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Abstract
Mast cells (MCs) are granular cells of the innate immune systemwhich develop fromCD34+/CD117+ progenitors and play a role
in orchestrating adaptive immune responses. They have a well-known role in allergic reactions following immunoglobulin (Ig)E-
mediated activation of the cell-surface expressed IgE high-affinity receptor (FcεRI). MCs can also respond to various other
stimuli due to the expression of a variety of receptors including toll-like receptors (TLRs), immunoglobulin (IgG) receptors
(FcγR), complement receptors such as C5a (CD88) expressed by skin MCs, neuropeptides receptors including nerve growth
factor receptor, (NGFR), cytokines receptors such as (IL)-1R and IL-3R, and chemokines receptors including CCR-1 and CCR-3.
MCs release three groups of mediators upon degranulation differentiated according to their chemical composition, storage, and
time to release. These include preformed mediators (mainly histamine, tryptase, and chymase), de novo synthesized mediators
such as prostaglandin (PG)D2, leukotriene (LT)B4 and LTD4, and cytokines including IL-1β, IL-3, tumor necrosis factor
(TNF)α, and transforming growth factor(TGF)-β. Emerging evidence indicates a role for IgE-independent MC activation in
the late-stage asthmatic response as well as in non-allergic airway diseases including chronic obstructive pulmonary disease
(COPD), idiopathic pulmonary fibrosis (IPF), and lung cancer. MC infiltration/activation has been reported in some, but not all,
studies of lung cancer. MC-derived TNF-α possesses tumor-suppressive activity while IL-1β supports tumor progression and
metastasis. In IPF lungs, an increase in density of tryptase- and chymase-positive MCs (MCTC) and overexpression of TGF-β
support the fibrosis progression. MC-derived chymase activates latent TGF-β that induces the differentiation of fibroblasts to
matrix-producing myofibroblasts. In summary, increasing evidence highlights a critical role of MCs in non-allergic diseases that
may indicate new approaches for therapy.
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Abbreviations
ASM Airway smooth muscle
BAL Bronchoalveolar lavage
BHT Butylated hydroxytoluene

CGRP Calcitonin gene related peptide
COPD Chronic obstructive pulmonary disease
CRF Corticotropin-releasing factor (CRF)
CRFR1 Corticotropin-releasing factor receptor subtype 1
DAG Diacylglycerol
FEV1 Forced expiratory volume in 1 s
FGF Fibroblast growth factor
FGF-2 Fibroblast growth factor 2
Foxf1 Forkhead Box protein F1
FVC Forced vital capacity
GM-CSF Granulocyte-macrophage

colony-stimulating factor
IP3 Inositol 1,4,5-triphosphate
IPF Idiopathic pulmonary fibrosis
ITAM Immunoreceptor tyrosine-based activation motif
LAT Linker for activation of T cells
LT Leukotriene
MCL Mast cell leukemia
MCp Mast cell progenitor
MIP-1α Macrophage inflammatory protein 1α
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NGF Nerve growth factor
NLR Nod-like receptors
PDGF Platelet-derived growth factor
PG Prostaglandin
PTKs Protein tyrosine kinases
RANTES Regulated upon activation,

normal T cell expressed, and secreted
RIG-I Retinoic acid-inducible gene-I
RLR RIG-I-like Receptor
ROS Reactive oxygen species
SCF Stem cell factor
SM Systemic mastocytosis
STIM1 Calcium sensor stromal interaction molecule 1
TGFβ Transforming growth factor-β
TNF-α Tumor necrosis factor-α
TRAPs Transmembrane adaptor proteins
Trka Tropomyosin receptor kinase
TSLP Thymic stromal lymphopoietin
VEGF Vascular endothelial growth factor

