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Objective: Human endogenous retroviruses (HERVs) make up 8% of the human
genome. HERVs are biologically active elements related to multiple diseases. HERV-K,
a subfamily of HERVs, has been associated with certain types of cancer and suggested as
an immunologic target in some tumors. The expression levels of HERV-K in breast cancer
(BCa) have been studied as biomarkers and immunologic therapeutic targets. However,
HERV-K has multiple copies in the human genome, and few studies determined the
transcriptional profile of HERV-K copies across the human genome for BCa.

Methods: Ninety-one HERV-K indexes with entire proviral sequences were used as the
reference database. Nine raw sequencing datasets with 243 BCa and 137 control
samples were mapped to this database by Salmon software. The differential proviral
expression across several groups was analyzed by DESeq2 software.

Results: First, the clustering of each dataset demonstrated that these 91 HERV-K
proviruses could well cluster the BCa and control samples when the normal controls
were normal cells or healthy donor tissues. Second, several common HERV-K proviruses
that are closely related with BCa risk were significantly differentially expressed (padj < 0.05
and absolute log2FC > 1.5) in the tissues and cell lines. Additionally, almost all the HERV-K
proviruses had higher expression in BCa tissue than in healthy donor tissue. Notably, we
first found the expression of 17p13.1 provirus that located with TP53 should regulate
TP53 expression in ER+ and HER2+ BCa.
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Conclusion: The expression profiling of these 91 HERV-K proviruses can be used as
biomarkers to distinguish individuals with BCa and healthy controls. Some proviruses,
especially 17p13.1, were strongly associated with BCa risk. The results suggest that
HERV-K expression profiles may be appropriate biomarkers and targets for BCa.
Keywords: human endogenous retrovirus-K, breast cancer, datasets, DESeq2, expression
BACKGROUND

Breast cancer (BCa) is the most common cancer diagnosed in
women and is one of the three most common cancers worldwide
(1, 2).The heterogeneity, complex etiology, diverse gene
mutations, and different clinical manifestations of BCa denote
that all kinds of internal and external risk factors may participate
in BCa pathogenesis. In addition to external and internal risk
factors, genetics and epigenetics can initiate signaling pathways
in BCa through the regulation of different genes (3–5).

Previous studies have shown that human endogenous
retrovirus (HERV) can stimulate tumor cell proliferation and
avoid apoptosis, which is one of the most important factors for
tumor progression (6). HERV complete proviruses and genes
have been inserted into the host genome, account for
approximately 6%–8% of the human genome, and have resided
in the human genome for millions of years (7, 8). HERVs are
divided into three groups based on exogenous sources: class I
(Gammaretrovirus and Epsilonretrovirus-like), class II
(Betaretrovirus-like), and class III (Spumaretrovirus-like) (9,
10). Most HERVs have become dysfunctional because of the
accumulation of multiple nonsense mutations, and some are still
active and may play a role in human disease. The most recent
proviruses to invade the human genome ARE the HERV-K
(HML-2) family (11–13). Approximately 90 HERV-K
proviruses and many smaller elements have been detected in
the human genome (14). HERV-K transactivation has been
observed in a variety of human cancers, such as leukemia (15),
lymphoma (16), BCa (17), and melanoma (18). For instance, the
expression of HERV-K envelope protein (Env) in BCa is higher
than that in nonmalignant BCa, and some anti-HERV-K-specific
monoclonal antibodies can effectively inhibit the growth of BCa
cells and induce their apoptosis in vitro and in vivo (17). In
addition, HERV-K has multiple copies in the human genome,
and some complete open reading frames can be found in HERV-
K proviruses. Although HERV-Ks often demonstrate important
roles on BCa, studies on the transcriptional activity of this
provirus across the human genome are still lacking.

Some investigations have addressed the association between
HERV-K mutation and BCa risk. Montesion et al. (19) identified
two unique binding sites in each 5′ long terminal repeats that
appear to be associated with the induction of promoter activity
for BCa. Mark et al. (20) found that Xq21.33 mutated by gene
conversion in a subset of African populations is associated with
human BCa. Many studies focused on the activity of HERV-K
genes and the function on BCa and found that HERV-K env, gag,
and pol activities are associated with tumor size, tumor stage, and
survival (21, 22). However, HERV-Ks are embedded in many
2

human genome loci and have different sequences and functions.
Therefore, determining the transcriptional profiles of these
HERV-Ks across the human genome is essential to clarify their
potential risk for BCa.
MATERIALS AND METHODS

RNA-seq Data of BCa and
Normal Samples
The RNA sequences of BCa and normal samples were
downloaded from the National Center for Biotechnology
Information (NCBI) Sequence Read Archive (SRA) database
before October 2021. Studies were screened according to the
following inclusion and exclusion criteria: (1) the datasets should
be samples of BCa and healthy controls; (2) for each dataset,
at least three samples were for cancer and controls, respectively;
(3) all datasets were raw data obtained by high-throughput
sequencing. Datasets treated with drugs or disturbed through
gene expression interference were removed. Nine datasets were
included in this study. The details of each dataset are shown in
Supplementary Table S1.

