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Abstract

Central questions to epigenome evolution include whether interspecies changes of histone

modifications are independent of evolutionary changes of DNA, and if there is dependence

whether they depend on any specific types of DNA sequence changes. Here, we present a

likelihood approach for testing hypotheses on the co-evolution of genome and histone modi-

fications. The gist of this approach is to convert evolutionary biology hypotheses into proba-

bilistic forms, by explicitly expressing the joint probability of multispecies DNA sequences

and histone modifications, which we refer to as a class of Joint Evolutionary Model for the

Genome and the Epigenome (JEMGE). JEMGE can be summarized as a mixture model of

four components representing four evolutionary hypotheses, namely dependence and inde-

pendence of interspecies epigenomic variations to underlying sequence substitutions and to

underlying sequence insertions and deletions (indels). We implemented a maximum likeli-

hood method to fit the models to the data. Based on comparison of likelihoods, we inferred

whether interspecies epigenomic variations depended on substitution or indels in local

genomic sequences based on DNase hypersensitivity and spermatid H3K4me3 ChIP-seq

data from human and rhesus macaque. Approximately 5.5% of homologous regions in the

genomes exhibited H3K4me3 modification in either species, among which approximately

67% homologous regions exhibited local-sequence-dependent interspecies H3K4me3 vari-

ations. Substitutions accounted for less local-sequence-dependent H3K4me3 variations

than indels. Among transposon-mediated indels, ERV1 insertions and L1 insertions were

most strongly associated with H3K4me3 gains and losses, respectively. By initiating proba-

bilistic formulation on the co-evolution of genomes and epigenomes, JEMGE helps to bring

evolutionary biology principles to comparative epigenomic studies.

Author summary

Epigenetic modifications play a significant role in gene regulations and thus heavily influ-

ence phenotypic outcomes. Whereas cross-species epigenomic comparisons have been

fruitful in revealing the function of epigenetic modifications, it still remains unclear how
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the epigenome changes across species. A central question in epigenome evolution studies

is whether interspecies epigenomic variations rely on genomic changes in cis and, if par-

tially yes, whether different genomic changes have distinct impacts. To tackle this ques-

tion, we initiated a likelihood-based approach, in which different hypotheses related to

the co-evolution of the genome and the epigenome could be converted into probabilistic

models. By fitting the models to actual data, each model yielded a likelihood, and the

hypothesis corresponded to the largest likelihood was selected as most supported by

observed data. In this work, we focused on the influence of two types of underlying

sequence changes: substitutions, and insertions and deletions (indels). We quantitatively

assessed the dependence of H3K4me3 variations on substitutions and indels between

human and rhesus, and separated their relative impacts within each genomic region with

H3K4me3. The methodology presented here provides a framework for modeling the epi-

genome together with the genome and a quantitative approach to test different evolution-

ary hypotheses.

Introduction

Milestones of mathematical modeling of DNA evolution were marked by base substitution

models in early 1980s [1–3], extension to incorporation of sequence insertions and deletions

(indels) in early 1990s [4], and differential treatments of cis-regulatory sequences in the 2000-

2010s [5–12]. The rise of interspecies transcriptome comparisons in 2000s [13–16] inspired a

series of transcriptome comparison models and evolution models [17–19]. Benefits of joint

analysis of interspecies variations of genomes and transcriptomes [20] demanded and eventu-

ally led to development of a joint probabilistic evolution model of the genome and the tran-

scriptome [21].

Interspecies epigenome comparisons facilitated discoveries of functions of genomic

sequences [22–26]. However, analyses of epigenome evolution remain observational, leading to

divergent opinions on the dependence of epigenome conservation on sequence conservation.

Some studies reported correlations between genomic and epigenomic changes [27, 28], whereas

other studies revealed poor sequence conservation in homologous regions demarcated with the

same histone modifications [29–31]. In much shorter timescale, sequence independent passage

of histone modifications was observed in multiple generations [32, 33]. The development of

evolutionary models for epigenomes would bring mathematical rigor to comparative epige-

nomics and provide a model competition framework for evaluation of different hypotheses.

In this manuscript, we describe an effort on derivation of the joint probability of a pair of

homologous genomic sequences and histone modifications on these sequences. We started

with considering four hypotheses, where interspecies epigenomic variations (1) depend only

on local sequence substitutions, or (2) depend only on local sequence indels, or (3) depend on

both local substitutions and indels, or (4) are independent of local sequence substitutions and

indels. We formulated each hypothesis into a probabilistic evolution model and developed a

likelihood competition approach for model selection. This model competition approach

enabled systematic evaluation of the four evolutionary hypotheses on any homologous

sequences.

Results

Our goal is to develop a probabilistic form of a pair of homologous genomic regions that

include the genomic sequences and histone modifications, coupled with each major hypothesis
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on the co-evolution of genome and epigenome. If we denote the pair of homologous genomic

regions as A and B, our goal is to derive the joint probability P(A,B). For this purpose, we

introduce the following notations, model assumptions, and alternative hypotheses on the evo-

lution of genome and histone modifications.

Notations

We introduce three sets of notations, including indices, observed data, and model parameters.

The indices are h for indexing histone modifications (h = {1,2,. . .,H}), m and n for indexing

nucleotide positions in two DNA sequences, respectively, and k for indexing nucleotide posi-

tions in a pair of aligned sequences.

The observed data are denoted as follows. A0,B0 denote a pair of homologous genomic

sequences. Ah,Bh denote the states of the hth histone modification on A0,B0. A,B denote a pair

of homologous regions, including the homologous genomic sequences and the states of each

histone modification on these sequences, where A = {A0,A1,. . .,AH} and B = {B0,B1,. . .,BH}. Let

sA and sB denote the lengths of A0 and B0. Let a0,m and b0,n denote the mth and the nth bases of

sequences A0 and B0, where a0,m, b0,n = {A,C,G,T}. Let ah,m and bh,n denote the states of the hth

histone modification at positions m and n in Ah,Bh, where ah,m = {0,1} and bh,n = {0,1}. Let

a0
0;k; b

0
0;k denote the nucleotides or indels on the kth position of an aligned pair of sequences,

where a0
0;k; b

0
0;k ¼ fA;C;G;T; � g. Let a0h;k; b

0
h;k denote the states of the hth histone modification

on the kth position in a pair of aligned sequences, where a0h;k; b
0
h;k ¼ f0; 1; � g. Finally, we

denote an alignment of two sequences as a path, that is path ¼ fa0
0;k; b

0
0;kg.

The model parameters include πA,πC,πT,πG, denoting the equilibrium probabilities of the

four nucleotide bases. Let ph
1

denote the global equilibrium probability, that is the equilibrium

probability of having the hth histone modification on any genomic location, and ph
0
¼ 1 � ph

1
:

Let φh
A1

denote the local equilibrium probability, that is the probability of having the hth histone

modification on genomic region A, and φh
A0
¼ 1 � φh

A1
. Denote sequence deletion rate as μ,

insertion rate as λ and substitution rate as s. Let κh be the rate of switch between 0 and 1, that

is installing (0 to 1) or removing (1 to 0) for the hth histone modification. Let t denote evolu-

tionary time.

Model assumptions

We assume that the state for each histone modification on each genomic location is binary,

that is, Ah and Bh are sequences of 0’s and 1’s with the same lengths as A0 and B0 (Fig 1).

For example, a 5nt sequence of ACGTA (A0 = ACGTA) that is within an H3K9me3 peak

(denote Ah = H3K9me3 as A1) can be written as
A0

A1 ¼
ACGTA

11111
. For another example, a 10nt

sequence ACGTAGGGGG (B0 = ACGTAGGGGG) with the first 5 bases covered by an

H3K9me3 peak and the second 5 bases not covered by any H3K9me3 peak can be written as

B0

B1 ¼
ACGTAGGGGG

1111100000
, where B1 denotes the states of H3K9me3. Dependencies of epige-

nomic states on nearby DNA bases are reflected in the consecutive 1s inside a peak and the

consecutive 0s outside peaks. Thus, even though the model we will describe does not explicitly

model dependencies of nearby bases, peak calling as the preprocessing step for histone modifi-

cation data accommodated dependencies of nearby bases. Our second assumption is the

widely adopted Pulley principle, namely that genomic evolutionary processes are reversible

[3].
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Development of a probabilistic framework for epigenome evolution

With the above introduced notations, our goal is to derive P(A,B) = P(A0,A1,. . .,AH,B0,B1,. . .,

BH), where A0,B0 are homologous genomic sequences and Ah,Bh (h = {1,. . .,H}) are histone

modifications on A0,B0. To specify such a joint probability, we considered two types of depen-

dency structures. First, descendent genomic sequence depends on ancestral sequence, and his-

tone modifications depend on their underlying genomic sequence. The challenge of using

such a dependency structure lies in the lack of complete knowledge of how genomic sequence

determines the histone modifications, and therefore generally speaking P(Ah|A0) cannot be

specified. In the second type of dependency structure, descendent genomic sequence depends

on the ancestral sequence, and histone modifications on the descent sequence depend on the

histone modifications on the ancestral sequence. Furthermore, the evolutionary changes of

each type of histone modification may depend on the underlying genomic sequence changes

(Fig 2A) or not (Fig 2B), and conditional on underlying sequence changes the evolutionary

changes of different histone modifications are independent of each other (conditional inde-

pendence) (see Discussion). We elected to specify the joint probabilities with the second type

of dependency structure.

