regions of quiescent motion. Eventually, it broke down into two or
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more drops, as exemplified in Fig. 1. To ensure well-converged sta-
tistics, each run was initialized with a different (decorrelated) tur-
bulent flow field, and many hundreds of runs were performed for
each (We, Reλ) pair in the ranges We ∈ [1.45,7.27] and Reλ ∈

[31,96]. For the highest Reynolds number, Reλ = 96, the diameter
of the drop lies within an incipient inertial range of scales (see
section S1). The breakup time, rendered dimensionless with the in-
ertial time scale of the drop, td = (d2/ε)1/3, and the daughter size dis-
tribution were stored for each simulation. We first considered two
inmiscible fluids of equal density and viscosity and subsequently
varied the ratio γ = νd/ν, where νd is the kinematic viscosity of
the drop.

We let P(t) denote the probability that a drop breaks before time
t. Then, 1 −P(t) is the probability that a drop survives beyond time t.
As shown in Fig. 2A, 1 −P(t) = exp [−(t −t0)κ(We)], where t is the
observation time, t0 is an equilibration time, and κ is the dimension-
less breakup rate. The equilibration time includes the time for the
drop to settle into the flow conditions, and the minimum time
needed for breakup when the drop has reached a critically deformed
state (32). Beyond the equilibration time, distributions are exponen-
tial and depend only on the breakup rate, κ, reflecting that the prob-
ability of breakup is constant and therefore independent of how
long the drop has been exposed to turbulent fluctuations (see fig.
S2). Hence, drop breakup is a “memoryless” process, statistically
similar to the decay of radioactive materials or the decay (33) and
splitting (34) of turbulent puffs in pipe flow. Exponential distribu-
tions of drop and bubble breakup times are visible in previous ex-
perimental (35) and numerical (36) data but are rationalized and
fully characterized here. To further test the memoryless nature of
breakup, we checked that the breakup rate does not change when
the initial drop is not spherical but ellipsoidal (see section S3).
We note that for high Weber numbers, We ≳ 3, most breakups
occur well before the equilibration time. This regime is character-
ized by the rapid, violent deformation of the interface at several

Table 1. Number of independent simulations for each Reynolds and
Weber number at high (N HR) and low (N LR) resolution. In addition, we
ran 257 high-resolution simulations at Reλ = 96 and viscosity ratio γ = 2 and
215 simulations at the same Reλ and γ = 0.5. Last, we also ran 200 high-
resolution simulations at Reλ = 58 and We = 2.18 with initially ellipsoidal
drops (see section S3).

Reλ = 31 Reλ = 58 Reλ = 96

We N LR N HR N LR N HR N LR N HR

1.45 – – 1687 224 – –
1.82 1208 – 1475 342 – 180

2.18 1208 – 2001 201 – 245

2.55 1208 – 1834 201 – 248

2.91 1208 – 3477 216 – 248

3.27 1208 – 3217 216 – 486

3.63 1208 – 3501 248 – 488

4.36 2008 – 2008 248 – 328

4.72 1789 – 2008 176 – 488

5.45 – – – 248 – 488

6.18 – – – 205 – –
7.27 – – – 255 – –

Fig. 1. Drop deformation and breakup in homogeneous isotropic turbulence. Temporal evolution of the drop-breakup process for three independent simulations at
We = 1.82 (A and B) andWe = 5.45 (C). The Reynolds number is Reλ = 58, and times are made dimensionless with the inertial time scale of the drop, td = (d2/ε)1/3. At t = 0, a
spherical drop is placed into the turbulent flow. The drop interface is shown as red, whereas isosurfaces of enstrophy 5⟨Ω⟩, whereΩ = ∣ω∣2, and ω = ∇ × u is the vorticity
vector, are shown in blue. For clarity, the snapshots were produced in a frame moving with the center of mass of the drop.
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length scales l, with η ≤ l ≤ d, and the formation of many daughter
drops, as shown in Fig. 1C.