Introduction

Mast cells (MCs) are innate immune cells with cytoplasmic
granules that are developed from CD34 and CD117 express-
ing hematopoietic MC progenitor cells (MCps). A well-
organized chemokine and integrin-based trafficking system
contributes to the migration of MCps from bone marrow
where they originate, through the circulation and finally to
the target tissues [1]. Expression of integrins, mainly α4β7
and α4β1, on MCps helps them traffic from the circulation
into the lung by binding to vascular cell adhesion molecule-1
(VCAM-1) expressed on the endothelium [2]. MCps com-
plete their final stage of differentiation to functional MCs
under the influence of growth factors particularly stem cell
factor (SCF) [3]. In addition to SCF, there are other cytokines
that contribute to the growth and differentiation of MCps to
functional mature MCs including transforming growth factor
(TGF)β, nerve growth factor (NGF), interleukin (IL)-3, IL-
4, IL-9, and IL-33 [2]. Crosslinking of the high-affinity im-
munoglobulin (Ig)E receptor (FcεRI) by allergen bounded
IgE acts as a stimulus for triggers the signaling pathways
which result in degranulation of MCs [4] (Fig. 1). Upon
degranulation, MCs release a broad spectrum of mediators
which are classified in three groups including pre-formed
mediators (including histamine, tryptase, and chymase), de
novo mediators including prostaglandin (PG)D2, leukotriene
(LT)B4, and LTD4, and also a long list of cytokines and
growth factors such as tumor necrosis factor (TNF)-α,
TGF-β, vascular endothelial growth factor (VEGF),
granulocyte-macrophage colony-stimulating factor (GM-
CSF), IL-10, IL-8, IL-5, IL-3, and IL-1 [5, 6]. Two major
subsets of MCs have been described in humans. These differ

according to their secretory granule (SG) protease content
and anatomical distribution: tryptase- and chymase-positive
MCs (MCTC) which can be mainly found in connective
tissues and their SGs contain tryptase, chymase, carboxypep-
tidase, and cathepsin and a tryptase-positive MC (MCT) sub-
set which are defined by expression of tryptase and absence
of chymase and their distribution in the lung and gut [7].
Interestingly, in lung tissues, the MCT subtype releases IL-
5 and IL-6, whereas the MCTC subtype expresses IL-4 and
IL-13 [8]. Beyond their classic role in IgE-dependent allergic
disorders of the lung, MCs may play a role in IgE-
independent disorders and contribute to tissue remodeling
and reshaping of the lung tumor microenvironment. This
review describes MC stimulation and biology and the mech-
anisms underlying SG release and then describes the evi-
dence for an IgE-independent role of MCs in the chronic
lung diseases asthma, chronic obstructive pulmonary disease
(COPD), idiopathic pulmonary fibrosis (IPF), and lung
cancer.

