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Abstract

Because more than 80% of species of gamete-spawning corals, including most Acroporidae

species, do not inherit Symbiodiniaceae from their parents, they must acquire symbiont

cells from sources in their environment. To determine whether photosynthetically competent

Symbiodiniaceae expelled as fecal pellets from giant clams are capable of colonizing corals,

we conducted laboratory experiments in which planula larvae of Acropora tenuis were inoc-

ulated with the cells in fecal pellets obtained from Tridacna crocea. T. crocea fecal pellets

were administered once a day, and three days later, cells of Symbiodiniaceae from the fecal

pellets had been taken up by the coral larvae. T. crocea fecal pellets were not supplied from

the 4th day until the 8th day, and the cell densities in the larvae increased until the 8th day,

which indicated the successful colonization by Symbiodiniaceae. The control group exhib-

ited the highest mean percentage of larvae (100%) that were successfully colonized by cul-

ture strains of Symbiodiniaceae, and larvae inoculated with fecal pellets reached a

colonization percentage of 66.7 ~ 96.7% on the 8th day. The highest colonization rate was

achieved with the fecal pellets containing cells with high photosynthetic competency (Fv/

Fm). Interestingly, the genetic composition of Symbiodiniaceae in the larvae retrieved on

the 8th day differed from that in the fecal pellets and showed exclusive domination of the

genus Symbiodinium. A minor but significant population of the genus Cladocopium in the

fecal pellets was not inherited by the larvae. These experiments provided the first demon-

stration that the Symbiodiniaceae from tridacnine clams provided via fecal pellets can colo-

nize and even proliferate in coral larvae.

Introduction

Coral reefs are habitats with high biodiversity in which approximately one-quarter to one-

third of all marine species are found, while coral reefs cover only 0.2% of the ocean’s surface

[1–3]. Reefs are fundamentally built by stony corals, which mainly rely on nutrition from sym-

biotic algae, and these algae are often called zooxanthella(e). The word zooxanthella is broadly
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used to indicate a group of golden-brown microalgae engaging in symbiosis with various host

animals [4], but a specific group of dinoflagellates in the Symbiodiniaceae family, which are

traditionally referred to as genetic clades A to I [5] and were recently formally described as

genera [6], has more commonly been treated as the representative group of zooxanthella.

Symbiodiniaceae are essential for host species. Contrary to the majority of brooding corals

that maternally inherit symbiont cells (vertical transmission), more than 80% species of gam-

ete-spawning corals must acquire their own symbionts from their surrounding environments

(horizontal transmission) [7]. Hence, environmental pools of the Symbiodiniaceae population

could play elemental roles to supply symbionts for juveniles and/or adults of these host animals

[8]. Consistent with this view, several studies have addressed the genetic diversity of Symbiodi-

niaceae in the environment [8–14], their abundances [13, 15] and the similarity or dissimilar-

ity between coral juveniles and host-free populations in sediments [16]. Corals discharge their

symbiont cells into the surrounding environments [17–21], and these cells can then accumu-

late in the environment [13]. Thus, these discharged cells from coral hosts might be a candi-

date symbiont source for other corals. Some cnidarian hosts expel Symbiodiniaceae that

undergo cell division [22] or maintain competency in the photosystem [17, 18], and a previous

study showed that significant percentage of the discharged cells from a coral are degraded or

damaged [21].

Another component of the coral reef ecosystem, tridacnine clams (giant clams), which bear

Symbiodiniaceae symbionts in their flesh bodies, also discharge these cells in their fecal pellets

[23–26]. In contrast to corals, Symbiodiniaceae reside in “zooxanthellal tubes”, which elongate

from the giant clam’s stomach and spread into the mantle area [27]. Although it appears that

the majority of cells underwent digestion, 1.6–11.8% of the zooxanthellae populations in a

giant clam could be expelled in intact form [24, 26] and photosynthetically active [23, 26].

Morishima et al. [26] first demonstrated that overflowed and expelled Symbiodiniaceae, such

as those in the fecal pellets of Tridacna crocea, are capable of colonizing Tridacna squamosa
larvae. They further suggested the possibility that fecal pellets could serve as vectors of symbi-

onts to other animals (e.g., corals), and this hypothesis should be further investigated.