The dimensionless breakup rates computed with a maximum
likelihood estimator (see section S2) are shown in Fig. 2B and are
well approximated by the equation

κ ¼ c1exp ð� 2c2We� 1Þ ð2Þ

Specifically, the breakup rate depends neither on the Reynolds
number of the flow nor on the viscosity ratio, γ, and is uniquely de-
termined by the Weber number. In contrast to the original hypoth-
esis of Kolmogorov (10) and Hinze (11), our results suggest that
there is no critical We for drop breakup. In the limit of strong
surface tension, We → 0, the characteristic breakup time, τ = κ−1,

rises exponentially, but the scaling implies a finite breakup time for
all We > 0. This is similar to the Reynolds number scaling of the
decay (33) and splitting (34) times of turbulent puffs in pipe flow.
An exponential dependence of the breakup rate on We−1 was first
proposed by Coulaloglou and Tavlarides (25) in the context of phe-
nomenological models of emulsion dynamics. Because of the mem-
oryless property unveiled here, κ completely describes the breakup
probability of single drops and the breakup rate in emulsions and,
together with the daughter-drop statistics shown in fig. S4A, can be
directly implemented in population-balance models (37).

In the range of We investigated in this work, breakup can be
assumed binary for practical purposes (see fig. S4A). This observa-
tion, together with the memoryless nature of breakup, enables a
simple stochastic model of the asymptotic evolution of dilute

Fig. 2. Drop breakup is a memoryless process with exponentially increasing breakup times as surface tension increases. (A) Probability distributions of drop
survival for We as indicated in the legend. P is the probability that a drop breaks before time t. Hence, the plotted quantity, 1 −P, is the probability that a drop survives
up to time t. The distributions were obtained from all first breakup times in ensembles of simulations at Reλ = 58 and N = 1283. All distributions are of the form
exp [−(t −t0)κ(We)], where t0 ≈ 2 is an equilibration time. The exponential form of the distributions indicates that breakup is a memoryless process with dimensionless
breakup rate κ (and mean time τ = κ−1). (B) Breakup rate as a function of the inverse of the Weber number We−1. Symbols denote simulations at different Reynolds
numbers, Reλ, numerical resolutions, N

3, and viscosity ratios, γ. The dashed line depicts the fit to a model proposed by Coulaloglou and Tavlarides (25) (CT 77), κ = c1
exp [−2c2/We], where the dimensionless constants c1 = 14.8 and c2 = 3.9 are obtained from a least-square fit to the data.

Fig. 3. Dilute emulsions evolve through a fragmentation process with exponentially increasing time scales. (A) Temporal evolution of the drop diameter prob-
ability density function (p.d.f.) in the stochastic breakup model for two different initial conditions; empty markers correspond to a log-normal distribution with average
10dKH and solidmarkers to a uniform distributionwith average 20dKH. The dashed lines show least-square fits to the drop-size distributions with a lognormal. (B) Temporal
evolution of d95 in the stochastic breakup model (solid line) and of the mean diameter in the analytic model (dashed line; eq. S7) compared to experimental measure-
ments of Vankova et al. (12). Here, tres is the characteristic residence time of the drops in the turbulent region where breakup can occur in each passage through the
emulsifier (see eq. S6). To define dKH, we used C = 0.86, as in Vankova et al. (12).
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emulsions. Starting from an initial drop with diameter d0 (orWeber
number We0), the dimensional breakup time is computed accord-
ing to a memoryless process, tb0 = −td0 log X/κ(We0), where X ∈
[0,1] is a uniform random variable. The diameter of the largest
daughter is randomly extracted from the distribution shown in
fig. S4A, which approximates well the results from our direct nu-
merical simulations. The diameter of the second daughter follows
from mass conservation. The same procedure is applied to the
two daughters [and so forth in a cascade fashion, similar to (38)],
until a desired time, and is repeated for a large number of initial
drops to obtain a temporally resolved drop size distribution. As
shown in Fig. 3A, our stochastic model predicts that the drop size
distribution quickly loses memory of the initial distribution and
converges toward a function uniquely determined by the constants
c1 and c2 in Eq. 2, and the distribution of daughter drops. This uni-
versality of the fragmentation process, further demonstrated infig.
S4B, is a direct consequence of the memoryless nature of drop
breakup and, to a lesser extent, of the random nature of the daughter
sizes.

The evolution of d95(t) was extracted from the data of our model
in Fig. 3A and is compared in Fig. 3B to the experimental measure-
ments of Vankova et al. (12), who repeatedly passed an emulsion
through the same device (see section S4 for details of the compar-
ison). Our model prediction is in excellent agreement with their
measurements and shows that the emulsification process slows
down markedly as d95(t) ≈ dKH ≈ 9 μm, reflecting the exponential
decrease of the breakup rate in Eq. 2. Vankova et al. (12) reported a
steady state after 100 passages through the emulsifier, whereas Eq. 2
suggests that the fragmentation process should continue. However,
it would take about 1000 passages to further reduce d95 by 15% only,
provided that coalescence could still be neglected. In section S5, we
derive an analytical prediction of the time necessary to reach a
desired mean diameter in a dilute emulsion (eq. S7). As shown in
Fig. 3B, our prediction is in good agreement with the experi-
ments (12).