Molecular Mechanism of IgE/FcεRI-Mediated
Activation of MCs

The expression of tetrameric αβγ2 complex of FcεRI by
tissue-resident MCs and circulatory basophils enables them
to respond to IgE. Physical interaction between IgE and
FcεRI is mediated by the α subunit [9]. The β- and γ-chains
possess an immunoreceptor tyrosine-based activation motif
(ITAM) in their cytoplasmic domains [9] and phosphorylation
of these ITAMs by the Src-family protein tyrosine kinase Lyn
occurs after IgE/FcεRI engagement. ITAM-bound Syk and
Fyn can enhance Lyn-mediated phosphorylation and indeed
several protein tyrosine kinases (PTKs) promote phosphory-
lation and activation of downstream signaling molecules in-
cluding transmembrane adaptor proteins (TRAPs) and linker
for activation of T cells (LAT). Phosphorylated TRAPs act as
membrane docking points for SH2 domains containing pro-
teins such as Grb2 and the subsequent recruitment and activa-
tion of phospholipase Cγ (PLCγ). PLCγ produces several
second messengers including diacylglycerol” (DAG) and ino-
sitol 1,4,5-triphosphate (IP3) following modulation of phos-
phatidylinositol 4,5-biphosphate” (PIP2). IP3, which induces
Ca2+ efflux from the endoplasmic reticulum, together with
the calcium sensor stromal interaction molecule 1 (STIM1)/
ORAI1, results in enhanced intracellular Ca2+ levels, MC
degranulation, and the release of a wide spectrum ofmediators
into the surrounding microenvironment [10–13] (Fig. 2). The
importance of IgE/FcεRI signaling in the activation and de-
granulation of MCs has led to several strategies for the phar-
maceutical control of MC activation which are summarized in
Table 1.
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Fig. 1 Tissue-resident MCs are
the terminally differentiated cells
from CD34+/CD117+ MC
progenitors (MCps) that originate
from the bone marrow. MCps af-
ter being released into the circu-
lation reach their target tissues
according to a controlled traffick-
ing pattern mostly based on
ligand-integrin interactions enter
the tissues. MC expression of
α4β7 and α4β1 integrins by
MCps with vascular cell adhesion
molecule (VCAM)-1 expressed
by the endothelium of lung tis-
sues, for example, supports their
trafficking into the lungs. MCp
differentiation to functional and
mature MCs depends on several
growth factors including stem cell
factor (SCF), interleukin (IL)-3,
IL-4, IL-9, IL-33, nerve growth
factor (NGF), and transforming
growth factor (TGF)-β
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MC Expression and Degranulation by TLRs
and Lectin Receptors

Although IgE/FcεRI signaling is the main pathway through
which MCs become activated and degranulate MCs express
other receptors that can induce cell activation [14], these re-
ceptors make MCs highly effective responders to different
endogenous and exogenous airborne factors. Early mRNA
studies showed that human and mice MCs express several
toll-like receptors (TLRs) including TLR1, TLR-2, TLR-4,
and TLR-6 through which they respond to lipopolysaccharide
(LPS) and peptidoglycan to produce LTC4, TNF-α, IL-1β,
IL5, IL-13, and GM-CSF [15]. Indeed, the expression of
TLRs enables MCs to act as sentinel and responding cells
when they encounter environmental pathogens. Activation
of TLR-4 and TLR-6 on MCs results in the upregulation of
cytokines mainly GM-CSF, IL-8, and IL-10. Additionally, the
engagement of TLR-8 by single strand-RNA induces the re-
lease of IL-8, MIP-1α, and TNF-α [16]. MCs also express C-
type lectin receptors including the type II transmembrane β-
glucan receptor Dectin-1 which is involved in microbial de-
fense. Exposure of MCs to yeast C. albicans results in MC
degranulation and the release of reactive oxygen species
(ROS) and cytokines including CCL3, CCL4, IL-6, IL-10,
and TNF-α. Blockade of Dectin-1, but not of TLR-2, con-
firmed the key role of Dectin-1 in the release of TNFα in
response to C. albicans [17]. Engagement and activation of
MC-expressed scavenger receptor CD36 and of TLR-4 are
implicated in the microbial defense against Coxiella burnetii
by MCs. This leads to the release of actin filaments
(cytonemes) bound to cathelicidin and of neutrophil elastase
which enables the capture and elimination ofCoxiella burnetii
[18] (Fig. 3).

MC Activation by Complement Receptors
and Other GPCRs

MCs express several complement receptors and receptors to
anaphylatoxins including C3aR and C5aR (CD88) [19, 20].
Activation of MCs with C3a, for example, induces the release
ofMCP-1/CCL2 and RANTES/CCL5 in LAD2 cells [20]. IL-
37 possesses antimicrobial properties and promotes physio-
logic processes including inflammation and angiogenesis.
IL-37-mediated MC activation occurs through the G protein-
coupled receptor MrgX2 in human MCs and is considered a
promising new treatment in MC-driven disorders [21].
Interestingly, MC-derived heparin may inactivate IL-37 by
homodimerization with macrophage-derived IL-37 in re-
sponse to TLR activation [22, 23]. Corticotropin-releasing
factor receptor subtype 1 (CRFR1) expressed on MCs inter-
acts with its ligand corticotropin-releasing factor (CRF) to
enhance MC degranulation [24]. Endogenous factors include