In this study, we conducted laboratory experiments to demonstrate whether Symbiodinia-

ceae in T. crocea fecal pellets colonize in aposymbiotic coral juveniles. Fecal pellets obtained

from T. crocea were supplied to planula larvae of Acropora tenuis once a day for three continu-

ous days, and the larvae were further maintained without fecal pellets for five days to confirm

stability of the colonization of the symbiont cells in the larvae.

Materials and methods

Preparation of coral larvae

Three parental Acropora tenuis were collected from around Ishigaki Island, Okinawa, Japan,

on 8th May 2019 (Permission No. 31–1 issued by the Okinawa Prefectural Government for

research use). They were separately placed in a pail, and spawning was artificially induced with

the addition of H2O2 [28]. Once the egg-sperm bundles were released from all these corals,

they floated on the surface of the pail water. The bundles were then collected with a pipette

and mixed in filtered seawater in a 5-L container, which resulted in cross-fertilization among

the different coral colonies. The fertilized eggs were washed with 0.2-μm-filtered seawater

(FSW) to remove the remaining sperm and any unexpected symbiont contamination. Until

the experiment, approximately 1000 larvae were maintained in two 1-L polycarbonate contain-

ers that were placed in an incubator at 27˚C with a light regime of 30 μmol photon m-2 sec-1

(12-h light/12-h dark period; SPECTRA SP200, Blue Harbor, Osaka, Japan). The seawater was
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changed daily. Planula larvae on the 3rd day after fertilization were randomly selected from

the containers for use in the following inoculation tests.

Preparation of fecal pellets of giant clams

Three individuals of T. crocea were collected from Urasoko Bay (24˚28’ N, 124˚13’ E), Ishigaki,

Okinawa, Japan, on May 2019 (Permission No. 30–82 issued by the Okinawa Prefectural Gov-

ernment for research use) and were maintained in an outdoor running seawater tank for 4

days. The shell lengths were 70, 55 and 48 mm for individuals 1, 2 and 3, respectively. To col-

lect fecal pellets, each of the individuals was separately placed in a 0.8 L glass jar (113 mm φ ×
168 mm H) filled with FSW, and the jars were again submerged in the tank to avoid an

increase in temperature. After 5 h of incubation (9 am–2 pm), the giant clams were removed,

and 20–30 of the fecal pellets that accumulated at the bottom of the jar were retrieved with a

pipette (Fig 1). The pellets were gathered in a Petri dish containing FSW and transferred to a

1.5 mL microtube. The pellets were washed several times in the tube with FSW and lightly

homogenized using a hand pestle until the pellets crumbled. A portion of the homogenate was

examined with a fluorescence microscope under blue light excitation (BX50; Olympus, Tokyo,

Japan), which revealed that numerous symbiont cells with bright chlorophyll a fluorescence

were present in the pellets. To determine their photosynthetic competency, the maximum

quantum yields of photosystem II (Fv/Fm) of those cells in the homogenate were measured

using a microscopy-type pulse amplitude-modulated (PAM) fluorometer (Micro-FluorCam

FC 2000, Photon Systems Instruments, Brno, Czech Republic) at the single-cell level, following

the protocol of Fujise et al. [21]. The measurements were performed separately for all three

giant clam individuals. A total of 26 ~ 129 cells were subjected to this measurement. Another

portion of the homogenates was collected and diluted with FSW, and the cell density mL-1 was

determined under a microscope. These homogenates were further supplied to the coral larvae.

The fecal pellets obtained from the individual 1, 2 and 3 are hereafter abbreviated FP1, FP2

and FP3, respectively. The remaining homogenates in the microtube were stored in a freezer

to determine the genetic composition of Symbiodiniaceae.