Based on the second type of dependency structure, we have

PðA;BÞ ¼
P

pathPðA;B; pathÞ ¼
P

pathPðA;BjpathÞPðpathÞ; ð1Þ

where path is an evolutionary path of homologous sequences, corresponding to an alignment

of A0 and B0 (Fig 1). Any probabilistic expression of sequence alignment can be used for P
(path), and in the work we employ the widely adopted TKF model as the analytical form of P
(path) [4]. P(A,B|path) is the probability of observing a pair of homologous sequences and

their epigenomes conditional on the sequence alignment. Because all sequence information is

Fig 1. Data types and annotations. A pair of homologous sequences (A0,B0) are aligned, where −, | (black) and | (red) are indels, matches and

mismatches, respectively. Base locations on each original sequence are indexed by m and n (indices on sequence). Base locations after sequence

alignment are indexed by k (indices on path). Peak regions of two histone modifications A1,B1, and A2,B2 are shown as yellow and blue

bands, respectively. A given histone modification on a given sequence, for example A1, is recorded by binary values on each base, with 1 being

inside a peak and 0 being outside the peaks. Insert: notations and values of a specific position. On the 8th position of sequence A0, the base is A

(a0,m = 8 = A). This base becomes the 9th base after alignment (a0
0;k¼9
¼ A). This base is inside a peak of the first (yellow) histone modification

(ah = 1,m = 8 = 1) but outside any blue peaks (ah = 2,m = 8 = 0). If we use the base index after sequence alignment (k), that include indels, the above

notations and values become a0
1;k¼9
¼ 1 and a0

2;k¼9
¼ 0.

https://doi.org/10.1371/journal.pcbi.1006673.g001
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contained in path, due to conditional independence, we have:

PðA;BjpathÞ ¼ PðA0;A1; . . . ;AH;B0;B1; . . . ;BHjpathÞ

¼ PðA1; . . . ;AH;B1; . . . ;BHjpathÞ

¼
QH

h¼1
PðAh;BhjpathÞ:

ð2Þ

Applying previously introduced notations, we have:

PðAh;BhjpathÞ ¼ PðBhjpath;AhÞPðAhjpathÞ

¼
QlenðpathÞ

k¼1
Pðb0h;kja

0
h;k; a

0
0;k; b

0
0;kÞPða

0
h;kja

0
0;k; b

0
0;kÞ;

ð3Þ

where len(path) is the length of the aligned sequence pair A0,B0 (first lane, Fig 1). Taking Eqs (1)–

(3) together, we have obtained a probabilistic statement of observing a pair of homologous

sequences and their respective histone modifications. Hereafter, we call Eqs (1)–(3) the LCZ model.

The LCZ model is fully specified when Pðb0h;kja
0
h;k; a

0
0;k; b

0
0;kÞ and Pða0h;kja

0
0;k; b

0
0;kÞ are specified.

Translation of alternative evolutionary hypotheses into probabilistic

models

We restricted this work to considerations of two types of sequence changes, namely substitu-

tions and indels. A total of four possible evolutionary hypotheses can be posed, that are (1) epi-

genome changes are independent of local sequence changes (Model N), (2) epigenome

changes depend on local sequence substitutions but are independent of local sequence indels

(Model M), (3) epigenome changes depend on local sequence indels but not local sequence

substitutions (Model I), and (4) epigenome changes depend on both local substitutions and

indels (Model B, Fig 2C). The four models based on these hypotheses could be summarized as

a mixture model of four components. We described the detailed probabilistic form to express

each hypothesis and the joint model in Methods and Materials. Furthermore, we will describe

a likelihood comparison approach for testing which hypothesis fits actual data, and whether

different genomic regions conform to a single evolutionary model.

Fig 2. Dependency structures reflecting different evolutionary hypotheses. (A) Interspecies changes of the hth histone modification (Ah! Bh) depend on local

genomic sequence changes (A0! B0). (B) Interspecies epigenomic changes do not depend on local sequence changes. (C) A 2×2 table summarizing assumed

dependencies to specific types of sequence changes in each model. Upper (bottom) row: models assuming independence (dependence) of sequence substitutions. Left

(right) column: models assuming independence (dependence) of sequence indels.

https://doi.org/10.1371/journal.pcbi.1006673.g002
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Development of an MLE algorithm for parameter estimation

We implemented a maximum likelihood estimation (MLE) algorithm for model fitting. The

input data for the MLE algorithm are a list of pairs of homologous regions, hereafter termed

homologous pairs, each of which contains two homologous sequences, and on each position of

each sequence a binary indicator of state of each histone mark. The model parameters include

equilibrium probabilities π and φ, birth and death rates λ and μ, substitution rate s, and the

rate of change for each histone modification κh. Our MLE calculation algorithm was a down-

hill simplex algorithm. The key for application of downhill simplex algorithm is being able to

evaluate the likelihood function with given model parameters, which requires summing over

all possible evolutionary paths between the two sequences. This was achieved by dynamic pro-

gram algorithms (see Methods).

Evaluation with simulation datasets

We tested performances of the models and the MLE algorithm with simulation data. First, we

tested the convergence by comparing the estimated parameters at each iteration with the true

parameters (Panel A in S1 Fig). We simulated data with 8 sets of model parameters (S1 Table,

Methods) under each of the 4 models (Model M, N, B, I), resulting in a total of 32 datasets.

Each dataset contained 100 pairs of 500bp-long homologous sequences and one histone modi-

fication on each sequence. We ran the MLE estimation algorithm twice with two initial values

on each simulation dataset. Regardless of the initial values, the estimated parameters con-

verged to true values in all simulated datasets (Panel A in S1 Fig), and the negative log-likeli-

hood function decreased monotonically (Panel B in S1 Fig).

For a more comprehensive test, we simulated 10 datasets under each of the 4 models with

each of the 8 sets of model parameters (S1 Table), resulting in a total of 320 datasets. For each

dataset we ran the MLE algorithm to convergence and quantified the difference between the

estimated parameters (θ) with true values (θ�) with percent error (e), defined as e = (θ−θ�)/θ�

× 100%. We summarized the percent errors from all the simulations for each true value (S2

Fig). Regardless of the true values for s, μ, κ, most of the percent errors of all simulations were

contained within 20% ((|e|< 20%). Greater variation of e was observed when the true values

were very small (0.01). As the true values increased to 0.1 or 1, nearly all percent errors were

contained within 10% (|e|< 10%). We note that the estimated κ (rate of H3K4me3 switch)

from real data was much larger than 0.1 (S2 Table), and thus in the range where the estimated

values nearly always converge to true values.

Next, we tested the capability of identifying the underlying model by comparison of likeli-

hood functions. We generated 5 datasets (columns, S3 Fig) under each hypothesis (Hypothesis

M, N, I, or B, S3 Fig), resulting in a total of 20 datasets. For each dataset, we computed the like-

lihood using every model (Model M, N, I, or B), resulting in four computed likelihoods (four

dots in each column, S3 Fig). In all simulation datasets, the model that resulted in the largest

likelihood corresponded to the actual hypothesis from which the data were generated, suggest-

ing that the true model corresponding the correct hypothesis could be identified by likelihood

comparisons.

Rates of sequence changes and H3K4me3 change between humans and

rhesus monkeys

Our overriding question is whether interspecies changes of histone modifications depend on

genomic sequence changes, and whether such dependence is invariant in the entire genome.

Toward this goal, we used H3K4me3 changes in primate spermatids as a testbed system. We

Testing hypotheses on the co-evolution of epigenome and genome
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approached the above question with two major steps. First, we estimated sequence change

rates and H3K4me3 change rate, and assessed the sensitivity of these estimates to model

assumptions and to data processing procedure. We retrieved public epigenomic data from rhe-

sus macaque and human in round spermatids (GSE68507) [28]. We estimated the sequence

change rates (s, μ) and H3K4me3 change rate (κ) from each of the four models. We did not

separately provide λ in results because λ was determined by homologous sequence lengths and

μ [4]. Our estimation of s, μ, and κ were based on the union of H3K4me3 marked regions [28]

and all DNase hypersensitive regions from 95 human cell lines [34], that had a total of

2,824,711 homologous genomic regions. The four models yielded nearly the same estimates

for each parameter, where sequence substitution rate s was approximately 0.07, deletion rate μ
was approximately 0.04, and H3K4me3 change rate κ was approximately 0.75 (S2 Table). Exe-

cuting the MLE algorithm 3 times with different initial values converged to nearly the same

estimated values. These values were in line with the reports of large amounts of interspecies

histone modification changes on homologous sequences, in the same cell type [35]. To assess

the sensitivity of these estimates, we re-estimated the parameters with randomly sampled sub-

sets of the homologous genomic regions (S2 Table), and also with re-defined peak regions by

applying different thresholds in ChIP-seq peak calling (S3 Table). The estimated parameters

by large were insensitive to these alternations, with an expected exception that κ exhibited a

modest decrease when stringency for peaking calling drastically increased. This was because

when few peaks were called from either species (q-value = 0.001, S3 Table), the histone modifi-

cation would not appear to have changed (no modification in either species).

