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Abstract

Background: The Human Protein Atlas (HPA) is an effort to map the location of all 
human proteins (http://www.proteinatlas.org/). It contains a large number of histological 
images of sections from human tissue. Tissue micro arrays (TMA) are imaged by a slide 
scanning microscope, and each image represents a thin slice of a tissue core with a dark 
brown antibody specific stain and a blue counter stain. When generating antibodies for 
protein profiling of the human proteome, an important step in the quality control is to 
compare staining patterns of different antibodies directed towards the same protein. This 
comparison is an ultimate control that the antibody recognizes the right protein. In this 
paper, we propose and evaluate different approaches for classifying sub‑cellular antibody 
staining patterns in breast tissue samples. Materials and Methods: The proposed 
methods include the computation of various features including gray level co‑occurrence 
matrix  (GLCM) features, complex wavelet co‑occurrence matrix  (CWCM) features, 
and weighted neighbor distance using compound hierarchy of algorithms representing 
morphology (WND‑CHARM)‑inspired features. The extracted features are used into two 
different multivariate classifiers (support vector machine (SVM) and linear discriminant 
analysis  (LDA) classifier). Before extracting features, we use color deconvolution to 
separate different tissue components, such as the brownly stained positive regions and 
the blue cellular regions, in the immuno‑stained TMA images of breast tissue. Results: 
We present classification results based on combinations of feature measurements. The 
proposed complex wavelet features and the WND‑CHARM features have accuracy 
similar to that of a human expert. Conclusions: Both human experts and the proposed 
automated methods have difficulties discriminating between nuclear and cytoplasmic 
staining patterns. This is to a large extent due to mixed staining of nucleus and cytoplasm. 
Methods for quantification of staining patterns in histopathology have many applications, 
ranging from antibody quality control to tumor grading.
Key words: Color deconvolution, dual tree complex wavelets, histology, human 
protein atlas, support vector machine, textural features, weighted neighbor distance using 
compound hierarchy of algorithms representing morphology (WND‑CHARM) features
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INTRODUCTION

The Human Protein Atlas  (HPA) is a publicly available 
database with millions of high resolution images showing 
the spatial distribution of proteins detected by 15,598 
different antibodies  (release 9.0, November 2011) in 46 
different normal human tissue types and 20 different 
cancer types, as well as 47 different human cell lines.[1] 
The data is released together with application‑specific 
validation performed for each antibody, including 
immunohistochemisty  (IHC), Western blot analysis, 
a protein array assay, and, for a large fraction, 
immunofluorescent‑based confocal microscopy images. 
Tissue microarrays  (TMA) provide the possibility to 
immunohistochemically stain a large number and variety 
of normal and cancer tissues. Specimens containing 
normal and cancer tissue have been collected and 
sampled from anonymized paraffin embedded material 
of surgical specimens, in accordance with approval from 
the local ethics committee. The images represent a view 
similar to what is seen in a microscope when examining 
sections of tissue on glass slides. Each antibody in the 
database has been used for IHC staining of both normal 
and cancer tissue. IHC has been used increasingly for 
over four decades, initially for research but now also for 
diagnosis and assessment of therapeutic biomarkers.

IHC relies on the specific binding of an antibody 
to its corresponding antigen for detection and an 
enzymatic step where a dye is processed to produce 
a stain for visualization. A  commonly used dye is 
3,3’‑diaminobenzidine  (DAB), which produces a dark 
brown stain. The tissue section is counterstained with 
hematoxylin to enable visualization of microscopic 
features. Hematoxylin staining is unspecific and results 
in a blue coloring of both cells and extracellular material. 
Traditionally, IHC has been used qualitatively and 
analyzed through visual inspection. However, there is 
a clear effort to move towards more quantitative and 
automated methods.[2,3] With the emergence of digital 
imaging techniques, digital image analysis has become 
a promising approach to extract quantitative data from 
IHC stained samples. Most attempts have been made to 
quantify the amount of certain proteins with diagnostic 
or prognostic value.[4‑6] In these cases, the protein is 
known and the staining pattern is well‑studied.