Culture of Symbiodiniaceae strains

Four culture strains were used as controls in the experiment: AJIS2-C2 (former clade A type

A1; Symbiodinium microadriaticum), CCMP2556 (former clade D type D1-4; Durusdinium
trenchii), TsIs-H4 (former clade A type A6; S. tridacnidorum) and TsIs-G10 (former clade D

type D4-5; Durusdinium sp.). CCMP2556 was purchased from the Provasoli–Guillard

National Center for Culture of Marine Algae and Microbiota (ME, USA). Other strains were

our originals. Among them, AJIS2-C2 (S. microadriaticum) and CCMP2556 (D. trenchii) are

known to be well acquired by A. tenuis larvae under laboratory conditions [29]. TsIs-H4 and

TsIs-G10 were originally isolated from Tridacna squamosa mariculture seeds at the Okinawa

Prefectural Fisheries Research and Extension Center. All the cultures were maintained in an

incubator at 27˚C under a light regime of 40–50 μmol photon m-2 sec-1 (12-h light/12-h dark

period; SPECTRA SP200) in IMK medium (Wako Jyunyaku, Tokyo, Japan). Prior to subject-

ing them to the experiment, the Fv/Fm of a total of 9 ~ 60 cells was measured using the micros-

copy-type PAM fluorometer, following the protocol mentioned above.

Inoculation experiment

A total of 18 tubes (plastic 50 mL centrifuge tubes, 430829, Corning, NY, USA) were prepared

for the overall experimental groups. Three of the groups (triplicated = 9 tubes) were provided

fecal pellets from the three different T. crocea individuals. The other two groups (triplicated = 6
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tubes) were used as controls and treated with a mixture of the Symbiodiniaceae culture strains.

The remaining three tubes served as negative controls and were not provided any symbiont

sources. Fifty 3-day-old larvae were placed into each tube filled with FSW. For the groups pro-

vided with fecal pellets, a portion of the abovementioned diluted homogenate of the fecal pel-

lets (equivalent to 1,500 cells of Symbiodiniaceae) was added to each tube, resulting in a cell

density of 30 cells mL-1. Three tubes were prepared for the fecal pellets obtained from a T. cro-
cea individual. The same treatment was separately applied using the fecal pellets obtained from

the two other T. crocea individuals. As controls, mixtures of culture strains of Symbiodiniaceae

were added to the remaining six tubes; three tubes contained the same cell numbers (750 cells)

of AJIS2-C2 and CCMP2556 (hereafter denoted C1), and the three other batches contained

TsIs-H4 and TsIs-G10 (hereafter denoted C2). No symbiont cells were added to the remaining

three tubes as negative controls. These tubes were placed on a diagonal rotator in the above

mentioned incubator, and the rotation speed was set to 0.25 rpm (S1 Fig). During the first 3

days, fecal pellets were obtained daily and supplied once a day. Mixtures of the culture strains

were also supplied to the control tubes once a day. From the 4th day until the end of the incu-

bation period (8th day), no symbiont sources were added (see S2 Fig for the experimental

scheme). The filtered seawater in the tubes was changed daily during the first 3 days prior to

the addition of the symbiont sources and on the 4th and 6th days.

Observation of larvae

Because repeated sampling might cause unwanted damage to the coral larvae, observations

were twice, on the 3rd day and 8th day of the inoculation experiment. On the 3rd day, ten lar-

vae were retrieved directly from each tube with a pipette, and a total of 30 larvae per treatment

(i.e., a type of symbiont source) were observed with a fluorescence microscope under violet

light excitation (BX50; Olympus) to determine the percentages of the larvae that were colo-

nized with symbiont cells and the cell density per larva. These observations were also made on

the 8th day. Therefore, a total of 30 larvae were assumed to remain in a tube. Because the dis-

crimination of living versus dead individuals was difficult even in the absence of motility, the

survival rates at the end of the experiment could not be determined. However, at the end of the

experiment, 25–30 individuals remained in a tube, and most of these larvae (roughly more

Fig 1. Incubation of Tridacna crocea in a jar for the collection of fecal pellets. (a) Incubation of a jar submerged in

an aquarium tank. (b) Expelled fecal pellets at the bottom of the jar (arrows).

https://doi.org/10.1371/journal.pone.0243087.g001
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than 20 individuals) kept swimming. These larvae were transferred by a pipette to 1.5 ml tubes

and kept in a freezer for further identification of Symbiodiniaceae genera.