several cytokines and neuropeptides which stimulate MC
degranulation when they engage with the corresponding
receptors on MCs (Table 2). The proximity of nerves and
MCs within the perivascular space in organs such as the
heart may lead to activation of MCs by factors such as
substance P released by neurons. Levick et al. reported
that substance P activates cardiac MCs via cell surface
neurokinin-1 receptors to induce the release of histamine
[25]. Similarly, mucosal MCs and nerve fibers containing
calcitonin gene-related peptide (CGRP) are in close prox-
imity within the colon of mice with food allergy (FA).
Kim and colleagues studied the effects of CGRP on MCs
using a CGRP-receptor antagonist, BIBN4096BS and
concluded that blockade of the CGRP/CGRP receptor
(CGRPR) interaction alleviates allergic symptoms [26].
Yang et al. described a mastocytosis-like disease in mice
following MC stimulation by NGF and subsequent bind-
ing to its receptor tropomyosin receptor kinase A (TrkA)
[27].

Control of Secretory Granule Release by MC
Receptors

As described above, human MCs are heterogeneous and are
often characterized by the neutral protease content within
granules, e.g., MCTC skin mast cells and MCT lung mast
cells [28]. MC granule subpopulations can be further defined
at the ultrastructural and protein content level. Thus, type I
granules contain MHC class II, β-hexosaminidase,
Lysosomal-associated membrane protein (LAMP)-1 and -2,
and the mannose 6 phosphate receptor (M6PR); type II gran-
ules contain these mediators plus serotonin and type III gran-
ules contain β-hexosaminidase and serotonin but not MHC
class II [29]. The triggering of SG release by various mast cell

Fig. 2 Mast cells (MCs) respond to a wide range of pathologic and
environmental stimuli owing to the expression of toll-like receptors
(TLRs), NOD-like receptors (NLRs), and RIG-1-like receptors (RLRs).
TLR-1, -2, -4, -5, and -6 respond to extracellular ligands mainly cell wall
components of bacteria. Moreover, expression of endosomal TLRs in-
cluding TLR-3, -7, -8, and -9 by MCs enables them to respond to intra-
cellular pathogens including viruses. The expression of receptors for cy-
tokines forms a complicated cytokine network around MCs and plays an
important role inMC-immune cells cell-talk. Additionally, MCs express a
variety of CCR and CXCR chemokine receptors by which respond to
chemokines. IgE/FcεRI signaling has the central role in the degranulation
of MCs in response to the allergen. Crosslinking of FcεRI by allergen
bounded IgE triggers the signaling pathway and engaging intracellular
signalingmolecules including Lyn and SYK.Activation of phospholipase
Cγ (PLCγ) results in the formation of second messengers including “di-
acylglycerol” (DAG) and inositol 1,4,5-triphosphate (IP3) and the influx
of calcium that induces the degranulation. The consequence of IgE/FcεRI
signaling is releasing various mediators including preformed, de novo
synthesized, and cytokines