DISCUSSION
We have shown that drop breakup in isotropic turbulence is de-
scribed by a memoryless process whose rate depends only on the
Weber number. These results provide a direct quantification of
the time scales that govern the evolution of dilute turbulent emul-
sions. In particular, simple stochastic and analytical fragmentation
models derived from our data accurately reproduce the evolution of
the drop diameter in experiments, showing that dilute emulsions
evolve through a continuous fragmentation process with exponen-
tially increasing time scales.

The scaling of the breakup rate obtained here is consistent with a
nonvanishing breakup probability below the critical Kolmogorov-
Hinze diameter (10, 11). This challenges the established paradigm
of drop breakup and suggests that fragmentation processes may
equilibrate at smaller diameters than previously thought, albeit in
time scales that have not been previously reached in experiments
or simulations. We argue that drop breakup below the Kolmogo-
rov-Hinze scale is a natural consequence of the fluctuating nature
of turbulent flows and would occur because of the interaction of
drops with the most intense eddies. In particular, the breakup of
very small drops and bubbles should be possible due to the increas-
ing frequency of very intense and extreme events (eddies) with the

Reynolds number, as a result of intermittency (39–41). The scaling
of the breakup rate revealed here suggests a connection between
drop breakup and extreme events in turbulence, where the expo-
nential dependence with the Weber number would emerge from
the limit Gumbel distribution, as conjectured for the decay and
splitting of turbulent puffs in pipe flow (42–44), and the time
scales of breakup would be determined by the memoryless
waiting times between intense events in turbulence (45, 46). This
connection could be exploited to develop breakup models, which
could be tested in simulations and experiments at higher Reynolds
numbers.

A key aspect of this work has been to characterize the dynamics
of single drops with large ensembles of independent, fully resolved
simulations. This approach can be readily extended to fluid pairs
with vastly different densities and viscosities, such as drops in air
or bubbles in liquids, and to include the effect of surfactants (47).
Last, by considering two fluid particles immersed in turbulence,
their coalescence could also be investigated with ensembles of sim-
ulations. The resulting statistical description of the coalescence
process, together with the one provided here for breakup, would
pave the way for accurate population-balance (37) or breakup-
cascade (38) models beyond the dilute regime and would advance
our understanding of many processes involving drops and bubbles
in turbulent environments (2, 4–6, 8). We anticipate that the ratio of
breakup to coalescence rates may determine the stationary particle
size distribution, in a similar manner as the ratio of decay to split-
ting rates determines the laminar-turbulent patterns in pipe (34)
and Couette (48) flows.

MATERIALS AND METHODS
Governing equations
We consider the incompressible Navier-Stokes equations coupled
to the Cahn-Hilliard equations (49)

∂tui þ uj∂jui ¼ �
1
ρ
∂ipþ 2∂jνcSij þ f i �

1
ρ
c∂iϕ;

∂iui ¼ 0;
∂tcþ uj∂jc ¼ ϰ∂kkϕ

ð3Þ

which describe the evolution of an immiscible binary mixture of
fluids with equal density, ρ, and different kinematic viscosity. Here,
ui is the ith component of the velocity vector, p is the generalized
pressure, Sij = 1/2(∂iuj + ∂jui) is the rate-of-strain tensor, and fi is
a body-force term per unit mass. Repeated indices imply summa-
tion. The concentration of each component in the mixture is repre-
sented by a phase field c ∈ [−1,1], where c = ± 1 are the pure
components, with c = −1 representing the carrier, and ϰ is the mo-
bility, which determines the relaxation time of the fluid-fluid inter-
face. The kinematic viscosity depends linearly on the concentration
νc = ν + (c + 1)νd/2, where ν is the kinematic viscosity of the carrier
and νd that of the drop. The immiscibility is modeled through a
chemical potential

ϕ ¼ βðc2 � 1Þc � α∂kkc ð4Þ

where α and β are model parameters that fix the width of the inter-
face between the components, ε ¼ 4

ffiffiffiffiffiffiffiffiffiffi
2α=β

p
, and the surface tension
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(49)