Genetic compositions of Symbiodiniaceae within the fecal pellets and the

colonized larvae

The frozen fecal pellets from each giant clam source were obtained daily until the 3rd day,

thawed at room temperature, and added with 500 μl of TE buffer (pH 8.0). Total DNA was

extracted by the TE-boiling method [30]. The frozen larvae obtained on the 8th day were also

thawed at room temperature and subjected to the phenol/chloroform method using CHAOS

solution (4 M guanidine thiocyanate, 0.1% N-lauroyl sarcosine sodium, 10 mM Tris pH 8.0,

0.1 M 2-mercaptoethanol) following the protocol in [31]. Giant clams usually harbor Symbio-

diniaceae, Symbiodinium, Cladocopium, and/or Durusdinium in their bodies [i.e., 32]; thus,

the cell numbers of these genera in each extracted DNA sample were quantified by quantitative

PCR (qPCR) based on the system described in Yamashita et al. [20].

Cloning and sequencing of Symbiodiniaceae in fecal pellets and larvae

To identify finer taxonomic levels (i.e., species or types) contained in the fecal pellets and the

colonized larvae, DNA cloning was performed. Among the three treatments incubated with

fecal pellets from the different individuals of T. crocea, one treatment (fecal pellets obtained

from the individual 3; FP3) showing the highest density of colonized cells was selected. The

colonized larvae retrieved on the 8th day (from each of the triplicate tubes; total of three sam-

ples) and the fecal pellets collected daily until the 3rd day were used for this identification.

Although we did not count the number of larval individuals, we assumed that approximately

90 individuals were included in this analysis based on an assumption that 30 of the initial 50

individuals (10 sacrificed on the 3rd day and 10 sacrificed on the 8th day) remained in each of

the three tubes. The fecal pellets collected daily over three days were combined for the analysis.

Internal transcribed spacers 1 and 2 (ITS-1, -2) and the whole region of the nuclear 5.8S rRNA

gene were PCR-amplified with a PCR primer set of r18Sf and Sym28Sr [33]. The PCR products

were cloned using a pCR4-TOPO TA cloning kit (Invitrogen, Carlsbad, CA, USA) and

sequenced. Totals of 116 readings for the larvae and 49 readings for the stored fecal pellets

were obtained. They were classified into species according to GeoSymbio [34] and/or through

a query via International Nucleotide Sequence Database (INSD).

Statistical analysis

The statistical tests were performed using R version 3.6.3 [35]. We performed a likelihood

ratio test based on a generalized linear model with mixed effects (GLMM) to examine whether

the Symbiodiniaceae cell numbers within colonized larvae significantly changed between the

two observation days (3rd day vs. 8th day). For this modeling, we used the package glmmTMB

version 1.0.1 [36]. The Symbiodiniaceae cell numbers within individual colonized larvae were

assumed to follow a negative binomial distribution with a quadratic parameterization, and the

link function was log [37]. We also applied poisson distribution and negative binomial distri-

bution with linear parameterization, for our data; however, the smallest Akaike information

criterion (AIC) was recorded when negative binomial distribution: quadratic parameterization

was applied to the data. The explanatory variable was observation days. The random effect was

assumed to vary among the experimental tubes. The likelihood ratio test was utilized to comn-

pare this model and the null model excluding explanatory variables (observation days) using

the “anova” function in R. We separately conducted these analyses for each symbiont source.

One-way analysis of variance (ANOVA) was used to determine the differences among the Fv/
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Fm values of the five symbiont source groups excluding the negative control. The cellular Fv/
Fm values of each Symbiodiniaceae source inoculated during the first 3 days in the inoculation

experiment (1st day, 2nd day and 3rd day) were combined and analyzed: FP1 consisted of a total

of 165 cells (65, 50 and 50 cells on the 1st day, 2nd day and 3rd day, respectively), FP2 consisted

of 217 cells (52, 129 and 36 cells), FP3 comprised 175 cells (110, 26 and 39 cells), the culture

strain mixture of C1 consisted of 102 cells (33, 9 and 60 cells), and C2 comprised 78 cells (27,

22 and 29 cells). The null hypothesis was that there were no differences among the five symbi-

ont sources. If the null hypothesis was rejected, we subsequently performed the post-hoc

Tukey HSD test for multiple comparisons. In the present study, p-values less than 0.05 were

considered statistically significant.