Epigenome-to-genome dependency in evolution is not uniform across the

genome

Next, we compared the four evolutionary hypotheses on every homologous sequence pair and

derived a genome-wide catalogue of the correspondence between genomic region and the best fit

evolutionary model. Nearly the entire mappable portion of the human genome (effective genome)

has homologous sequence in rhesus macaque genome. Approximately 5.5% of the homologous

sequences were covered by H3K4me3 peaks in either species, accounting for 132,294 homologous

pairs. For every pair, we computed the likelihood under each of the four models and classified

each homologous pair to one of the models according to the largest likelihood. A total of 73% of

homologous pairs were classified to Model M, I, or B, where histone modification variation was

dependent on local DNA sequence changes (Fig 3A). Most of these homologous pairs were classi-

fied to Model B, where histone modification variation was dependent on both local sequence sub-

stitution and indel. On the other hand, a total of 27% of homologous pairs were classified with

Model N, where histone modification variation did not depend on underlying DNA sequence

changes. These results were in line with the idea that the evolutionary changes of the underlying

sequences might not completely determine all evolutionary changes of the epigenome.

Separating contributions of substitutions and indels to epigenome-to-

genome dependence

We asked whether sequence substitution or indel better accounts for epigenome-to-genome

dependence in evolution. Toward this goal, we derived two metrics rmut and rind to quantify

the degrees of dependence of histone changes on substitutions and on indels, respectively

(Methods). These metrics were derived from a variation of likelihood-ratio test, where rmut
quantifies the overall fit of a homologous pair to Models N or I (independent of substitutions)

versus to Models M or B (substitution dependent), and rind quantifies the overall fit to Models

N or M (independent of indels) versus to Models I or B (indel dependent). We quantified

Testing hypotheses on the co-evolution of epigenome and genome
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rmut and rind for every homologous pair and used a scatterplot to visualize the degrees of

H3K4me3-to-substitution dependence (rmut, y axis) and H3K4me3-to-indel dependence (rind,
x axis, Fig 3B) of all the analyzed homologous pairs (132,294 in total). Overall, the homologous

pairs exhibited greater variations of rind than rmut. The majority of homologous pairs exhibited

rmut close to 0, for example 110,400 (83%) homologous pairs exhibited |rmut|< 0.004. Data of

these homologous pairs could not clearly infer H3K4me3-to-substitution dependence. A

greater number of homologous pairs exhibited non-zero rind, including 8,965 homologous

pairs with rind> 0.01, in which H3K4me3 changes were likely attributable to indels. Nearly no

homologous pair exhibited H3K4me3 variation that solely depended on substitution (2nd

quadrant, Fig 3B), and in some homologous pairs neither substitution or indel appeared to

relate to interspecies variation of H3K4me3 (3rd quadrant in Fig 3B, S4 Fig). An alternative

normalization method was also used to derive rind and rmut, whereas the evaluation of

H3K4me3-to-substitution and H3K4me3-to-indel dependencies was not sensitive to different

normalization approaches (Methods, S5 Fig).

Contribution of transposon induced indels to DNA-dependent H3K4me3

changes

We asked whether indels induced by different transposon families exhibited similar impacts to

interspecies variation of epigenome. To this end, we first classified species-specific transposon

insertions into three groups: insertions with no change to H3K4me3 (conserved peak), trans-

poson insertion together with addition (transposon-induced peak) or removal (transposon-

disrupted peak) of H3K4me3 (Fig 4A). Next, for each group we identified the number of con-

tributing transposons from every transposon family.

Of the top 10% homologous pairs exhibiting the largest degree of independence between

H3K4me3 variations and local indels (4,139 regions, rind< −0.0169), 182 (4.4%) contained

species-specific transposons. Among these species-specific transposons that did not appear to

interfere with H3K4me3, the endogenous retrovirus 1 (ERV1) family of long terminal repeats

(LTR) was the most abundant transposon family, accounting for 107 (59%) of the conserved

peaks (Fig 4B). This trend did not change when we altered the percentage cutoff of rind to 5%

and 2% (S6 Fig, S4 Table).

Among the top 10% homologous pairs exhibiting the largest extent of DNA-dependent

H3K4me3 changes (9,091 regions, rind> 0.099), 854 homologous pairs contained transposon-

Fig 3. Classifications of homologous genomic regions into four models. (A) Proportions of human-macaque homologous regions classified into each

model. (B) Scatterplot of all homologous regions showing the degree of dependence to indels (rind, x axis) versus the degree of dependence to substitutions

(rmut, y axis). Actual data for selected homologous regions (red circles) are given in Fig 4E, S4 and S9 Figs. Insert: the numbers of homologous regions in

each quadrant.

https://doi.org/10.1371/journal.pcbi.1006673.g003
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induced peaks, and 376 homologous pairs contained transposon-disrupted peaks. The ERV1

family was the most abundant transposon family with transposon-induced peaks, accounting

for 655 (77%) of all transposon-induced peaks (Fig 4C). The enrichment level of the ERV1

family within transposon-induced peaks was 2.31-fold greater than expectation, with the high-

est confidence among all transposon types (odds ratio = 2.31, p-value of chi-square test =

1.06 × 10−6). This trend did not change when we altered the percentage cutoff of |rind| to 5%

Fig 4. Classes of interspecies covariations of transposons and H3K4me3 peaks. (A) Three classes of covariations of transposon and H3K4me3 peaks.

Shaded bands between two species indicate homologous sequences. Light green sequence: insertion of a transposon in Species 1. (B-D) Transposon copy

number of each transposon family in conserved peaks (B), transposon-induced peaks (C) and transposon-disrupted peaks (D). (E) A homologous genomic

region where interspecies variation of H3K4me3 peaks was associated with ERV1 insertions. Pink bands: a pair of homologous sequences in humans

(upper panel) and macaque (lower panel), with a human-specific insertion (ERV1:LTR12C) as well as a human-specific H3K4me3 peak. Orange bands:

another pair of homologous sequences, with a macaque-specific copy of ERV1 (ERV1:LTR12) and macaque-specific H3K4me3 peaks. (F) A model for

ERV1-induced H3K4me3 peaks. Species specific ERV1 sequence (light blue region in Species 2) harbors motifs for Nfyb, Barx1, Hoxc13 and Lin28a, and

induces testis-expressed proteins (orange) to help to recruit Nfyb and the MLL complex (purple).

https://doi.org/10.1371/journal.pcbi.1006673.g004
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and 2% (S6 and S7 Figs). The promoter region of the human SLC30A8 gene and its homolo-

gous region in macaque was an example in case (Fig 4E). This promoter region harbors two

homologous pairs, with one in the upstream regions of the transcription start sites (pink

regions, Fig 4E) and the other in the downstream of the TSSs in both species (orange regions,

Fig 4E). An ERV1 transposon was inserted in the human upstream region, on which there was

a clear H3K4me3 peak, whereas the macaque upstream region did not contain the ERV1

sequence and did not exhibit H3K4me3 (pink regions, Fig 4E). Furthermore, another ERV1

sequence was inserted in the downstream region in macaque where H3K4me3 was installed,

whereas the human homologous sequence did not have the ERV1 sequence and did not harbor

any H3K4me3 peak (orange regions, Fig 4E).

Unlike transposon-induced peaks that were primarily concentrated to ERV1, transposon-

disrupted peaks were primarily contributed from the L1 family, accounting for 213 (57%) of

all transposon-disrupted peaks (Fig 4D). The association of the L1 family with transposon-dis-

rupted peaks was 8.60-fold greater than expectation (odds ratio = 8.60, p-value of chi-square

test = 5.1 × 10−22). These H3K4me3 losses were not likely due to the low mappability of L1

transposable elements, as the flanking regions of the L1 transposons still showed considerably

lower H3K4me3 signals compared with their homologous regions after we masked the L1

transposons (S8 Fig). This trend did not change when we altered the percentage cutoff of |rind|
to 5% and 2% (S6 and S7 Figs). A case in point was at the ZNF630-AS1 promoter, where a L1

transposon (a, S9 Fig) was inserted specifically in the macaque promoter between two ERVL--

MaLR family repeats (b, c, S9 Fig), which was coupled with disappearance of H3K4me3. In

summary, ERV1, ERVK, L1 and SVA were the most abundant transposons near H3K4me3

peaks. Transposon-induced peaks were most strongly associated with ERV1 transposons, and

transposon-disrupted peaks were most strongly associated with L1 transposons.