In previous studies, Breast TMA spots were classified 
using color and local invariants,[7] and texton 
histograms.[8] Scoring of breast TMA spots has been 
done through ordinal regression methods.[9] A framework 
towards an automated analysis of sub‑cellular patterns 
in human protein atlas images yielded 83% accuracy in 
45 different tissues.[10] Here we describe and compare 
methods to automatically classify staining patterns of 
proteins with unknown as well as known localization. 
Since the location of a protein within the cell can be 

coupled with certain functions, quantitative information 
on the staining pattern can be used to group proteins 
and understand the function of unknown proteins. The 
methods can also be used to quantify the amount of 
a protein with known staining pattern. Here we used 
various features including gray level co‑occurrence 
matrix  (GLCM) features, complex wavelet co‑occurrence 
matrix  (CWCM) features, and weighted neighbor 
distance using compound hierarchy of algorithms 
representing morphology  (WND‑CHARM)‑inspired 
features[11] for classifying different cellular staining 
patterns that is nuclear versus cytoplasmic staining in 
TMA images.

MATERIALS AND METHODS

The proposed methodologies for computation of 
cellular features to the classification task are shown 
in Figure  1. The steps include color deconvolution to 
separate brown/black and blue cellular regions in the 
stained breast TMA images followed by the computation 
of various features including gray level co‑occurrence 
matrix  (GLCM) features, complex wavelet co‑occurrence 
matrix  (CWCM) features and WND‑CHARM‑inspired 
features as defined below. The extracted features 
are thereafter fed into two different multivariate 
classifiers  (support vector machine  (SVM) and Linear 
discriminant analysis (LDA) classifier).

TMA Images
TMA images of normal and breast cancer tissue were 
downloaded from the HPA  (http://www.proteinatlas.
org/). A  ScanScope CS  (Aperio, San Diego, CA) digital 
microscopical scanner was used to digitize each slice at 
20x magnification. We selected images from 19 normal 
breast tissue cores and 10 breast cancer tissue cores and 
downloaded them from the database in jpeg file format. 
At the initiation of the project, non‑compressed full 
resolution images in tif  (converted from svs, ScanScope 
Virtual Slide) format were retrieved from HPA, but a 
comparison showed that compression artifacts had minor 
effect on the performance of the presented classification 
approaches.

Figure 1: Block diagram of proposed methods
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Each image is 3000  ×  3000 pixels and represents a 
section of a tissue core composite of two stains; DAB and 
hematoxylin. We selected samples showing either nuclear 
or cytoplasmic DAB staining. We divided each image 
into small patches of 64  ×  64 pixels, and classified each 
patch individually as showing background, connective 
tissue, nuclear or cytoplasmic staining  [Figure 2]. The 29 
images result in a total of 61,354 patches. Each image is, 
thereafter, described by the frequency of the patch classes.

Color Deconvolution
A color deconvolution scheme is used to transform 
each image from the red, green, blue  (RGB) color space 
to a new space modeled by the spectral properties of 
hematoxylin  (blue) and DAB  (brown/black). Since 
the hematoxylin stain is selectively absorbed by cell 
nuclei and DAB stains by specific binding of an 
antibody to its corresponding antigen  (i.e.,  protein), 
the information from the created hematoxylin and 
DAB channels can be used to distinguish protein 
localization patterns within the tissue sample. The 
color deconvolution method[12] converts the RGB space 
to a new color space comprising Hematoxylin  (H), 
DAB, and a third ‘dummy’ channel created as a vector 
orthogonal to H and DAB. The pre‑defined and 
normalized color stained values for Hematoxylin‑staining 
vector  [0.074510  0.054902  0.337255]; DAB‑staining 
vector  [0.341176 0.101961 0.043137] have been obtained 
from the ImageJ color deconvolution plug‑in.[13] The 
result after color deconvolution is shown in Figure 3.

The blue channel corresponds to regions stained with 
Hematoxylin and, in this example image, it is expressed 
mainly in the nuclei. In that image, most nuclei are also 
positive and are, therefore, also stained with the brown 
DAB stain, which makes it hard to see the blue stain 
due to brown being darker and more distinct. Also, in 
the nature of the chosen color deconvolution algorithm, 
which uses a simple matrix multiplication on the color 
value, and one of its major drawbacks, is the fact that 
it will always give some response in very dark regions. 
Hence, some of the dark brown nuclei will always show 
high response, no matter which deconvolution is used.

Gray level Co‑Occurrence and Complex Wavelet 
Features with SVM
Gray Level Co‑Occurrence Matrix
A commonly used statistical method to examine 
texture is the gray‑level co‑occurrence matrix  (GLCM), 
previously shown to be useful for tissue texture 
analysis.[14] GLCM considers the spatial relationship 
of pixels and characterizes the texture of an image by 
calculating how often pairs of pixel with specific values 
and spatial relationships occur in an image. Once the 
GLCM is constructed, statistical measures are extracted 
from the matrix.[15,16] We calculated the GLCM in each 
64 × 64 patch with inter‑pixel distance d = 16, where four 
main directions have been used so as to compute the 
occurrences: 0°, 45°, 90°, and 135°.