σ ¼
4
3

ffiffiffiffiffi
αβ
2

r

ð5Þ

In the limit of vanishingly small interface width, ϵ → 0, the clas-
sical stress balance at fluid-fluid interfaces (i.e., the sharp-interface
limit) is recovered (50). Themodel parameters ϰ, α, and β form two-
dimensional numbers, the Cahn and Peclet numbers

Cn ¼
ffiffiffiffiffiffiffiα
βd2

r

;Pe ¼
u0d2

ϰ
ffiffiffiffiffi
αβ

p ð6Þ

which determine the dimensionless interface thickness and the re-
laxation time of the interface, respectively. Magaletti et al. (50) have
shown that Pe ∝ Cn−2 is required to ensure a consistent physical
behavior of the Cahn-Hilliard–Navier-Stokes equations (CHNS)
(Eq. 3). Following their recommendation we set Pe = (3Cn2)−1.
For a review of the CHNS phase-field method and a comparison
with other methods, see (51).

Numerical method
We integrate Eq. 3 in a triply periodic domain of size L by projecting
the equations on a basis of N/2 Fourier modes in each direction. To
sustain turbulence in a steady state, we implement a linear body
force, f̂ i ¼ ζûi, that is only applied to wave numbers k < 2, where
�̂ denotes the Fourier transform, and k is the wave number magni-
tude. The forcing coefficient ζ is set so that, at each time, the total
kinetic energy per unit time injected in the system is constant, and
its value is set to keep a desired numerical resolution, kmaxη, where
kmax is the maximum wave number. This forcing leads to temporal
fluctuations of the volume-average dissipation. The SD of these
fluctuations is of the order of 10% its average for all Reynolds
numbers.Moreover, the local dissipation in the carrier fluid, 2νSijSij,
fluctuates strongly with respect to the mean (39). We have per-
formed simulations in a mesh with low resolution (LR), N = 128,
and a mesh with high resolution (HR), N = 256. Further details of
the code and the simulations are presented in (31).

The numerical simulations reproduce the evolution of a single
drop of diameter d = 0.3L in isotropic turbulence. For the three Rey-
nolds numbers considered here, Reλ = 31, 58, and 96, the drop di-
ameter in Kolmogorov units is d/η = 22, 44, and 89, respectively. For
these drop diameters, breakup is not affected by the linear forcing of
the flow, and the drop does not modify the structure of the sur-
rounding turbulence, as shown in detail in (31). Thus, these simu-
lations reproduce the evolution of drops in a dilute emulsion, where
drops neither interact with each other nor change the structure of
the flow.

Ensembles of single-drop simulations
Our research database comprises ensembles of many independent
single-drop breakup simulations, which were generated following
the same procedure. Each run starts with a different initial turbulent
flow field, which was generated by slightly randomizing the phases
off a healthy turbulent flow and running for two full integral time
scales. We checked that the different initial condition is not corre-
lated. Then, we introduce a drop and evolve each simulation until
the drop breaks.We consider that the drop has broken when we find

more than one disconnected object in the binary field, β, defined as

β ¼ 1 if c . 0:95
β ¼ 0 if otherwise

ð7Þ

where c = 1 corresponds to the phase-field inside the drop. This
condition is checked every 0.1td.

We have generated ensembles of simulations for We ∈
[1.45,7.27]. The number of realizations of each ensemble is
N LR ≏ 103 for the LR cases and NHR ≏ 102 for the HR cases. A
summary of all simulations is presented in Table 1. From each re-
alization in the ensemble, we store the time to breakup, tb, and the
geometry of droplet right when breakup is detected. The mass
leakage inherent to the Cahn-Hilliard equation (52) leads to a pro-
gressive reduction of the drop diameter and, hence, to an effective
reduction of the We. To keep mass losses small (here <5%, leading
to less than a 3% reduction in the Weber number), HR runs were
stopped at 10td, and LR runs at 7td. The truncated simulations are
considered for the statistical estimation of the breakup rate (see
section S2).

Correction (27 March 2023): Due to a production error, Qi et al., Unraveling of cocatalysts
photodeposited selectively on facets of BiVO4 to boost solar water splitting.Nat. Comm. 13, 484
(2022), was incorrectly cited as reference 15. Reference 15 has been corrected to Qi et al.,
Fragmentation in turbulence by small eddies. Nat. Comm. 13, 469 (2022).
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