Discussion

Current comparative epigenomic studies relied on ad hoc analytical methods that were to a

considerable extent detached from the core of evolutionary biology. Therefore, a theoretical

foundation for comparative epigenomics is in demand. Here, we initiated a class of probabilis-

tic evolutionary models for the genome and epigenome. We provided approaches to explicitly

express probabilistic functions of genomic sequences and epigenomic data based on evolution-

ary hypotheses, thus allowing for data-driven tests of hypotheses of epigenomic evolution.

With the methodology, we quantitatively assessed the relative impacts of sequence substitu-

tions and indels to H3K4me3 changes throughout the genome between human and macaque

and identified a set of genomic regions where interspecies H3K4me3 changes were primarily

attributable to species-specific transposon insertions.

A central question in studies of epigenome evolution is whether interspecies changes of his-

tone modification are independent of evolutionary changes of DNA. If the answer is partially

yes, that is, in some specific genomic regions interspecies changes of specific histone modifica-

tions are dependent of evolutionary changes of DNA, then the next important question is

whether interspecies changes of histone modifications depend on specific types of DNA

sequence changes. This second question can be phrased as a set of competing hypotheses, that

interspecies changes histone modifications 1) depend only on local sequence substitutions; 2)

depend only on local sequence insertions and deletions; 3) depend on both; 4) depend on nei-

ther (in which case they may still have a certain degree of dependency on other effects, such as

trans effects from sequences, and/or other types of sequence variations).

To test the above hypotheses, the likelihood approach is perhaps the most popular approach,

that is to convert each hypothesis into a probabilistic form, and plug in observed data into each
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probabilistic form, resulting in a likelihood for each hypothesis which is typically interpreted as

the compatibility of data to each hypothesis. The hypothesis corresponding to the largest likeli-

hood is considered most supported by observed data. Therefore, we focused this work on how

to convert hypotheses into probabilistic forms. Our deliverable, which we called "an evolution-

ary model" is a mathematical framework to convert each evolutionary hypothesis and multi-

species data into a probability. This framework would be applicable to different epigenomic

modifications and/or various tissue types/cell lines with corresponding data.

In this work, we used the H3K4me3 variations between human and rhesus as a testbed for

the models. We found that a large number of H3K4me3 changes were dependent on local

sequence changes. Given that H3K4me3 is usually found overlapping active regulatory ele-

ments enriched with transcription binding sites, the dependence might have an association

with the alteration of underlying motif sequences. Our models could also be applied to epige-

nomic marks less associated with regulatory elements to study the dependence between their

variations and local sequence changes.

Gene context for regions with different classification

We asked whether region pairs classified to different models were located in different genomic

contexts. For this purpose, we measured the distances between region pairs and their nearest

genes. Among the 35,667 regions classified to Model N, 76% and 21% were located within the

5kb flanking regions around transcription start sites (TSSs) of genes in human and rhesus,

respectively, suggesting that the majority of regions with H3K4me3 variation not driven by

local sequence variations might function as active promoters of their putative target genes.

Fewer regions were found close to TSSs in rhesus due to the lack of annotated genes in rhesus

monkeys (6,485 genes from the NCBI RefSeq gene annotation). The 96,627 regions with local-

sequence-dependent H3K4me3 changes, on the other hand, were considerably farther from

TSSs, indicating that epigenomic marks on distal regulatory sequences of genes may be prone

to be subject to sequence changes (S10 Fig). The distributions of distance to transcription end

sites (TESs) of genes hardly exhibited any differences, as both types of regions were located

5kb to 50kb away from the TESs.

Epigenome altering transposons possess specific motifs

We identified associations of transposon insertions to both gains and losses of H3K4me3 peaks.

While H3K4me3 losses were associated with a variety of transposon families, the ERV1 family of

transposons were enriched in H3K4me3 gains. The latter might be a result of species-specific

recruitment of transcription factors. In line with this idea, ERV1 was the most notable transposon

family involved in species-specific binding of pluripotency regulators OCT4 and NANOG in

embryonic stem cells [36]. Our de novo motif search revealed a total of 31 DNA motifs that were

enriched in ERV1 transposons as compared to other LTRs (Homer p-value< 10−40), where the

most significant motifs resembled the binding motifs of NFYB (a.k.a. CCAAT box, Homer p-

value< 10−94), HOXC13 (p-value< 10−90), BARX1 (p-value< 10−89), and LIN28A (p-value<

10−84). According to gene expression data of 37 human tissues from Genotype-Tissue Expression

(GTEx) [37] and Human BodyMap 2.0 that were normalized and visualized by Genecards (www.

genecards.org), Nfyb was expressed in nearly all human tissues, whereas Hoxc13, Barx1, and

Lin28a were all most strongly expressed in testis. Lin28a exhibited 10 times greater expression in

testis than in any other analyzed human tissues. The CCAAT box is capable of recruiting ASH2L,

a component of the MLL histone methyltransferase complex responsible for H3K4 methylation

[38]. These results suggested a model for ERV1 mediated induction of species-specific H3K4me3

in spermatids. ERV1 harbored binding motifs of testis-expressed transcription factors as well as
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the CCAAT box. Species-specific ERV1 sequences recruited testis-induced HOXC13, BARX1,

LIN28A that helped to recruit NFYB and the MLL complex, which in turn established species-

specific H3K4me3 peaks (Fig 4F). Finally, the human-specific and macaque-specific insertions of

two copies of ERV1 appeared to have induced H3K4me3 in respective insertion regions, near the

SLC30A8 promoter in both species (Fig 4E), providing a potential example of convergent evolu-

tion mediated by species-specific transposon insertions.

We also directly compared the motif enrichment between local-sequence-dependent

regions and local-sequence-independent regions. The analysis didn’t reveal any motif with

enrichment higher than 6% in regions depending on local sequence variations, and there was

no clear evidence showing that any motifs were uniquely processed by these regions.

Epigenome-to-genome dependency between human and mouse

In the comparison between human and rhesus H3K4me3-marked regions, we classified

human-rhesus homologous region pairs to different models and separated the effects of substi-

tutions and indels within each region pair. We repeated the analyses between human and

mouse, which were more evolutionary distant. We applied the four models to a total of 79,865

human-mouse homologous region pairs with H3K4me3 signals, using public ChIP-Seq data-

sets from human and mouse round spermatids (GSE68507). 82% region pairs were classified

to Model B, I and M, exhibiting local-sequence-dependent H3K4me3 variations. Most of the

region pairs (72%) were classified to Model B, where H3K4me3 variations depended on both

local sequence substitutions and indels. The rest 18% region pairs were classified to Model N,

where H3K4me3 variations were independent of local sequence changes (Panel A in S11 Fig).

Given the farther evolutionary distance between human and mouse, the human-mouse

region pairs contained more sequence substitutions compared with the human-rhesus region

pairs. Therefore, unlike the human-rhesus region pairs among which the majority showed |

rmut| close to 0, the human-mouse region pairs exhibited greater variations of |rmut|, and

H3K4me3 variations in most of the homologous region pairs were associated with both substi-

tutions and indels. Nonetheless, similar to that between human and rhesus, we still observed a

group of regions in which |rind| were much larger than |rmut|, meaning that H3K4me3 varia-

tions within these regions could be majorly attributed to insertions (Panel B in S11 Fig).

We asked if transposon insertions were also partially responsible for the H3K4me3 varia-

tions between human and mouse. Among the top 10% homologous pairs showing the largest

extent of insertion-dependent H3K4me3 changes (5,784 regions, rind> 0.03), 217 contained

transposon-induced peaks, and 678 homologous pairs contained transposon-disrupted peaks.

Consistent with the human-rhesus comparison, the L1 family was the most enriched transpo-

son family in transposon-disrupted peaks with an odds ratio of 3.67 (p-value of chi-square

test = 1.3×10−8) (S12 Fig). Two examples in case were shown in Panels C and D in S11 Fig, in

which L1 insertions occurred in mouse and human along with H3K4me3 losses. On the other

hand, the ERV1 family exhibited a weaker association with transposon-induced peaks in

human and mouse (odds ratio = 1.68, p-value of chi-square test = 0.058) compared with that

in human and rhesus. We postulated that this was due to different rates of ERV1 enrichment

in human and mouse. Indeed, the ERV1 insertion accounted for 62% transposon-induced

peaks in human, whereas only 6.9% in mouse. Another family of the LTR class, ERVK,

appeared to be the most abundant transposon family in transposon-induced peaks in mouse,

and were found in 55% of the mouse transposon-induced peaks. Interestingly, this was in line

with previous transcription factor ChIP-Seq analyses in mouse embryonic stem cells, which

revealed that a number of mouse-specific ERVK subfamilies were strongly enriched for multi-

ple TF-binding sites, and might function as cis-regulatory elements [39].
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Locality and causality of epigenome-to-genome dependency

Our models N, I, M and B were designed to evaluate the dependency of the epigenome on the

local genomic sequences. If regions showed higher likelihood value in the dependent components

of the models, some local effects of sequence evolution upon the epigenetic marker might be

inferred, as was shown by the examples in the transposon-related analysis result. It was known that

the evolution of sequence itself was affected by multiple factors, such as sequence contexts, transpo-

son insertions and chromatin structures [40–43]. Additionally, sequences changes might also affect

the nucleosome positioning, which in-turn influenced the locations of epigenomic marks [44].