The datasets included in this study contain RNA sequencing
data from nine laboratories. The datasets comprised 199
clinically aggressive BCa samples, 11 normal breast controls
from healthy donors, and 109 control tissues adjacent to tumor
tissues. Among the 199 BCa samples, 72 ER+ Bca, 13 HER2+
BCa, and 59 triple-negative BCa (TNBC) can be abstracted from
the nine datasets. Additionally, 44 samples of BCa cells (MCF7,
ZR751, MB361, UACC812, SKBR3, AU565, HCC1954, MB231,
MB436, MB468, and HCC1937) and 8 normal control cells
(76NF2V and MCF10A) were downloaded from NCBI SRA.
The raw sequencing data are publicly available in the NCBI
biorepository (https://www.ncbi.nlm.nih.gov/). We downloaded
the data using the NCBI SRA Toolkit (Supplementary Table
S1). Trimmomatic3 (23) was used to remove adaptors and low-
quality reads. FastQC (v0.11.3) was then applied to confirm the
quality of the raw reads and trimmed low-quality reads of
each sample.

Expression Profiles of HERV-K Proviruses
Mapped From Raw RNA-seq Data
The identified HERV-K proviruses are not well annotated in public
databases. Therefore, we downloaded the FASTA sequences of the
91 HERV-K proviruses deposited in NCBI (GenBank ID
JN675007–JN675097) (24). The FASTA sequence files of the 91
HERV-K proviruses were matched with the GRCh38 cDNA
February 2022 | Volume 12 | Article 820883
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FASTA files downloaded from Ensembl to determine the
transcriptional profiles of these human genes. In this study, the
expression of HERV-K was analyzed by defining the entire proviral
sequence as a single transcript but not the individual potential
spliced transcripts. Salmon software (25), capable of fast and bias-
aware quantification of transcript expression, was used to create an
index database and a count matrix over the full human
transcriptome joining with the HERV-K file. Index building, for
example, was written as salmon index -t GRCh38_HERVK_trans.fa
-i trans_HERVK_index, and count matrix computing was
expressed as salmon quant -i./trans_HERVK_index/-l A -1
GSE96860_1P.fastq -2 GSE96860_2P.fastq -o./salmon/SRR/–
validate Mappings. Finally, we selected the read counts matrix
assigned to the 91 HERV-K loci.

Statistical Analysis of HERV-K Expression
Between Tumors and Controls
Transcript abundance reads were evaluated by the Salmon
package in R software (version 4.1.1) using tximport (26). In
view of the different sample sequencing depths, transcript
abundance was normalized for each dataset using the R
Bioconductor package, DESeq2 (27). This method allowed us
to confirm the normalization of HERV-K expression across the
proviral loci by sample. The differential expression of HERV-K
was defined by comparing BCa and healthy donors or adjacent
normal tissues or between BCa cells and normal breast cells.
Additionally, the different expression of HERV-K was further
analyzed between BCa subtypes (ER+, HERS+, and TNBC) and
normal controls. If the p-adjusted value (padj) was under 0.05 and
the absolute value of the log2 fold change (|log2FC|) was greater
than 1.5, then these HERV-K proviruses had significant
differential expression (24, 28).
RESULTS

Characteristics of HERV-K Expression
Signatures Across Different Studies
Among Nine Datasets
All raw sequencing data and clinic information downloaded
from the Gene Expression Omnibus and NCBI SRA were
mapped to the 91 HERV-K provirus indexes by Salmon
software. After the transcripts from the RNA-seq data were
quantified, dataset GSE111842 was removed because the
number of HERV-K reads in this dataset was almost zero.
DEseq2 software was used to normalize the remaining eight
datasets. DEseq2 was used to compare the digital expression
between BCas and controls in the eight datasets separately to
obtain the differentially expressed HERV-Ks in each dataset.
Except GSE183947, several different proviruses were detected
in each dataset (padj < 0.05 and |log2FC|). The detailed
information of the eight datasets and the number of
differentially expressed HERV-Ks identified from each dataset
are shown in Supplementary Table S2. The results indicated
that the total number of different proviruses was higher in BCa
Frontiers in Oncology | www.frontiersin.org 3
tissues than in normal tissues from healthy donors, but few
different proviruses were discovered between tumors and
adjacent normal tissues. Additionally, the proviruses indicated
opposite expression profiles under different control cells
(76NF2V and MCF10A).