Results

Photosynthetic competency of the symbiont sources

The Fv/Fm values of the cells in FP1, FP2, FP3, C1 and C2 are shown in Fig 2. Throughout the

inoculation period (total of 3 days), the average Fv/Fm values for the symbiont sources FP1,

FP2, FP3, C1 and C2 were 0.56 ± 0.17, 0.60 ± 0.14, 0.64 ± 0.13, 0.59 ± 0.06 and 0.50 ± 0.10,

respectively (average ± SD). In particular, the Fv/Fm values of FP3 were significantly higher

than those of the other pellets (p< 0.05, Tukey HSD).

Inoculation coral larvae with the symbiont cells

On the 3rd day, symbiont cells were found only in the larvae supplied with the symbiont

sources, whereas no recognizable cells were found in the larvae that were not given a symbiont

Fig 2. Box plot of Fv/Fm values of the symbiont cells in the fecal pellets of Tridacna crocea and the culture strains.

FP1, FP2 and FP3 are the fecal pellets from different individuals of Tridacna crocea. C1 refers to a mixture of AJIS2-C2

(Symbiodinium microadriaticum) and CCMP2556 (Durusdinium trenchii), and C2 is a mixture of TsIs-H4 (S.

tridacnidorum) and TsIs-G10 (Durusdinium sp.). The boxes show the quartiles with maximum and minimum values

as the vertical bars and the medians as the horizontal bars. The averages are shown as x.

https://doi.org/10.1371/journal.pone.0243087.g002
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source. The symbiont cells were distributed around the larval mouth. Both the larvae supplied

the fecal pellets (Fig 3a–3c) and those given the culture strains (Fig 3d and 3e) took up the sym-

biont cells, and the cell numbers were higher on the 8th day.

On the 3rd day, the colonization rates, i.e., the mean proportions (over the triplicated

tubes) of successfully colonized larvae, obtained for the experimental groups FP1, FP2, FP3,

C1, and C2 and the control group, were 56.7 ± 5.8%, 70.0 ± 17.3%, 93.3 ± 5.8%, 76. 7 ± 15.3%,

93.3 ± 5.8% and 0% (means ± SDs from triplicate experiments), respectively (Fig 4, bars). On

the 8th day, the colonization rates were slightly increased in most experimental groups, and

those found for the FP1, FP2, FP3, C1, C2 and the control groups reached 80.0 ± 0.0%,

66.7 ± 15.3%, 96.7 ± 5.7%, 88.4 ± 15.3%, 100 ± 0.0% and 0% (means ± SDs from triplicate

experiments), respectively. Among the experimental groups provided fecal pellets, the highest

colonization rate was found for the FP3 group on the 8th day. The mean cell densities per larva

obtained for the FP1, FP2, FP3, C1 and C2 groups on the 3rd day were 2.53 ± 0.44, 4.52 ±0.78,

7.79 ± 1.28, 4.00 ± 0.70, and 15.7 ± 2.0 cells larva-1 (means ± SEs from triplicated experiments),

respectively, and 8th day, these densities had significantly increased to 10.9 ± 1.7, 35.2 ± 6.1,

57.6 ± 9.3, 23.4 ± 3.1, and 226 ± 31 cells larva-1 (means ± SEs from triplicated experiments),

respectively, even though no symbiont sources were supplied after the 3rd day (Fig 4, lines)

(FP1: Δ deviance = 28.597, Δ df = 1, p< 0.001; FP2: Δ deviance = 33.199, Δ df = 1, p< 0.001;

FP3: Δ deviance = 55.438, Δ df = 1, p< 0.001; C1: Δ deviance = 38.415, Δ df = 1, p< 0.001; C2:

Δ deviance = 69.193, Δ df = 1, p < 0.001;). Consistent with the previous result, the highest den-

sity among the experimental groups inoculated with fecal pellets was found for FP3 on the 8th

day.