Therefore, while some regions showed high dependence on local sequence changes, the underlying

biological mechanism for said dependence could be different. However, regardless of the detailed

mechanisms of sequence evolution at different locations, their downstream effects, i.e. the sequence

change and related epigenomic dependency, would still be captured in our models.

On the other hand, epigenomic variations might also be affected by multiple other sources.

Potential mechanisms included trans-acting effects from sequences far from the orthologous regions,

such as RNA-DNA interactions [45], possible inheritance of epigenetic states, and other potential

factors. The relevant studies, however, were limited to certain molecules and genomic regions. It was

unclear if these mechanisms were applicable throughout the genome, and genome-wide data of mul-

tiple species were lacking for the purpose of evolutionary studies. Therefore, although the potential

effects of these factors were included in the independent-part of our models, it was unlikely to distin-

guish their contribution due to the lack of prior knowledge and genome-wide data.

Given the modular structure of the framework, the models could be further expanded to

incorporate the potential mechanisms in the future when they are better understood. Further

distinguishing the underlying mechanism for the epigenome-to-genome dependency and

quantitatively describing their relative contributions would be worthwhile efforts in future

evolutionary model development.

Rationale for model assumptions, limitations and potential extensions

We chose to initiate the genome-epigenome joint evolutionary models from base-to-base inde-

pendence models. This choice was a result from reviewing the history of DNA evolution mod-

els. It is now generally accepted that the substitution rate on each DNA base depends on its

sequence context, such as inside or outside of codons or transcription factor binding sites.

However, DNA evolution models started from modeling each base independently [1–3]. Such

seemingly “incorrectness” does not dwarf the paramount importance of the classic models in

the history of evolutionary biology. Independence models transformed comparative studies

into quantitative analyses, which enabled accumulation of empirical knowledge and eventually

fostered development of sequence-context dependent models. Learned from history, although

we have also derived sequence-context dependent models on paper, we chose to implement,

test, apply, and present the independence model. Our main concern of sequence-context

dependent models is the lack of sufficient empirical knowledge at this point of time [46–48].

Implementing dependent models would utilize immature sequence-context assumptions,

which without repeated empirical tests and consensus of the field could turn out to be mislead-

ing. The initial models presented here, hopefully would equip epigenome comparison with

quantitation and thus enable accumulation of empirical knowledge.

Moreover, although these evolution models were independent models, we used widely-

accepted procedures during data preprocessing, such as peak-calling for histone-modification-

related data sets. Those specific procedures took the dependence among neighboring bases

into account. Therefore, when we applied the models, our sample space did not contain any

data points contradictory to actual observations (for example, histone modifications that only
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happened at one or a few intermittent bases or had a pattern not matching any possible nucle-

osome configuration), as those cases would be excluded by the data preprocessing pipeline.

With this constraint, the mathematical approximation of epigenetic modifications in the mod-

els, which distributed epigenetic signals to individual nucleotides, would have little effect.

In our models, two types of sequence changes, substitutions and indels, were explicitly consid-

ered in the hypotheses. More complex structural variations in the genome, such as inversions,

translocations, while not explicitly described in the models, could still be tackled via a multi-step

approach: using contemporary comparative genome analysis tools to obtain corresponding synte-

nies across species first, then applying our models to regions with epigenomic modifications within

those syntenies. On the other hand, the dependence between nucleotides could be modeled in

future improvements by refining the DNA evolutionary model. Such improvements would pro-

vide a more direct approach to modeling epigenome-genome pairs with more complex variations.

As an initial attempt in modeling epigenomic evolution, nucleosome positioning was not

included in our models due to the limited availability of nucleosome occupancy datasets, espe-

cially the scarcity of comparable nucleosome occupancy data across species [24, 49–51]. In

order to incorporate nucleosomes in future expansions, more relevant comparative studies

and empirical knowledge are also required so that nucleosome occupancies can be mathemati-

cally linked among multiple species, especially in vertebrates.

The current model is limited to two-species comparison. Consequently, genomic and epige-

nomic gains and losses were not distinguishable between the two species due to the lack of out-

groups. Therefore, the extension of the framework to enable multi-species comparison would

be a promising goal worth further efforts. This improvement may demand the explicit expres-

sion of a joint probability of multispecies (> = 3) DNA sequences and epigenomic modifica-

tions, as well as an algorithm for the optimization of the joint probability. The data processing

procedure would also need to be expanded for the identification of proper homologous regions

shared by multiple species. With outgroups included, sequence mutations may be assigned to

specific lineages, and their contribution to the epigenomic variations can be further studied.

Except for the conditional independence assumption, other assumptions in our modeling

work were either investigated by prior DNA evolution literature or widely used in analyses of

ChIP-seq data, that is, each ChIP-seq peak could be assigned to a beginning and an ending posi-

tion and DNA inside the beginning and ending positions were considered associated with the his-

tone modification. We foresee two future improvements to further reduce model assumptions.

First, in this work we have only considered binary states of histone modifications. To remove this

assumption, a0h;k and b0h;k can be allowed to take any finite discrete numbers, in which case the

form of Eq (4) does not change and hence the forms of the rest of the models do not change. Sec-

ond, the conditional independence assumption can be removed. To model the dependent changes

of two histone modifications, for example H3K4me2 and H3K4me3, the two modifications can

be coded with the same index (h) and let a0h;k and b
0
h;k to take the following form:

a0h;k; b
0

h;k ¼

(
0; H3K4me2 ¼ 0;H3K4me3 ¼ 0

1; H3K4me2 ¼ 1;H3K4me3 ¼ 0

2; H3K4me2 ¼ 0;H3K4me3 ¼ 1

3; H3K4me2 ¼ 1;H3K4me3 ¼ 1

: ð4Þ

In parallel to the plethora of evidence on DNA-dependent installation and removal of his-

tone modifications, a smaller but increasing amount of data suggest trans-generation DNA-

independent inheritance of histone modifications [32, 33]. It remains unclear how many gen-

erations could DNA-independent epigenetic inheritance endure, or more importantly whether
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it is preserved in evolutionary timescale. By initiating probabilistic models of epigenome-

genome evolution, this work begins to offer a quantitative framework to test different hypothe-

ses related to epigenomic evolutionary changes. With the expansion of knowledge, more rele-

vant hypotheses can be incorporated into the framework, which may enable the comparison of

the contribution of cis-effects, trans-effects and transgenerational inheritance, and hence help

to address the questions above. Future developments of epigenome-genome evolution models

may also begin to address questions including whether any evolutionary selection acts on the

epigenome independently of the genome, and whether any selection forces were received

jointly by genome and epigenome. Therefore, we anticipate integrated analyses of genome-epi-

genome data to expand the domain of evolutionary biology, and the development and deploy-

ment of epigenome-genome evolution models to be essential for this expansion.

Materials and methods

Modeling dependencies of epigenomic changes on sequence mutations

Model N. Model N assumes that epigenomic changes are independent of both substitu-

tions and indels (Model N, Fig 2). We model evolutionary process of epigenomic changes as a

Poisson process, in which the transition probability in time t is:

ga0h;k ;b0h;k ðtÞ ¼

( e� kht þ phb0h;k ð1 � e� khtÞ; a0h;k ¼ b0h;k

phb0h;k
ð1 � e� khtÞ; a0h;k 6¼ b0h;k

; ð5Þ

where a0h;k and b0h;k are binary states of the hth histone modification on the kth position of an

alignment, and phb0h;k
is the equilibrium probability of having the hth histone modification on

the kth position, namely ph
1
¼ Pðb0h;k ¼ 1Þ and ph

0
¼ Pðb0h;k ¼ 0Þ. This probabilistic form is sim-

ilar to the substitution model of DNA evolution [3]. On a position without indel

(a0
0;k 6¼ } � } and b0

0;k 6¼ } � }), we have:

Pðb0h;kja
0

h;k; a
0

0;k; b
0

0;kÞ ¼ ga0h;k ;b0h;kðtÞ; ð6Þ

and

Pða0h;kja
0

0;k; b
0

0;kÞ ¼ p
h
a0h;k
� ga0h;k ;a0h;kð0Þ ¼ p

h
a0h;k
: ð7Þ

In order to model epigenomic changes on insertions and deletions, we introduce four

parameters φh
A0
; φh

A1
and φh

B0
; φh

B1
to represent local equilibrium probabilities of epigenomic

states 0 and 1 in genomic regions A and B, respectively (φh
A0
¼ 1 � φh

A1
and φh

B0
¼ 1 � φh

B0
).