Differential Expression Levels of HERV-Ks
in Tumor Cells Compared With Healthy
Control Cells
According to the cell definitions of Chappell et al. (29) and Subik
et al. (30), we selected three types of BCa cell lines (ER+, HER2+,
and TNBC). Therefore, datasets GSE96860, MCF7 (ER+),
AU565 (HER2+), MB231 (TNBC), and MB468 (TNBC) were
included as cancer cell lines, and MCF10A and 76NF2V were
selected as the normal healthy cell lines. Tumor cells (MB231 and
BRCA1−/−) and normal healthy cells (MCF10A) in dataset
GSE171957 were considered. After the normalized data were
analyzed by DEseq2 software, the general cluster of HERV-K
expression profiles across all samples was visualized in the
HERV-K expression heatmap (Supplementary Figures S1–S3).
The results showed that the expression of HERV-K proviruses
could well cluster cancer and control cells separately. This
finding indicates that the expression of these 91 HERV-Ks can
be used as potential markers for BCa cells.

The differential proviral expression between BCa and control
cells was calculated. Compared with normal 76NF2V cells in
dataset GSE96860, most of the differentially expressed proviruses
were upregulated in BCa cells. However, almost all remarkably
different proviral loci were downregulated compared with
normal MCF10A cells (Figure 1). This condition was also
reflected in dataset GSE171957. The main reason could be the
higher expression of HEVR-K proviruses in MCF10A cells than
in 76NF2V cells (Supplementary Figure S4 and Supplementary
Table S4). 1q22 was downregulated in AU565 and MCF7 cells
based on the comparison of both normal cells. 2q21.1 was
significantly expressed in all groups in the normal cell line,
76NF2V (padj < 0.05 and |log2FC| >1.5). Compared with
normal MCF10A cells, the provirus in locus 6q14.1 was
expressed much more in BCa cells than in control cells
(Figures 1B–E) with padj < 3.03 × 10−5 and |log2FC| >5 across
all conditions. Five proviruses (1p31.1, 1q22, 6p11.2, 6q14.1, and
14q11.2) were significantly differentially expressed in AU565
(HER2+), MB468 (TNBC), and MCF7 (ER+) cells (padj < 0.05
and |log2FC| >1.5). Locus 17p13.1 located in the TP53 gene had a
much higher expression in AU565 (HER2+) cells than in
76NF2V (log2FC = 7.46) and MCF10A cells (log2FC = 7.45).
These results indicate that the expression of HERV-K proviruses
has high heterogeneity in different cells.

Abnormal Overexpression of HERV-Ks
Discovered in BCa Tissues Compared
With Control Tissues From Healthy Donors
Six tissue datasets of raw sequencing data, namely, GSE45419,
GSE52194, GSE58135, GSE133998, GSE103001, and GSE183947,
were downloaded from the NCBI SRA database. In these datasets,
the controls of two datasets (GSE45419 and GSE52194) were
February 2022 | Volume 12 | Article 820883
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benign epithelial cells or normal human breast organoids from
healthy donors, and the other four datasets (GSE58135,
GSE133998, GSE103001, and GSE183947) were obtained from
adjacent breast tissues. The samples were categorized as ER+,
HER2+, and TNBC BCa if the tumor types could be mined from
the clinical information. After the clustering of the datasets for ER
+, HER2+, and TNBC BCa samples and controls, almost all
cancer samples and normal controls could be separated in two
datasets (GSE45419 and GSE52194). Most of the expressed
proviral loci were higher in BCa tissues compared with controls
as demonstrated by the heatmap of HERV-K expression profile
(Supplementary Figure S5). However, except for GSE183947, the
clustering of normalized data showed that the BCa and control
samples were mixed together in all datasets if the control samples
used were normal tissues adjacent to cancer tissues
(Supplementary Figures S6–S9). Differentially expressed
proviruses between the BCa tissues and control samples from
each dataset were analyzed. Among all datasets with tissue
sequencing, the normal control samples from GSE45419 and
GSE52194 were healthy donors without BCa, and the controls
from other datasets were adjacent normal tissue. The analysis
Frontiers in Oncology | www.frontiersin.org 4
results showed that many different abnormal HERV-Ks were
found in the two datasets when the control samples were from
normal healthy donors, but few different HERV-Ks were found in
the other five datasets (Figure 2). Almost all the remarkably
different proviruses in two datasets (GSE45419 and GSE52194)
had higher expression in the BCa samples than the control
samples. 19q13.12b had a much higher expression in the ER+,
HER2+, and TNBC groups (padj < 0.05, |log2FC| >1.5) in datasets
GSE45419 and GSE52194. Locus 1q23.3 was found to be the
common abnormal locus with abnormally higher HERVK
expression in the TNBC and HER2+ groups of two datasets
(GSE45419 and GSE52194). 17p13.1 was expressed higher in the
ER+ and HER2+ groups in dataset GSE45419, and 3q12.3 was
remarkably overexpressed in ER+ BCa tissue.