Fig 3. Fluorescent micrographs of Acropora tenuis larvae on the 8th day showing the acquisition of symbiont cells (bright red fluoresced dots). (a)~(c)

Larvae inoculated with fecal pellets of different individuals of Tridacna crocea. (d) A larva provided the culture strains of AJIS2-C2 (Symbiodinium
microadriaticum) and CCMP2556 (Durusdinium trenchii). (e) A larva provided TsIs-H4 (S. tridacnidorum) and TsIs-G10 (Durusdinium sp.). (f) A larva that

was not provided the fecal pellets or culture strains. Scale bars = 200 μm.

https://doi.org/10.1371/journal.pone.0243087.g003

PLOS ONE Fecal pellets of tridacnid shellfishes for transporting Symbiodiniaceae to corals

PLOS ONE | https://doi.org/10.1371/journal.pone.0243087 December 16, 2020 7 / 15

https://doi.org/10.1371/journal.pone.0243087.g003
https://doi.org/10.1371/journal.pone.0243087


Genetic compositions of Symbiodiniaceae within the fecal pellets and

colonized larvae

Genus compositions of Symbiodiniaceae in the fecal pellets were monitored daily for each

giant clam source by means of quantitative PCR and are shown in Fig 5. Across the total

3-days inoculation periods, the averaged compositions of Symbiodinium and Cladocopium in

the fecal pellets from three giant clam individuals were 82.3 ± 5.2% and 17.7 ± 5.2%, respec-

tively. More specifically, the percentages of Symbiodinium and Cladocopium in the fecal pellets

from individuals 1, 2 and 3 were 85.9 ± 1.8% and 14.1 ± 1.8%, 76.1 ± 11.4% and 23.9 ± 11.4%,

and 84.8 ± 10.1% and 15.2 ± 10.1%, respectively. Interestingly, the genus composition within

the larvae retrieved on the 8th day differed from that in the fecal pellets. Based on the quantita-

tive PCR results, only Symbiodinium was detected in the larvae belonging to the experimental

groups FP1, FP2, and FP3. Similar results were found in the larvae supplied the mixture of

AJIS2-C2 (S. microadriaticum) and CCMP2556 (D. trenchii) (C1) and in those provided the

mixture of TsIs-H4 (S. tridacnidorum) and TsIs-G10 (Durusdinium sp.) (C2). Even though

these strains were supplied at equal cell densities, on the 8th day, the percentages of Symbiodi-
nium (AJIS2-C2 and TsIs-H4) were 93.8 ± 2.0% and 96.4 ± 1.6%, respectively, and these levels

were higher than those of Durusdinium (CCMP2556 and TsIs-G10).

Although Cladocopium was not detected in the larvae by quantitative PCR methodology,

Symbiodiniaceae types/species identification for the larvae in FP3 by DNA cloning revealed a

Fig 4. Proportions of Acropora tenuis larvae colonized with symbiont cells (bars) and colonizing cell densities per larva (lines with dots).

FP1, FP2 and FP3 represent the experimental groups larvae provided fecal pellets from different individuals of Tridacna crocea. C1 and C2 refer

larvae supplied with a mixture of AJIS2-C2 (Symbiodinium microadriaticum) and CCMP2556 (Durusdinium trenchii) and a mixture of TsIs-H4

(S. tridacnidorum) and TsIs-G10 (Durusdinium sp.), respectively. The control group was not provided any symbiont source.

https://doi.org/10.1371/journal.pone.0243087.g004
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minor occurrence of C. goreaui (1 read/total 116 readings of DNA clones), and Symbiodinium
consisted of S. tridacnidorum (114 reads/116) and S. natans (1 read/116). S. tridacnidorum was

recovered in all 49 readings from the supplied fecal pellets.

Discussion

Inoculation of coral larvae with Symbiodiniaceae in fecal pellets

Contrary to the majority of brooding corals, which maternally inherit symbiont cells (vertical

transmission), more than 80% species of gamete-spawning corals must acquire their own sym-

bionts from their surrounding environments (horizontal transmission) [7]. In this experiment,

we found that A. tenuis larvae acquired symbiont cells derived from T. crocea fecal pellets and

allowed their proliferation, and these fecal pellets might represent one of the symbiont sources

in the environment.