Unlike global equilibrium probabilities ph
0

and ph
1
, which are estimated from all homologous

regions in the entire genomes, local equilibrium probabilities are estimated from each genomic

region. On an insertion in the descendent sequence (a0
0;k ¼ } � } and b0

0;k 6¼ } � }), the transi-

tion probability is modeled as a mixture of the two transitions:

Pðb0h;kja
0

h;k; a
0

0;k; b
0

0;kÞ ¼ φh
A0
g0;b0h;k
ðtÞ þ φh

A1
g1;b0h;k
ðtÞ; ð8Þ

where g0;b0h;k
ðtÞ is the transition probability from the state 0 to the observed state b0h;k, and g1;b0h;k

ðtÞ

is the transition probability from the state 1 to the observed state b0h;k. Because there is no place for

histone mark on the kth position in the ancestral sequence (a0h;k is not observed), we denote:

Pða0h;kja
0

0;k; b
0

0;kÞ ¼ 1: ð9Þ
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On a deletion in the descendent sequence (a0
0;k 6¼ } � } and b0

0;k ¼ } � }), based on the

reversibility of the evolutionary process we model the transition as a mixture of two transi-

tions:

Pða0h;kja
0

0;k; b
0

0;kÞ ¼ φh
B0
g0;a0h;k
ðtÞ þ φh

B1
g1;a0h;k
ðtÞ: ð10Þ

For the completeness of the model, we denote:

Pðb0h;kja
0

h;k; a
0

0;k; b
0

0;kÞ ¼ 1: ð11Þ

Taken together, Pðb0h;kja
0
h;k; a

0
0;k; b

0
0;kÞ and Pða0h;kja

0
0;k; b

0
0;kÞ are given by:

Pðb0h;kja
0

h;k; a
0

0;k; b
0

0;kÞ ¼

( ga0h;k ;b0h;kðtÞ; a0
0;k; b

0
0;k 6¼ } � }

φh
A0
g0;b0h;k
ðtÞ þ φh

A1
g1;b0h;k
ðtÞ; a0

0;k ¼ } � } and b0
0;k 6¼ } � }

1; a0
0;k 6¼ } � } and b0

0;k ¼ } � }

; ð12Þ

Pða0h;kja
0

0;k; b
0

0;kÞ ¼

(
pha0h;k

; a0
0;k; b

0
0;k 6¼ } � }

φh
B0
g0;a0h;k
ðtÞ þ φh

B1
g1;a0h;k
ðtÞ; a0

0;k 6¼ } � } and b0
0;k ¼ } � }

1; a0
0;k ¼ } � } and b0

0;k 6¼ } � }

: ð13Þ

At this point, all the terms in the LCZ model have been specified. Eqs (12) and (13) specify

Model N, where epigenomic changes are independent of sequence changes.

Model M. In this model, epigenomic changes are dependent of sequence substitutions

but independent of indels (Model M, Fig 2). On a matched (no substitution) base at the kth

position in the alignment, namely a0
0;k ¼ b0

0;k, the epigenomic change is modeled with the

Poisson process ga0h;k ;b0h;kðtÞ (Eq (4)), whereas on a position with substitution (a0
0;k 6¼ b0

0;k and

a0
0;k; b

0
0;k 6¼ } � }), the descendent epigenomic state is modeled by global equilibrium probabil-

ities,

Pðb0h;kja
0

h;k; a
0

0;k; b
0

0;kÞ ¼ p
h
b0h;k
: ð14Þ

On indels, the epigenomic changes is modeled with the same approach as in Model N.

Taken together, Model M is specified as:

Pðb0h;kja
0

h;k; a
0

0;k; b
0

0;kÞ ¼

(
ga0h;k ;b0h;kðtÞ; a0

0;k ¼ b0
0;k

phb0h;k
; a0

0;k 6¼ b0
0;k and a

0
0;k; b

0
0;k 6¼ } � }

φh
A0
g0;b0h;k
ðtÞ þ φh

A1
g1;b0h;k
ðtÞ; a0

0;k ¼ } � } and b0
0;k 6¼ } � }

1; a0
0;k 6¼ } � } and b0

0;k ¼ } � }

; ð15Þ

Pða0h;kja
0

0;k; b
0

0;kÞ ¼

(
pha0h;k

; a0
0;k; b

0
0;k 6¼ } � }

φh
B0
g0;a0h;k
ðtÞ þ φh

B1
g1;a0h;k
ðtÞ; a0

0;k 6¼ } � } and b0
0;k ¼ } � }

1; a0
0;k ¼ } � } and b0

0;k 6¼ } � }

: ð16Þ
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Model I. In this model, epigenomic changes depend only on sequence indels but not on

substitutions (Model I, Fig 2). On a position that is not indel (a0
0;k 6¼ � and b0

0;k 6¼ � ), we use

the same Poisson process (Eq (5)) as that in Model N to model the epigenomic changes.

On an insertion in the descendent sequence (a0
0;k ¼ } � } and b0

0;k 6¼ } � }), the transition

probability becomes invariant of t:

Pðb0h;kja
0

h;k; a
0

0;k; b
0

0;kÞ ¼ p
h
b0h;k
; ð17Þ

and since a0h;k is not observed, we denote:

Pða0h;kja
0

0;k; b
0

0;kÞ ¼ 1: ð18Þ

Similarly, on a deletion in the descendent sequence (a0
0;k 6¼ } � } and b0

0;k ¼ } � }), we

have:

Pða0h;kja
0

0;k; b
0

0;kÞ ¼ p
h
a0h;k
; ð19Þ

Pðb0h;kja
0

h;k; a
0

0;k; b
0

0;kÞ ¼ 1: ð20Þ

Altogether, Pða0h;kja
0
0;k; b

0
0;kÞ and Pðb0h;kja

0
h;k; a

0
0;k; b

0
0;kÞ are given by:

Pðb0h;kja
0

h;k; a
0

0;k; b
0

0;kÞ ¼

(
ga0h;k ;b0h;kðtÞ; a0

0;k; b
0
0;k 6¼ } � }

phb0h;k
; a0

0;k ¼ } � } and b0
0;k 6¼ } � }

1; a0
0;k 6¼ } � } and b0

0;k ¼ } � }

; ð21Þ

Pða0h;kja
0

0;k; b
0

0;kÞ ¼

(
pha0h;k

; a0
0;k 6¼ } � }

1; a0
0;k ¼ } � } and b0

0;k 6¼ } � }
: ð22Þ

Model B. Model B assumes that epigenomic changes depend on both sequence substitu-

tions and indels (Model B, Fig 2). Similar to Model M, the epigenomic change is modeled with

the Poisson process ga0h;k ;b0h;kðtÞ on a matched base (a0
0;k ¼ b0

0;k), whereas on a position with sub-

stitution (a0
0;k 6¼ b0

0;k and a0
0;k; b

0
0;k 6¼ } � }), the descendent epigenomic state is modeled by the

equilibrium probabilities. On indels (a0
0;k ¼ } � } or b0

0;k ¼ } � }), the epigenomic state is

modeled using the equilibrium probability following Eqs (17)–(20).

Pðb0h;kja
0

h;k; a
0

0;k; b
0

0;kÞ ¼

(
ga0h;k ;b0h;kðtÞ; a0

0;k ¼ b0
0;k

phb0h;k
a0

0;k 6¼ b0
0;k and b

0
0;k 6¼ } � }

1; a0
0;k 6¼ } � } and b0

0;k ¼ } � }

; ð23Þ

Pða0h;kja
0

0;k; b
0

0;kÞ ¼

(
pha0h;k

; a0
0;k 6¼ } � }

1 a0
0;k ¼ } � } and b0

0;k 6¼ } � }
: ð24Þ

A unified evolutionary model incorporating all four hypotheses

We express the probability of two homologous genomic regions as a mixture of the four mod-

els, thus obtained a general probabilistic model that do not depend on any of the specific
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hypothesis as follows:

PðA;BÞ ¼ PðA;BjMÞPðMÞ þ PðA;BjNÞPðNÞ þ PðA;BjIÞPðIÞ þ PðA;BjBÞPðBÞ; ð25Þ

where P(A,B|M), P(A,B|N), P(A,B|I), and P(A,B|B) are the four probability density functions

for Models M, N, I, and B, respectively.

Dynamic programming algorithms

Model I and Model B. The dynamic programming algorithm was built on top of the

parameter estimation algorithm for the TKF model [4]. We implemented a simplification of

the procedure [52], which has been shown to vastly reduce the runtime of the algorithm. In

the algorithm, the computation of the probabilities of sequence changes was adopted from the

TKF model. The computation of the probabilities of epigenomic modifications was integrated

into the recursive procedure by including (1) the products of equilibrium probabilities of epi-

genomic modification states, namely
QH

h¼1
phbh;i ; (2) the changes of epigenomic modification

states on matches and mismatches, namely
QH

h¼1
Gðah;m; bh;n; a0;m; b0;nÞ.