A further analysis of the composition of the sample in
GSE183947 revealed that the breast tumor samples in this
dataset included 15 metastatic or 15 unmetastatic samples.
These results indicate that HERV-Ks are expressed in BCa
tissues and adjacent control samples, but if the tumor tissues
are in the progress of metastasis, HERV-Ks will have different
expression levels (Supplementary Figure S10).
FIGURE 1 | Statistical results of BCa and normal control cells. The row is the loci of HERV-K proviruses, and the column is the cell comparison.
February 2022 | Volume 12 | Article 820883
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FIGURE 2 | Statistical comparison of several BCa cell lines to normal controls from healthy donors. The row is the loci of HERV-K proviruses, and the column is the
comparison of tumor subtypes to normal tissue.
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Expression of 17p13.1 Provirus Was
Closely Related to the Expression of
Tumor Protein p53
17p13.1 located in tumor protein p53 (TP53) had a higher
expression in the ER+ and HER2+ BCa samples than in normal
cells and tissues. TP53 is a very important tumor suppressor
protein. TP53 expression across several groups was analyzed to
clarify the relation between 17p13.1 and TP53. Contrary to the
expression of 17p13.1 provirus, the expression of TP53 was lower
in AU565 than in MCF10A (p = 0.025) and 76NF2V (p < 0.001).
17p13.1 provirus in AU565 was expressed in each sample, but the
control MCF10A had zero expression in all samples. In dataset
GSE45419, a lower expression was found in the ER+ (p = 0.001)
and HER2+ (0.012) normal samples. Compared with the controls
in dataset GSE45419, when the 17p13.1 provirus was expressed,
TP53 had a low expression in the TNBC samples (Supplementary
Table S3). Additionally, in dataset GSE52194, although no
remarkable overexpression was found in the HER2+ BCa
samples, the log2FC was 1.838. TP53 expression was lower in the
HER2+ BCa samples than the normal samples (log2FC = −0.957)
(Figure 3). The results indicate that the expression of 17p13.1
provirus is closely related to TP53 expression in the ER+, HER2+,
and TNBC BCa samples.
DISCUSSION

HERV-K expression is frequently inhibited in normal cells from
healthy adults, but their mRNA expression increases in tumor
cells (31). However, the expression of multiple HERV-K copies
Frontiers in Oncology | www.frontiersin.org 6
in the human genome for BCa lacks a clear description. Previous
reports focused on the relation of total HERVK expression with
BCa but not on the whole-genome details of the loci. In this
study, we mined the literature, downloaded raw sequencing data
from the NCBI SRA database, and used Salmon software to map
the 91 HERV-K indexes. The healthy cell lines and control breast
tissues from healthy donors were compared, and the results
showed that the 91 HERV-Ks could distinguish cancer and
control samples. However, if the controls were from adjacent
normal tissues, the tumor and control samples cannot be
clustered clearly according the expression of the 91 HERV-Ks.
Second, two controls (normal samples from healthy donors and
para-carcinoma tissue) were tested to analyze the different
expressing provirus between tumor and control tissues. The
results showed that several HERV-K proviruses, such as
17p13.1, 19q13.12b, and 1q23.3, had remarkably different
expression levels between BCa and controls across several
datasets. Third, the expression of HERV-K proviruses showed
high heterogeneity in different cells and cancer types.
Additionally, most of the remarkably expressing HERV-Ks
were increased in BCa compared with normal tissue controls.