b
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stimuli is complex and tightly regulated [30]. In its most sim-
plistic form, the fusion of the SG membrane with the cell
plasma membrane can allow SG contents to be released into
the extracellular space. Besides, three other distinct types of
SG degranulation have been described: (i) “Kiss-and-run”
exocytosis allows partial release of the SG cargo through the
formation of a transient fusion pore; (ii) “Piecemeal exocyto-
sis” using vesicles to shuttle SG stored mediators to the plas-
ma membrane; and (iii) “compound exocytosis” or “anaphy-
lactic degranulation” wherein fused SG-SG multi-granular
structures merge with the plasma membrane [30]. These dis-
tinct types of SG content release can elicit the rapid and com-
plete release of contents (compound exocytosis) while piece-
meal degranulation allows the precise release of specific SG
components. Different MC triggers or stimuli allow these dis-
tinct SG release processes to occur. For example, the degran-
ulation responses triggered byMas-related gene x2 (MRGX2)
and FceRI differ in the quality and degree of mediator release
[31] with reduced cytokine (TNF, IL-13, VEGF, and MCP-1)
and eicosanoid (PGE2 and PGD2) release being less follow-
ing MRGX2 stimulation despite comparable levels of MC
degranulation. Thus, the specificity and extent of MC degran-
ulation are stimulus-dependent and regulated by the plethora
of MC cell surface receptors. Mechanistically, MC SG exocy-
tosis requires SNAREs [soluble NSF (N-ethylmaleimide-sen-
sitive factor) attachment protein receptors] and SM (Sec1-
Munc18) proteins [29]. Multiple sets of SNARE-SM com-
plexes exist which differentially regulate both constitutive
and regulated SG membrane fusion and mediator release.
Support for stimulus/SNARE specificity derives from the in-
hibition of specific SNARE proteins selectivity suppressed the
release of CXCL8, CCL2, and CCL3 from IgE/FcεRI-
stimulated MCs [32]. This suggests that different MC stimuli
may exploit distinct exocytic fusion machinery to induce the
selective release of mediators from SGs although this needs to
be confirmed [29].

The Role of MCs in Non-allergic Airway
Disease

Role of MCs in Non-allergic Asthma

MCs are the main innate immune cells orchestrating allergic
asthma when allergen-specific IgE sensitizes MCs by binding
to FcεRI. Further exposure to the same allergen evokes MC
degranulation of MCs. However, IgE-independent interac-
tions at both cellular and molecular levels can affect the pro-
gression and maintenance of inflammation and allergy in the
lungs. MC activation during allergic asthma may also result
from factors released by other cell types in an IgE-
independent manner. In this regard, allergen exposure induces
the release of IL-25, IL-33, and thymic stromal lymphopoietin Ta
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(TSLP) from the airway epithelium. IL-33, acting through
ST2 on the MC, triggers the MyD88 signaling pathway
resulting in the activation of the mitogen-activated protein
(MAP) kinase and nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) pathways. These pathways con-
sequently result in MC activation, proliferation, and the re-
lease of LTs [33]. In chronic asthma, MCs may contribute to
airway remodeling through the release of factors including
tryptase which induces the production of type I collagen by
fibroblasts. Moreover, tryptase and histamine together pro-
mote the proliferation of airway smooth muscle (ASM) cells

[34]. Interestingly, tryptase released from MCs may also acti-
vate the pro-metalloproteinase (MMP)-1 produced by ASM to
form active MMP1 [35]. The levels of MMP1 in individuals
with asthma correlate with bronchial hyperresponsiveness
(BHR) and exacerbation of disease [35].

Role of MCs in the Pathology of COPD

The umbrella term Chronic Obstructive Pulmonary Disease
(COPD) is used to describe a set of symptoms mainly chronic
bronchitis and airway obstruction, remodeling of the small