Since P(A,B) = P(A)P(B|A), and P(A) can be directly computed, only the computation of P
(B|A) requires dynamic programming. Denote the (sA + 1) × (sB + 1) matrix in the dynamic

programming algorithm by L, L was computed following rules listed below.

Boundary conditions

L0;0 ¼ p00
1
ðtÞ ð26Þ

Lm;0 ¼ p00
1
ðtÞp0

0
ðtÞm ð27Þ

L0;n ¼ p00nþ1
ðtÞ
Yn

i¼1

pb0;i

YH

h¼1

phbh;i

 !

ð28Þ

Recursive procedure

Lm;n ¼ p0
0
ðtÞLm� 1;n þ lbpb0;n

YH

h¼1

phbh;n

 !

Lm;n� 1

þ ½fa0;m ;b0;n
ðtÞp1ðtÞ

YH

h¼1

Gðah;m; bh;n; a0;m; b0;nÞ

þ ðp0
1
ðtÞ � lbp0

0
ðtÞÞpb0;n

YH

h¼1

phbh;n �Lm� 1;n� 1

ð29Þ

All of the functions p,p0,p@ were given by the TKF model [4]. For Model I, the term G(ah,m,

bh,n,a0,m,b0,n) was gah;m ;bh;nðtÞ. For Model B, the term was the same as for Model I on matched

bases, while it became phbh;n on mismatches.

Model N and Model M. The dynamic programming algorithm was implemented using a

similar idea as for Model I and B, except that the computation of P(Ah) became part of the

recursive procedure, and the function G changed. Given Eqs (8) and (10):

FBða
0

h;kÞ ¼ φh
B0
g0;a0h;k
ðtÞ þ φh

B1
g1;a0h;k
ðtÞ
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FAðb
0

h;kÞ ¼ φh
A0
g0;b0h;k
ðtÞ þ φh

A1
g1;b0h;k
ðtÞ

The matrix L was computed following rules listed below.

Boundary conditions

L0;0 ¼ p00
1
ðtÞ ð30Þ

Lm;0 ¼ p00
1
ðtÞp0

0
ðtÞm

YH

h¼1

FBðah;0Þ ð31Þ

L0;n ¼ p00nþ1
ðtÞ
Yn

i¼1

ðpb0;i

YH

h¼1

FAðbh;0ÞÞ ð32Þ

Recursive procedure

Lm;n ¼ p0
0
ðtÞð
YH

h¼1

FBðah;mÞÞLm� 1;n þ lbpb0;n
ð
YH

h¼1

FAðbh;nÞÞLm;n� 1

þ

"

fa0;m ;b0;n
ðtÞp1ðtÞ

YH

h¼1

phah;mgah;m ;bh;nðtÞ

þ ðp0
1
ðtÞ � lbp0

0
ðtÞÞpb0;n

YH

h¼1

FAðbh;nÞFBðah;mÞ

#

Lm� 1;n� 1

ð33Þ

The term G(ah,m,bh,n,a0,m,b0,n) was gah;m ;bh;nðtÞ for Model N (same as Model I). The term for

Model M was the same as for Model N on matched bases, while it became phbh;n on mismatches

(same as Model B).

Maximum likelihood estimates

The MLE of π and φ are calculated by frequency estimates. Due to the relationship l ¼
m�ðsAþsBÞ
sAþsBþ2

[4], the MLE of λ is determined as long as the MLE of μ is determined. Evolutionary time t is

set to 1. The remaining parameters μ, s, and κ, collectively denoted as θ, are obtained by mini-

mizing the negative log-likelihood function,

lðyjA;BÞ ¼ � lnpðA;BjyÞ: ð34Þ

We used simplex downhill algorithm for this optimization. In each iteration, a number of

new parameter sets θnew were generated. The algorithm iteratively evaluated each l(θnew|A,B)

and compared it with l(θold|A,B) to select the best one, until the minimum was achieved.

EM algorithm

We proposed an EM algorithm for the maximization of Eq (25),. The algorithm iteratively

updates the prior probability of the four models P(N),P(I),P(M),P(B), as well as the model

parameters μ, s, and κ, collectively denoted as θ. Let N denote the number of region pairs. Let

αK denote the prior probability of the model K, where K = {N,I,M,B}. The algorithm starts

from some initial guesses âK and ŷ and iterates the following steps until convergence:
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E-step: update the prior probabilities:

ĝiK ¼
âKPKðAðiÞ;BðiÞjŷÞ
P

K âKPKðAðiÞ;BðiÞjŷÞ
ð35Þ

ânew
K ¼

PN
i¼1
ĝiK

N
ð36Þ

Μ-step: update the model parameters and prior probabilities by maximizing the log-likeli-

hood function with the prior probabilities âK :

ŷnew ¼ argmax
y

XN

i¼1

ln
�
X

K

âKPKðA
ðiÞ;BðiÞjŷÞ

�

ð37Þ

Generating simulation datasets

In the simulation test, we used only one histone modification. The equilibrium probabilities

were set to πA =πC =πG =πT =0.25, π0 = 0.9,π1 = 0.1. The simulation data contains 100

500-base-long sequence pairs.

Model I and Model B. The simulation data was generated based on the corresponding

hypotheses of models. The ancestor was first generated by drawing bases and histone modifica-

tion states randomly based on the equilibrium probabilities. The alignment path was then gen-

erated based on the TKF model. On insertions, the bases and epigenomic modification states

were drawn based on the equilibrium probabilities. On matches, the bases and histone modifi-

cation states were determined based on the substitution probabilities. On mismatches, the bases

and histone modification states were also determined based on the substitution probabilities for

Model I, while they were drawn based on the equilibrium probabilities for Model B.

Model N and Model M. For each region pair, the ancestral sequence was first generated

by drawing bases randomly based on the equilibrium probabilities. Local equilibrium proba-

bilities φh
0
;φh

1
were drawn from a beta distribution B 1:5;

1:5ð1� p1Þ

p1

� �
and assigned to the ancestral

region. After that, the path was determined based on the TKF model. On insertions, the

descendent nucleotides were drawn based on the equilibrium probabilities, and the histone

modification states were drawn based on the local equilibrium probabilities. On matches, the

bases and histone modification states were determined based on the substitution probabilities.

On mismatches, the bases and histone modification states were also determined based on the

substitution probabilities for Model N, while they were drawn based on the equilibrium proba-

bilities for Model M.

ChIP-Seq data analyses

ChIP-Seq data pre-processing. ChIP-Seq datasets were mapped to human genome assem-

bly hg38, rhesus macaque genome assembly rheMac8 and mouse genome assembly mm10

using bowtie2 with default settings. Duplicated reads and reads with MAPQ<6 were then

removed from the data. Peaks were identified using MACS2 with the “broadpeak” option [53].

Generating candidate regions for parameter estimation. Peak regions identified in rhe-

sus and mouse RS H3K4me3 ChIP-Seq data were first remapped to human genome using lift-

Over with minMatch = 0.5 [54]. For each pair of species (human vs. rhesus and human vs.

mouse), three files were merged: (1) The DNase I hypersensitivity peak clusters derived from

95 human cell lines; (2) H4K3me3 peaks identified in the human RS H3K4me3 ChIP-Seq data;

(3) remapped H3K4me3 peaks identified in the rhesus or mouse RS H3K4me3 ChIP-Seq data.
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Human-rhesus merged regions were trimmed to no longer than 500bp, and remapped to

rhesus macaque genome using liftOver with minMatch = 0.5 to find their homologous regions.

The H3K4me3 ChIP-Seq data was distributed to these region pairs based on the identified

peak regions. 8,000 regions were randomly sampled for parameter estimation. The four mod-

els were fitted separately using the MLE algorithm. Human-mouse homologous regions were

identified by remapping merged regions to mouse genome directly using the liftOver chain file

with single gaps up to 10bp. 10,000 region pairs were randomly sampled for parameter estima-

tion. The models were fitted using the EM algorithm.

For region classification, only human and rhesus/mouse H3K4me3 peaks were merged.

The merged regions were trimmed to no longer than 2,000bp, and remapped to rhesus

genome using liftOver with minMatch = 0.1. Remapped regions with less than 90% realigned

successfully were extended to the length of the original ones. The H3K4me3 ChIP-Seq data

was then distributed to these region pairs based on the identified peak regions.

Homologous region classification. For model comparison and homologous region clas-

sification, regions with H3K4me3 in either species were merged, trimmed, and remapped to

the other species to find their homologous regions. For each homologous pair, four likelihoods

were obtained using the four models. Each homologous pair was categorized to one model by

the largest likelihood.