HERVs are a substantial part of the human genome, but most
of them remain transcriptionally silent. In this study, 91 HERV-
Ks, whose entire proviral sequence was defined as a single
transcript, were analyzed. According to all the heatmap
clustering of all the datasets, except the controls from para-
carcinoma tissues, the 91 HERV-Ks can well split cancer and
control samples. The expression profiles of the 91 HERV-K
proviruses can be used as biomarkers to cluster BCa
and healthy control samples. In BCa, HERV-K expression
A B

C D

FIGURE 3 | Box plot of TP53 with significantly different expression in two datasets. (A) TP53 expression in MCF10A and AU565 (HER2+) cells. (B) TP53 expression in
76NF2V and AU565 (HER2+) cells. (C) TP53 expression in control and ER+ BCa tissues. (D) TP53 expression in control and HERS2+ BCa. *P < 0.05; **P < 0.01; ***P
< 0.001.
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is about 26% in tumor tissues and 18% in adjacent normal breast
tissues (32). Many investigations discovered that HERV-K
expression in the blood is elevated at the early stage of BCa
and further increases in patients who are at risk of developing a
metastatic disease (33). Additionally, HERV-K can be a novel
target for BCa immunotherapy (17, 34, 35). Kaplan et al. (20)
showed the possible increased prevalence of Xq21.33 provirus in
post-menopausal Nigerian women with BCa. In our studies, we
also discovered that the expressing profile of 91 HERV-K
proviruses can separate cancer samples between metastasis and
adjacent normal breast tissues. Golan et al. (32) also found a
remarkable correlation between HERV-K RT expression and the
poor prognosis of disease-free patients who continued to develop
the disease. Saini et al. (36) indicated that several genes in the
HERV-K family, including env, gag, and np9 mRNA expression
levels, are increased in BCa cells and can be used as biomarkers
for early BCa diagnosis. The expression of HERV-K env gene was
related to tumor size, tumor stage, and lymph node metastasis.
Moreover, compared with those with moderate or low HERV-K
env expression, the population with high HERV-K env
expression has increased overall survival (37). Additionally,
HERV-K gag mRNA also has a higher expression in patients
with metastatic BCa than those with benign tumors (33). Saini
et al. (36) uncovered the T-cell recognition of HERVs in myeloid
malignancies and indicated that HERVs are potential targets
for immunotherapy.

In about half of all human cancers, the tumor suppressor
gene, TP53, located at 17p13.1, is lost or mutated. In our study,
the expression of a particular provirus was found to be
remarkably higher in BCa than in normal controls. The
functionality of p53 on BCa has been confirmed by many
studies. The loss of p53 protein function influences the cell
cycle checkpoint control and apoptosis, as well as the
regulation of other important stages of metastatic progressions,
such as cell migration and tissue invasion (38). Primary BCa
tumors with loss of TP53 copies have a poorer prognosis and a
higher chance of metastasis (38). In BCa, loss of heterozygosity
on 17p is a frequent event, and is the p53 gene on 17p13.1 is a
likely target (39). Sequence aligning by BLAST showd that TP53
is mapped to 1,168,421–1,187,490 bp in 17p13.1, and HERV-K
(JN675075.1) is located in 1,556,337–1,563,901 bp. In our study,
we found that the expression of 17p13.1 provirus was closely
related with TP53 expression in the ER+, HER2+, and TNBC
BCa cells. Runnebaum et al. (40) found that p53 transdominantly
suppresses the tumor formation of human BCa cells mediated by
retroviral bulk infection without marker gene selection.
However, the mechanism of 17p13.1 provirus on TP53
expression needs to be verified.

In this study, except for 17p13.1, multiple other loci of
HERV-K proviruses were related to BCa. 11p15.4 was
upregulated in all cancer types in dataset GSE45419 and
AU565 cell lines. Montesion et al. (19) indicated that 11p15.4
provirus displays increased activity in almost all human BCa cell
lines. Based on the sequences of 2,504 individuals from the 1,000
Genomes Project, they also discovered that the active form of the
11p15.4 site is polymorphic within the human population. León
et al. (41) detected that the BCa-associated gene 3 (BCA3,
Frontiers in Oncology | www.frontiersin.org 7
AKIP1) is located on 11p15.4. This gene can regulate the effect
of the cAMP-dependent protein kinase signaling pathway on the
NF-kappa-B activation cascade (42). In our study, 3q12.3 was
remarkably overexpressed in ER+ BCa tissue and cells. This
result was similar to the results of Montesion et al. (19).