Complex Wavelet Co‑Occurrence Matrix
The complex wavelet transform  (CWT) is a complex 
valued extension to the standard discrete wavelet 
transform  (DWT).[17] It provides multiresolution, 
sparse representation, and useful characterization of the 
structure of an image. The dual‑tree complex wavelet 
transform  (DT‑CWT) requires additional memory, but 
provides approximate shift invariance, good directional 
selectivity in two dimensions and extra information 
in imaginary plane of complex wavelet domain when 
compared to DWT.[18] DT‑CWT calculates the 
complex transform of a signal using two separate DWT 
decompositions.

Since DT‑CWT produces complex coefficients for 
each directional sub‑band at each scale, this produces 
six directionally selective sub‑bands for each scale of 
the two‑dimensional DT‑CWT at approximately  ±15°, 
±45°, and  ±75°. In dyadic decomposition, sub‑bands are 
allowed to be decomposed in both vertical and horizontal 
directions sequentially, but in anisotropic decomposition 
sub‑bands are allowed to be decomposed only vertically 
or horizontally.

Studies have shown that the anisotropic dual‑tree 
complex wavelet transform  (ADT‑CWT) provides 
an efficient representation of directional features in 
images for pattern recognition applications.[19] Ten basis 
functions are produced in ADT‑CWT in each level which 

Figure 2: Each core image is divided into 64 × 64 pixel patches and 
each patch is classified by the presented methods

Figure 3: Color deconvolution; (a) Original breast core TMA image; 
(b) Blue channel after color deconvolution; (c) Brown channel after 
color deconvolution

cba
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makes different orientations at the directions of  ±81°, 
±63°, ±45°, ±27°, and  ± 9°. This result in a finer analysis 
of the local high frequency components of images which 
is characterized by a finer division of high‑pass sub‑bands 
as well as edges and contours, which are represented by 
anisotropic basis functions oriented in different finer 
directions. Here we use an adaptive basis selection 
method on Undecimated Adaptive Anisotropic Dual‑tree 
complex wavelet transform (UAADT‑CWT).[20]

Textural Feature Extraction
The textural features uniformity, entropy, dissimilarity, 
contrast, correlation, homogeneity, autocorrelation, 
cluster shade, cluster prominence, max. probability, sum 
of squares, sum average, sum variance, sum entropy, 
difference variance, difference entropy, information 
measures of correlation‑1, information measures of 
correlation‑2, inverse difference normalized, inverse 
difference moment normalized are extracted with 
inter‑pixel distance d = 16, from the 64 × 64 pixel patches 
of the tissue images using the standard expressions 
derived in[15,16] for the following features extraction 
techniques  (i) GLCM features: From color delineated 
blue and brown/black stains channels  (20  +  20  =  40 
features) and  (ii) CWCM features: Each feature is 
computed by taking the absolute value of the real 
and imaginary part of complex co‑efficient in four 
main directions  (0°, 45°, 90°, and 135°) for three 
decomposition levels. Finally, for each feature, the mean 
value over the three decomposition levels is computed 
for the DT‑CWT  (60 blue channel  +  60 brown/black 
channel  =  120 features) and UAADT‑CWT  (60 blue 
channel + 60 brown/black channel = 120 features).

Support Vector Machine Classifier
SVM is a classification technique, which is based 
on statistical learning theory. It can model nonlinear 
relationships, which is useful in practical applications.[21] 
In SVM, a nonlinear input data set is converted into 
a high dimensional linear feature space via kernels 
for the non‑linear case. A  SVM classifier with linear 
kernel is used in the training and testing phase for 
the classification task using the Library for Support 
Vector Machine  (LIB‑SVM) tool box[22] with SVM 
parameters  ‑s 0  (SVM type: 0 for C‑SVC),  ‑g  (Number 
of features),  ‑r 0  (Coefficient in kernel function),  ‑c 
1.0  (parameter C of C‑SVC),  ‑e 0.0010  (tolerance of 
termination criterion), ‑p 0.1 (epsilon value).