Numerous studies have demonstrated the mechanisms through which coral larvae acquire

Symbiodiniaceae. The low overlap between the genetic types of Symbiodiniaceae in the sedi-

ments of the Great Barrier Reef and those taken up by A. tenuis and A. millepora juveniles indi-

cate that these corals might be capable of a degree of selectivity when acquiring symbionts

[16]. In contrast, some studies have suggested that coral larvae might nonselectively acquire

symbiont cells, but whether a stable symbiotic relationship is later successfully established or

not could still be selective. Dunn & Weis [38] found that elimination of specific symbionts

from Fungia scutaria larvae by a post-phagocytic response that induces apoptosis. Rejection of

certain types of Symbiodiniaceae from coral larvae has also reported in A. tenuis [39, 40],

which confirms a role for cell surface recognition molecules in controlling the postphagocyto-

sis process [38]. In our current experiment, the colonization rate of larvae incubated with fecal

pellets remained constant for at least five days even after termination of fecal pellet supply, and

the symbiont cell densities per larva were significantly increased. These facts suggested the suc-

cessful establishment of symbiosis and further growth of the acquired symbionts in the larvae,

and those were free from host rejection even if the symbiont source was of noncoral origin and

was subjected to the digestion process of giant clams.

Among the experimental groups incubated with fecal pellets, the larvae supplied pellets

from individual 3 (FP3) showed the highest colonization rate and the highest cell density on

Fig 5. Genus compositions of Symbiodiniaceae in the fecal pellets provided on the three inoculation days and in the larvae on the 8th day. The

compositions in the pellets from each giant clam source were separately monitored by quantitative PCR. Durusdinium was not detected and is thus not shown in

the legend.

https://doi.org/10.1371/journal.pone.0243087.g005
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the last day of the experiment. This successful establishment might be attributed to the high

activity of the supplied cells. Morishima et al. [26] also reported that fecal pellets containing

more active symbiont cells (Fv/Fm> 0.4) could induce increased establishment of symbiosis

in T. squamosa. To the best of our knowledge, a possible mechanism responsible for a higher

colonization rate coupled with a higher photosynthetic performance has not been reported,

although more active symbionts might proliferate in larvae and contribute to host physiology.

Previous studies have shown that coral juveniles harboring photosynthetically active Symbio-

diniaceae that translocate more photosynthate to the hosts exhibit a growth advantage [41].

Selection of Symbiodiniaceae species

Interestingly, the genus composition in the larvae retrieved on the 8th day mostly consisted of

the genus Symbiodinium, and the percentage was higher than that in the fecal pellets. In the

control larvae that were supplied culture strains of S. tridacnidorum and Durusdinium sp.

(C2), the symbiont mostly consisted of Symbiodinium (96.4 ± 1.4%) rather than Durusdinium,

regardless of whether they were provided in equal densities. Similar but more obvious phe-

nomena were found in the larvae belonging to the FP3 group that were retrieved on the 8th

day: only Symbiodinium was detected in these larvae by quantitative PCR, and DNA cloning

identified the species as S. tridacnidorum, which exhibited significant domination in the popu-

lation. Such selective acquisition and retention of specific Symbiodiniaceae in host cnidarians

has been observed in Acropora corals [16] and the sea anemone Exaiptasia pallida [42]. Yama-

shita et al. [13] also found the selective acquisition and/or maintenance of specific Symbiodi-

niaceae genera in coral recruits kept in the natural environment. They analyzed a significant

number of Acropora recruits (351 individuals) that had artificially or naturally settled in the

environment and reported that only 8.8% of recruits harbored Cladocopium (formerly known

as clade C), whereas 97.1% of recruits harbored Symbiodinium (formerly known as clade A)

and/or Durusdinium (formerly known as clade D) despite the symbiodiniacean population in

the environment being mainly composed of Cladocopium. The authors then observed the

attraction behavior of several types/species of Symbiodiniaceae to Acropora larvae and com-

pared the colonized ratio in the larvae [40]. Based on their results, some of the Symbiodinia-

ceae strains were obviously attracted to the larvae, and among them, specific types/species of

Symbiodinium and Durusdinium were acquired by the larvae. These findings suggest that the

initial establishment of coral–Symbiodiniaceae symbiosis is not random, and the infection

mechanism appear to comprise two steps, namely an initial attraction step and subsequent

selective uptake by the coral, even though we did not observe any attraction of Symbiodinia-

ceae cells in the fecal pellets. Although not the case of corals, Symbiodinium was dominantly

found in the smaller individuals of the giant clam Tridacna squamosa [32]. Generally, it is

believed that genus Symbiodinium is relatively insensitive to environmental stress, and often

referred to as “weeds” among Symbiodiniaceae [13, 32, 43]. Such weedy nature might be suit-

able for the initial survival of coral larvae.