BCa is a heterogeneous disease with different characteristics
in distinct histological, molecular, and clinical phenotypes. In
our study, the expression of HERV-K proviruses had high
heterogeneity in different cells and cancer types. Johanning
et al. (43) reported that HERV-K env expression depends on
the BCa subtype; it was detected in normal breast tissues and was
remarkably upregulated in basal BCa subtypes.

However, the present investigation only focused on the
expression of 91 HERV-K proviruses from the entire proviral
sequences of BCa and control samples. In addition, the HERV-K
genes such as env and gag are important targets that affect BCa
progression. Therefore, future investigation is needed to explore
the gene function of particular HERV-K proviruses across the
whole genome and provide targets for immunotherapy. Lastly,
the expression of HERV-K proviruses had high heterogeneity in
different cells and cancer types. More samples are needed to
further verify the correlation between HERV-K expression
and BCa.
CONCLUSION

The current investigations provide many evidences that the
expression profiles of HEVR-K proviruses can be a useful
biomarker for BCa. Several HERV-K proviruses are
overexpressed in BCa as compared with normal breast
controls. The large difference in the expression profiles of
HERV-K proviruses indicated that HERV-K expression could
be an intriguing target of a tumor-specific antigen for BCa.
Future explorations are needed to investigate the differential
expression ofHERV-K genes to use HERV-K expression as a tool
for disease stratification and immunotherapy. The expression of
17p13.1 provirus could regulate TP53 expression and BCa
progression, especially ER+ and HER2+ BCa.
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Supplementary Figure S1 | Heatmap of tumor and control 76NF2V cells in
dataset GSE96860. In all the legends in each cluster, N denotes normal controls,
and C denotes tumor samples. (A) Comparison of AU565 and 76NF2V; (B)
comparison of MB468 and 76NF2V; (C) comparison of MCF7 and 76NF2V; (D)
comparison of MDAMB231 and 76NF2V.

Supplementary Figure S2 | Heatmap of tumor and control MCF10A cells in
dataset GSE96860. In each cluster, N denotes the normal controls, and C denotes
the tumor samples. (A) Comparison of AU565 and MCF10A; (B) comparison of
MB468 and MCF10A; (C) comparison of MCF7 and MCF10A; (D) comparison of
MDAMB231 and MCF10A.

Supplementary Figure S3 | Heatmap of tumor and control cells in dataset
GSE171957. In each cluster, N denotes the normal controls, and C denotes the
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tumor samples. (A) Comparison of BRCA1 wild-type ductal primary breast tumor
and MCF10A; (B) comparison of TNBC and MCF10A tissues.

Supplementary Figure S4 | Heatmap of 76NF2V and MCF10A cells in dataset
GSE96860. MCF denotes MCF10A cells, and X76NF2V is 76NF2V cells.

Supplementary Figure S5 | Heatmap of tumor tissue and normal control tissue
from healthy donors. (A) ER+ BCa versus control tissue in dataset GSE45419; (B)
HER2+ BCa versus control tissue in dataset GSE45419; (C) TNBC versus control
tissue in dataset GSE45419; (D) HER2+ BCa versus control tissue in dataset
GSE52194; E: TNBC versus control tissue in dataset GSE52194. In all legends in
each cluster, N denotes normal tissue controls, and C denotes tumor tissues.

Supplementary Figure S6 | Heatmap of tumor tissue (ER+) and adjacent normal
tissue in dataset GSE58135. In all legends in each cluster, N denotes adjacent
normal tissues, and C denotes tumor samples.

Supplementary Figure S7 | Heatmap of tumor tissue (TNBC) and the adjacent
normal tissue in dataset GSE58135. In all legends in each cluster, N denotes the
adjacent normal tissues, and C denotes tumor samples.

Supplementary Figure S8 | Heatmap of tumor tissue and adjacent normal tissue
in dataset GSE103001. In the legends in each cluster, N denotes adjacent normal
tissues, and C denotes tumor samples.

Supplementary Figure S9 | Heatmap of tumor tissue and adjacent normal tissue
in datasets GSE133998 and GSE183947. In all legends in each cluster, N denotes
adjacent normal tissue, and C denotes tumor tissue.

Supplementary Figure S10 | Heatmap of tumor tissue and adjacent normal
tissue featuring metastatis in dataset GSE183947. TumorM indicates the tumor
tissue with metastasis, TumorP indicates the tumor tissue without metastasis,
NormalM indicates adjacent normal tissue with metastasis, and NormalP indicates
adjacent normal tissue without metastasis.
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