Fig. 3 Cytokines, exogenous
chemical components, and a
variety of microbes can activate
MCs. The mediator releasing
pattern depends on engaged
receptors including TLRs,
complement receptors, and
cytokine receptors. MCs respond
to a variety of microbes by
expressing surface receptors to
recognize the pathogens, i.e.,
MCs respond to the presence of
Coxiella burnetii by CD36 and
TLR4 and release neutrophil
elastase/cathelicidin attached to
actin filaments around the
Coxiella burnetii to confine the
infection
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airways, and emphysema, which results in an irreversible de-
cline in the function of the pulmonary system [36]. Infiltration
of a variety of inflammatory cell types including neutrophils
and macrophages into the small airways is a common finding
in COPD [36]. Ekberg-Jansson et al. investigated the distribu-
tion ofMCs in different bronchial compartments of 29 asymp-
tomatic smokers and 16 healthy non-smokers. The smoking
group had higher numbers of infiltrating MCs in the epitheli-
um, lamina propria, and smooth muscle compared with the
non-smoking group. Besides, the intensity of structural and
histologic changes such as epithelial integrity and thickness
of the laminin layer was correlated with MC density [37].
Furthermore, individuals with COPD have a lower density
of MCT in the subepithelial area of the central airways com-
paringwith healthy controls and the density ofMCTcorrelates
positively with the forced expiratory volume in 1 s (FEV1)/
forced vital capacity (FVC) ratio [38]. In contrast, Kosanovic
and colleagues reported that chymase-positive MCs increased
particularly in the perivascular regions of the lungs and that
their number was positively correlated with better lung func-
tion in individuals with COPD [39]. In a rat model of COPD
induced by nitrogen dioxide inhalation, inhibition of MCs by
sodium cromoglycate prevented nerve-mediated bronchial
smooth muscle hyperactivity [40]. Mechanistically, this re-
quired the A2B subtype of adenosine receptor onMCs, which
induced histamine release and smooth muscle contraction
[40]. Finally, MCs may be involved in the functional effects
of the enhanced IL-17A expression reported in COPD. IL-
17A, acting through IL-17 receptors (IL-17RA and IL-
17RC) on MCs, induces the release of the proangiogenic fac-
tors fibroblast growth factor (FGF)-2 and VEGF to mediate
vascular remodeling [41].

Distribution of MCs and their Function in Idiopathic
Pulmonary Fibrosis

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fi-
brotic lung disease with a poorly understood etiology [42].
Induction of myofibroblast apoptosis usually occurs following
the completion of scarring and contributes to the control of the
degree of fibrosis. However, myofibroblasts continue to produce

excessive amounts of matrix components during aberrant wound
healing processes [43]. The number of infiltrating MCs is in-
creased in IPF lungs than in normal healthy lungs and infiltrating
MC numbers correlates with the degree of fibrosis [44].
Mechanistically, this may involve MC-derived chymase which
can induce fibroblast proliferation [43, 45]. In fibrotic lung dis-
eases, the interplay between MCs and fibroblasts contributes to
the formation of a profibrotic milieu in which fibroblasts support
MC survival and proliferation by producing SCF and in turn,
MC-derived chymase activates latent TGF-β1 which mediates
fibroblast to myofibroblast differentiation [46, 47]. The distribu-
tion of MC subsets has been investigated and the MCT popula-
tion remains unchanged while the MCTC population is increased
in healthy parenchyma of IPF patients. In contrast, both subtypes
were increased significantly in fibrotic parenchyma [47].

Role of MCs in Lung Cancer

MC accumulation within the tumor microenvironment (TME) is
mediated by SCF and CCL15 released from tumor cells [48].
MCs may also contribute to shaping the TME by releasing a
variety of angiogenic mediators including chymase, tryptase,
VEGF, IL-6, FGF-2, and platelet-derived growth factor
(PDGF). MC release of MMP9 can induce ECM degradation
and thereby support tumor progression and metastasis [48]. In
non-small cell lung cancer (NSCLC), there is a greater infiltration
of bothMCTandMCTC in patients with extended survival com-
paring with patients with poor survival. Both MC subtypes pro-
duce TNF-α which plays a role in anti-tumor immune responses
[8]. Qu and colleagues demonstrated that human MC migration
in vitro was enhanced by the release of CCL5 from the NSCLC
cell lines A549 and SPC-α-1. Furthermore, in vivo transplanta-
tion of a human MC cell line (HMC-1) together with A549 cells
into nude mice showed that MCs support tumor progression
through their release of IL-8 which induced β-catenin phosphor-
ylation in NSCLC cells [49]. MCs also enhanced epithelial-to-
mesenchymal transition which is important in tumor migration
and progression [49]. Infiltration of MCs has also been reported
in human lung adenocarcinoma (LADC) tissues. Lilis and co-
workers applied three KRAS-mutant LADC models to two
MC-deficient mouse strains (cKitWsh and Cpa3.Cre) [50].