P r i n c i p a l  C o m p o n e n t  A n a ly s i s ‑ L i n e a r 
Discriminant Analysis‑Compound Hierarchy of 
Algorithms Representing Morphology
“PCA‑LDA‑CHARM” is an algorithm initially inspired by 
Ilya Goldberg’s WND‑CHARM,[11] a whole‑image‑based 
classifier. The principle of the original algorithm is 
to extract features on the whole image  (without 
segmenting the interesting parts), weighting the 

features depending on their information content, and 
then classifying them using a modified version of the 
k‑nearest neighbor classifier. Here we extract features 
from 64 × 64 pixel patches from larger tissue images. The 
feature vector is built “hierarchically”: It is composed of 
different kinds of global features  (texture descriptors, 
edge descriptors, histograms, moments, etc.) that are 
computed on the raw image, on several transformed 
version of the raw image  (Fourier Transform, 
Wavelet Transform, and Chebyshev Transform), and 
eventually on compound‑transformed version of the 
image  (Wavelet‑Fourier Transform, Chebyshev‑Fourier 
Transform).

A C++ implementation of the original algorithm is 
available online and described in.[23] PCA‑LDA‑CHARM 
is using the same idea of building a vector composed 
of whole‑image features. The feature extraction process 
is performed in CellProfiler.[24] The feature vector is not 
composed of the exact same elements as the one proposed 
by Ilya Goldberg in the original WND‑CHARM, but the 
same “groups” of features are present  (texture features, 
edge features, histograms, transforms.,). Since the datasets 
are represented as sets of features in a high‑dimensional 
space and a more robust classification framework than 
the one suggested in[11] was desired, Principal Component 
Analysis  (PCA) was used as a pre‑processing step to 
reduce the dimensionality of the feature space, and 
then a subset of the PCA‑transformed features was 
classified using Linear Discriminant Analysis  (LDA) as 
suggested in.[25] The subset of principal components used 
for classification was chosen as the minimal number 
of strongest principal components required to explain 
at least 98% of the variance in the original data. The 
sklearn[26] Python implementation of PCA and LDA were 
used.

EXPERIMENTS AND RESULTS

In order to compare the different feature extraction and 
classification approaches, 1,057 patches were manually 
selected from the total of 61,354 patches from 29 
core images. The patches were selected to represent 
comparably clear examples of each of the four classes: 
Background  ‑  193 patches, connective tissue  ‑  462 
patches, cytoplasmic staining  ‑  200 patches, and nuclear 
staining  ‑  202 patches. Each of the 1,057 patches was 
manually/visually classified as showing nucleus stain, 
cytoplasmic stain, connective tissue or background. 
This classification result was used as ground truth for 
evaluation of the automated methods.

To evaluate the ground truth, the classification was 
performed by a different expert, and a second time by 
the first expert. The inter-observer accuracy was 92% and 
the intra-observer accuracy 96% as shown in Figure 4.
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GLCM, ADT‑CWT, and UAADT‑CWT co‑occurrence 
features were extracted from each of the 1,057 
patches. The Waikato Environment for Knowledge 
Analysis  (WEKA) data mining tool[27] used to select 
the optimal features for the classifier task using half 
the samples of each class as input. Based on the Greedy 
hill‑climbing algorithm implemented in WEKA, 9, 18, 
and 19 features were selected from GLCM, ADT‑CWT, 
and UAADT‑CWT features, respectively.

We used five combinations of features for training 
the classifier: 9 GLCM features, 18 DTCWT 
features, 19 UDTCWT features, the combination of 
GLCM  +  DTCWT features  (9  +  18  =  27), and the 
combination GLCM + UDTCWT features (9 + 19 = 28).

The PCA‑LDA‑CHARM feature vector was composed 
of 661 elements from various feature “groups”  (edges 
features, texture features, histograms, moments, and 
transforms or the image) extracted using CellProfiler. We 
used the k‑fold cross validation method  (with k  = 10) to 
assess classification efficiency for each of the compared 
methods.

The accuracy of each combination of features and 
classifier is defined as the ratio of the number of samples 
correctly classified to the total number of samples tested, 
as presented in Table 1. The PCA‑LDA‑CHARM shows a 
result (90% accuracy) similar to that of the inter-observer 
variability (92% accuracy).

CONCLUSIONS AND FUTURE WORK

The methods proposed in this paper are general in 
the sense that they are trained for a variety of features 
that are not specific for a certain type of objects. Using 
only traditionally used features such as GLCM gives 
low accuracy  [Table  1]. However, we have obtained 
good results on this dataset by using combinations of 
GLCM and wavelets  (GLCM  +  UAADT‑CWT) and 

texture features, edge features, histograms, transforms, 
etc.,  (WND‑CHARM). In this study, we have shown 
that the ability of the Undecimated Anisotropic 
DT‑CWT, which provides distinguished textural features 
in both positive and negative frequencies resulted in 
different orientated sub‑bands at each scale. Also, this 
proposed method is considerably less complex than 
previous attempts at producing features.[10] Some of the 
WND‑CHARM‑inspired features are complicated to 
interpret, and might not generalize well to other cases, 
and will, thus, require a new training step.