Are fecal pellets of tridacnine clams feasible symbiont sources in the

environment?

In our experiment, S. tridacnidorum showed the highest colonization rate and highest density

in the larvae belonging to the C2 group, as well as in the larvae provided the fecal pellets. As

insisted by its name, this species has been dominantly found in tridacnine clams [32, 44, 45]. It

also occurs in association with a stinging hydroid and an upside-down jellyfish belonging to

the genus Cassiopea [44]. Based on these findings, this species might not be native to scleracti-

nian corals. At the same time, this species is acquired and maintainable in the larvae [40] and
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juveniles [46] of Acropora tenuis. Yuyama et al. [46] reported that S. tridacnidorum (a culture

strain PL-TS-1, type A3) exhibited high density in juveniles and promoted juvenile growth.

The coral Seriatopora hystrix is also known to possess S. tridacnidorum, which can be both ver-

tically and horizontally transmitted [47].

The biogeography of host-free Symbiodiniaceae found within sediment of the Great Barrier

Reef was intensively investigated [16], and Symbiodinium (described in their report as clade A)

and Cladocopium (described as clade C) were found to be the major components in the sedi-

ments, which was consistent with previous reports of these genera occurring in high abun-

dances in Pacific sediment communities [48, 49]. In particular to the specific offshore region

of the Great Barrier Reef, S. tridacnidorum (described in their report as type A3) as well as Cla-
docopium (described as C15) and Durusdinium (described as D1) dominated in the sediment

community [16]. Interestingly, rapid rates of colonization and proliferation of symbionts in

coral juveniles exposed to these sediment treatments were recognized [16]. It was once

reported by Littleman et al. [50] that on the Great Barrier Reef, symbiodiniacean densities

were estimated to be surprisingly as high as approximately 1000–4000 cells ml-1 in the sedi-

ment samples, which was much higher than that in the water column (up to 80 cells ml-1), and

these environmental populations are thought to influence the uptake of symbionts by both lar-

vae and juvenile corals [51–53].

What are the origins of these host-free Symbiodiniaceae cells in these environmental pools?

One of the candidates could be the population expelled from corals, which are known to main-

tain cell division [22] or competency in the photosystem [17, 18]. Similar to the cases in corals,

the population expelled from tridacnine clams is photosynthetically active [23, 24, 26], and the

cells in the fecal pellets expelled each day were reported to represent 3~6% of the total popula-

tion in clam individuals [26]. Morishima et al. [26] estimated that at least 108 cells of Symbiodi-

niaceae were hosted in even relatively small individuals of T. crocea (shell size = 62 mm-67.8

mm) and could be released to the environment; thus, 3~6 million cells might accumulate daily

due to the contribution of a single tridacnine clam, which could be regarded as a significant

source for host-free Symbiodiniaceae cells as well as those from corals. Because fecal pellets

from giant clams present a negative buoyancy, they can transport Symbiodiniaceae more rap-

idly than that achieved with coral expulsion, which could contribute to the richness of symbi-

ont pools on the sediment. If those populations from tridacnine clams are indeed able to

colonize and proliferate even in corals, as indicated by this study, the rich inhabitation of tri-

dacnine clams should also be regarded as a part of coral reef conservation. Furthermore,

because the fecal pellet-derived symbionts are overflowed populations that suitably grew in tri-

dacnine clams, the mechanism might increase the possibility for coral juveniles to access more

“environmentally suitable” Symbiodiniaceae genera or species, which should be further

investigated.

Conclusion

The successful establishment of symbiosis and the further growth of Symbiodiniaceae acquired

from fecal pellets of Tridacna crocea in Acropora larvae suggest an as-yet-unknown mechanism

for the transport of symbionts to corals. Photosynthetically active Symbiodiniaceae cells in

fecal pellets might induce higher acquisition and proliferation rates of the cells in the coral lar-

vae. However, only a specific genus, Symbiodinium, in the pellets is taken up by the larvae,

which confirms that coral larvae possess a selection mechanism, as has been suggested by

many studies. Because of the pellets’ negative buoyancy, they can rapidly transport active Sym-

biodiniaceae to the coral reef sediment while avoiding dispersion of the cells, which might at

least partly explain why rich Symbiodiniaceae pools are found in reef sediments.
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