Table 2 Cytokines and neuropeptides that are capable of inducing MC degranulation

Mediator Receptor, interaction, and results Ref

SCF Binds to c-KIT (CD117), induces MC differentiation, survival,
and release of pro-inflammatory cytokines, mainly IL-6, IL-8, and TNF-α

[61, 62]

IL-33 Acts through ST2 and induces the release of CCL4 and CXCL8 [63]

Substance P Acts through NK1R and induces the release of IL-17 and histamine [25, 64]

Nerve growth factor (NGF) Binds to TrkA, induces MC hyperplasia and cytokine production
Induces the release of β-hexosaminidase in mice peritoneal MC

[65]
[66]

Calcitonin gene-related peptide (CGRP) Acts through CGRPR and induces serotonin release [67]
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They showed that MCs infiltrate into tumors and that a MC
deficiency protects the mice from tumor initiation within the air-
way and alveolar epithelium following induction with the carcin-
ogen urethane or the oncogenicKRASG12Dmutant respectively.
Enhanced tumor progression required IL-1β release from KIT+
MCs localized within the TME [50].

MMP9, MCs, and Airway Remodeling
in Airway Disease

It is unknown whether the MC release of MMP9 in cancer is
mimicked in other diseases. However, there is some evidence
that MMPs may play a role in MC-regulated remodeling. In a
mouse model of asthma, Clostr idium butyricum
CGMCC0313-1 (C. butyricum) significantly reduced lung
function, airway inflammation, mast cell degranulation, and
airway remodeling. These effects were associated with re-
duced MMP9 expression [51]. Besides, there is a strong cor-
relation between MMP9 expression and mast cell numbers
after nasal allergen challenge in subjects with allergic rhinitis
[52]. Furthermore, the IL-3-stimulated release of MM9 by
murine MCs is essential for MC migration into tissues and
suppressed by stem cell factor [53]. This suggests that there
is an interplay between stem cell factor, MMP9, and mast cell
engagement with tissue matrix. Other MMPs such as MMP10
have been associated with MC activation, airway remodeling,
and extracellular matrix (ECM) organization in severe asthma
[54], while airway smooth muscle-derived MMP1 was acti-
vated by MC tryptase enabling the development of a prolifer-
ative ECM that may account for the association with a link to
airway responsiveness in severe asthma [35]. Finally, activat-
ed MCs in 3D culture resulted in enhanced release of active
MMP2 and ASM proliferation [55] and of collagen and
MMP2 and MMP3 release and fibroblast contraction [56].

Conclusion

Beyond their well-documented role in allergy, MCs are also
involved in the pathology of non-allergic diseases including
autoimmune disorders, obesity, infertility, and even physio-
logic processes such as wound healing. They owe much of
this ability to the expression of a wide spectrum of cell surface
receptors including those for complement and various cyto-
kines. MCs release a plethora of mediators in a stimulus-
dependent manner despite similar degrees of degranulation.
This enables them to crosstalk with other immune/non-
immune cells. Studying the role of MCs in pathology of
non-allergic diseases is not simple due to different anatomic
distribution of MCs and MC subtypes, different immune re-
sponses to different stimuli, their ability to release both pro-
inflammatory and anti-inflammatory cytokines in a context-

dependent manner, limited number of MC-deficient mice
models for each disease, inconsistent results of in vivo and
in vitro investigations, and the limited number of mice and
human cell lines. However, careful design of experiments and
future single-cell RNA-sequence analysis of individual MCs
from patient samples at baseline and in response to therapies
will help define MC involvement in disease. New in vitro and
in vivomodels that utilize this information can then be derived
to provide further insight into this important area.
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