Separating evolutionary impacts of sequence substitutions and indels. We leveraged

the four models to evaluate the relative impacts on interspecies epigenomic variations from

substitutions and that from indels. By integrating out substitution’s impacts from the probabil-

ity models, we obtained the overall impacts of indels, and vice versa. We introduce the binary

variable mut to indicate independence mut = 0 and dependence mut = 1 to substitutions, and

binary variable ind to indicate independence of dependence to indels. The probability of

observing a region pair given mut or ind can be expressed as a combination of likelihoods

yielded by different models:

PðA;Bjmut ¼ 0Þ ¼
P

indPðA;B; indjmut ¼ 0Þ ¼
P

indPðA;Bjind;mut ¼ 0ÞPðindÞ ð38Þ

PðA;Bjmut ¼ 0Þ ¼ aPNðA;BÞ þ ð1 � aÞPIðA;BÞ ð39Þ

The coefficient a was estimated using the frequency of regions within which epigenomic

changes are independent to indels. Similarly, we also have

PðA;Bjmut ¼ 1Þ ¼ aPMðA;BÞ þ ð1 � aÞPBðA;BÞ ð40Þ

PðA;Bjind ¼ 0Þ ¼ bPNðA;BÞ þ ð1 � bÞPMðA;BÞ ð41Þ

PðA;Bjind ¼ 1Þ ¼ bPIðA;BÞ þ ð1 � bÞPBðA;BÞ ð42Þ

The coefficient b was estimated using the frequency of regions within which epigenomic

changes are independent to substitutions.

We proposed two normalized likelihood ratios, rind and rmut to assess the effect of indels

and substitutions:

rind ¼
lðind ¼ 1Þ � lðind ¼ 0Þ

jlðind ¼ 1Þ þ lðind ¼ 0Þj
; rmut ¼

lðmut ¼ 1Þ � lðmut ¼ 0Þ

jlðmut ¼ 1Þ þ lðmut ¼ 0Þj
ð43Þ

where l(ind) = log P(A,B|ind), l(mut) = log P (A,B|mut). In Eq (43), the likelihood differ-

ences were normalized to the absolute values of the sums of the likelihoods in order to elimi-

nate the effects of various region lengths. rind and rmut represented the dependency of
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epigenomic changes on indels and substitutions. The extent of independence increased as the

ratios increased.

An alternative normalization approach was also evaluated, where the likelihood differences

were normalized to the region pair lengths, which was defined as the sum of both regions in a

pair:

rind ¼
lðind ¼ 1Þ � lðind ¼ 0Þ

sA þ sB
; rmut ¼

lðmut ¼ 1Þ � lðmut ¼ 0Þ

sA þ sB
ð44Þ

The two approaches were compared to assess if the results were sensitive to different nor-

malization methods.

Searching for species-specific transposon insertions. We selected local-sequence-inde-

pendent regions with the top 10%, 5% and 2% rind values and local-sequence-dependent

regions with the top 10%, 5% and 2% |rind| values for transposon analyses. We downloaded

RepeatMasker files for corresponding genome references as transposon annotations. Transpo-

sons that could be remapped to the other species were removed to exclude the ones shared by

the two species. For each region pair, transposons covered 50% of the region or with 50% cov-

ered by the region were kept. Transposons longer than 500bp within the two regions were

compared, and the ones with identical family, class and name were removed to keep species-

specific transposon insertions. Regions with species-specific transposon insertions were kept

and classified into three categories: conserved peak regions, transposon-induced peak regions

and transposon-disrupted peak regions. Families and classes of species-specific transposon

insertions were then summarized in each category. Here we designated gains and losses to

reflect the relationship between species-specific peak regions and insertions in the sequence. A

species-specific epigenomic peaks was designated as “epigenomic gain” if it overlapped with a

transposon insertion in the same species, or “epigenomic loss” if the transposon insertion

occurred in the other species.

Odds ratios were used to measure the enrichment levels of different transposon families

within transposon-induced and transposon-repressed peaks. For transposon-induced peaks,

region pairs with transposon-involved peaks were selected as the union set. For each transpo-

son family, a contingency table was built to reflect whether the particular type of transposon

overlapped with a transposon-induced peak. For transposon-disrupted peaks, region pairs

within which transposon insertions occurred at the opposite side of peaks were selected as the

union set, and the contingency table was built based on whether the specific type of transposon

insertion occurred together with a peak removal. Odds ratios were computed based on the

contingency tables, and the significance levels were assessed using 95% confidence intervals

and chi-square tests.

Motif analysis. Sequence motifs were identified within the LTR-ERV1 transposons found

in the transposon-induced peaks with rind> 0.01 (target transposons). All LTR transposons in

the ERV1 family longer than 500bp were used as background (background transposons). The

de novo motif discovery was performed using Homer [52] with default parameters.

Supporting information

S1 Fig. Parameter deviation values and log likelihood values vs. iteration. (A) The loga-

rithms of the ratios of estimated parameters (s,μ,κ) to the true values (s�,μ�,κ�) vs. iteration

number. All estimated parameters converged to the true values (logarithms of the ratio equaled

to zero) over iterations. (B) The logarithms of the ratios of true likelihood values to calculated

likelihood values vs. iteration number. This showed that all negative logarithms of calculated

likelihood decreased monotonically over iterations to a value close to the true, meaning that
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the optimization algorithm was working as intended.

(PDF)

S2 Fig. Percent error of estimated parameters. Each panel shows the percent error of param-

eters for one specific model. In one panel, every column represents 10 simulation tests under

one simulation condition (as shown in Table S1). The estimated parameter of which the per-

centage error is plotted is labeled below the column. The color of the column shows the true

value of the estimated parameter.

(PDF)

S3 Fig. Comparison of negative logarithms of likelihood with different models upon data-

sets based on different hypotheses. Each column corresponds to a simulation dataset. Models

corresponding to the hypotheses of the datasets showed highest logarithm of likelihood, show-

ing that those models fit the corresponding datasets best.

(PDF)

S4 Fig. An example of both types of sequence changes (substitution and indel) contributing

to the independency of epigenetic variation. Within the regions shown in the figure, substi-

tutions and indels both contributed to sequence changes between the two homologous

sequences, whereas the H3K4me3 peak remained conserved. Neither substitution nor indel

appeared to relate to interspecies variation of the peak.

(PDF)

S5 Fig. Scatterplot of all homologous regions showing the degree of dependence to indels

(x-axis) versus the degree of dependence to substitutions (y-axis). The two metrics rind and

rmut were derived following Eq (43), in which the likelihood differences were normalized by

region pair lengths.

(PDF)

S6 Fig. Counts of class and family of transposons among different types of peak regions

with the largest 5% and 2% |rind|. The number of class and family of transposons among dif-

ferent types of peaks (up to bottom): conserved peaks; transposon-induced peaks; transposon-

disrupted peaks.

(PDF)

S7 Fig. Relative levels of enrichment of each transposon type within transposon-induced

and transposon-disrupted peaks between human and rhesus. Log odds ratio > 0 or < 0 cor-

responds to an increased or decreased level of enrichment. Error bars represent 95% confi-

dence interval of log odds ratios. �: p-value of chi-square test< 0.05. ��: p-value of chi-square

test< 0.01. ���: p-value of chi-square test< 0.001.

(PDF)

S8 Fig. H3K4me3 ChIP-Seq intensities within the LINE-L1-disrupted H3K4me3 peaks

with L1 insertions masked. (A) Demonstration of a L1-disrupted H3K4me3 peak. Shaded

bands between two species indicate homologous sequences. Sequence with hatch pattern:

insertion of a LINE-L1 transposon in Species 1, which was excluded in the analyses. (B) Log

fold changes of H3K4me3 ChIP-Seq read counts between regions without L1 insertions and

their corresponding homologous regions. (C) Log H3K4me3 ChIP-Seq intensities within

regions without L1 insertions (left column) and flanking regions of the L1 insertions (right col-

umn).

(PDF)
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S9 Fig. An example of epigenetic variations with sequence changes between human and

rhesus. A pair of homologous regions exhibiting indel-associated H3K4me3 loss. The inser-

tion of a LINE-L1 transposon (a) in rhesus macaque between two ERVL-MaLR family repeats

(b, c) is associated with the loss of an H3K4me3 peak.

(PDF)

S10 Fig. Distance characteristics of regions classified into different models. Panels A, B, E

and F show distributions of distance between the region pairs and transcription start sites

(TSSs) of their nearest genes, while Panels C, D, G and H show distributions of distance

between the region pairs and transcription end sites (TESs) of their nearest genes. Panels A, C,

E and G represent the region pairs with local-sequence-independent H3K4me3 variations,

while Panels B, D, F and H represent the region pairs with local-sequence-dependent

H3K4me3 changes. Panels A through D depict the regions in human while Panels E through

H depict the regions in rhesus monkey.

(PDF)

S11 Fig. Classifications of human-mouse homologous genomic regions. (A) Proportions of

human-mouse homologous regions classified into each model. (B) Scatterplot of all homologous

regions showing the degree of dependence to indels (rind, x axis) versus the degree of dependence
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