The 1,057 patches used in the experiments were selected 
to represent comparably clear examples of each of the 
four classes. The goal is of course to have a method that 
performs well when applied to arbitrary patches  (that, 
for example, contains more than one class) from core 
images and our initial experiments show that we can 
obtain reasonable good results for some of the methods.

The majority of the classification errors are between 
samples with nuclear and cytoplasmic staining. This is 
true for both automatic and manual classification, and 
correlates with the increasing diversity within the class. 
For the nuclear class the stain should be located mainly 
in the nucleus; however, some weaker stain may also be 
present in the cytoplasm. For patches with cytoplasmic 
stain the stain may only be present in the cytoplasm, 
however, due to the sectioning, the cytoplasm may cover 
the nucleus, which can appear to be stained. Furthermore 
in the core, there might be unspecific binding of antibody 
in the connective tissue resulting in a brown stain in 
between cells, which is neither nuclear nor cytoplasmic. 

Table 1: Classification result using different 
features (where N‑Nucleus stains, C‑Cytoplasmic 
stains, T‑Connected tissue, B‑Background)

Feature‑extraction 
technique (number 
of features)

Correctly classified 
patches (%)

Overall 
accuracy 

(%)
N C T B

GLCM (9) 25,0 77,5 65,8 83,9 66,6
DT‑CWT (18) 36,5 87,0 36,6 97,4 69,7
UAADT‑CWT (19) 34,0 90,7 89,1 92,8 80,0
GLCM+DT‑CWT (27) 68,0 82,9 79,7 97,4 82,2
GLCM+UAADT‑ 
CWT (28)

68,5 85,5 93,1 98,5 86,0

PCA‑LDA‑ 
CHARM (661)

76,0 91,0 100,0 100,0 90,0

Expert 1  
(intra-obs. variability)

89,5 95,7 99,0 100,0 95,9

Expert 2 
(inter-obs. variability)

94,5 84,9 100,0 100,0 92,3

DT-CWT: Dual-tree complex wavelet transform, UAADT: Undecimated adaptive 
anisotropic dual-tree complex wavelet transform; GLCM: Gray level co-occurrence 
matrix; PCA: Principal component analysis; LDA: Linear discriminant analysis; CHARM: 
Compound hierarchy of algorithms representing morphology; UAADT: Undecimated 
adaptive anisotropic dual-tree complex wavelet transform

Figure 4: Venn diagram for visual scoring of 1,057 patches by two 
different experts
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In this study, these patches have been classified as 
cytoplasmic, however, in future work the classes may have 
to be revised to accommodate for this staining pattern.

We have encountered the variation in staining pattern 
and intensity between patches for a single antibody 
within a core. However, repeated immunostaining of the 
same material will inevitably exhibit variations due to 
variability in the steps in the staining process. In future 
work, we will explore variations in the staining process 
in more detail by analyzing repeated staining and sibling 
antibodies raised against the same protein. We will 
also implement and test methods for normalization of 
contrast and intensity as the samples we process show a 
large amount of variability.

Note that in this report, we use low‑level image features 
to classify patches based on the biological content in the 
patches. The patches are extracted from 29 core images, 
each with similar noise and artifacts.

A previous study[28] has shown that some classification 
method, that use low‑level image features for patch 
classification, give similar results when applied to the 
original patches  (from fluorescence microscopy images) 
compared to when applied to the original patches with 
the biological content removed. In this paper, we assume 
that the patches within a core are independent in terms 
of staining pattern and intensity as well as noise and 
artifacts. Further experiments are needed to verify that 
this assumption holds. Moreover, since we used different 
classifiers  (SVM and LDA) for the different approaches, 
further investigation is needed to examine the impact 
of the choice of methods for feature selection and 
classification.

We can conclude that both human experts and 
the proposed automated methods have difficulties 
discriminating between nuclear and cytoplasmic 
staining patterns. This is to a large extent due to 
mixed staining of nucleus and cytoplasm. However, 
the proposed GLCM  +  UDTCWT features and the 
PCA‑LDA‑CHARM, which combine many different 
classes of features such as GLCM and wavelet, have 
accuracy similar to that of a human expert.
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