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Abstract
Background: Functional networks play an important role in the analysis of biological
processes and systems. The inference of these networks from high-throughput
(-omics) data is an area of intense research. So far, the similarity-based inference
paradigm (e.g. gene co-expression) has been the most popular approach. It assumes a
functional relationship between genes which are expressed at similar levels across
different samples. An alternative to this paradigm is the inference of relationships from
the structure of machine learning models. These models are able to capture complex
relationships between variables, that often are different/complementary to the
similarity-based methods.

Results: We propose a protocol to infer functional networks from machine learning
models, called FuNeL. It assumes, that genes used together within a rule-based
machine learning model to classify the samples, might also be functionally related at a
biological level. The protocol is first tested on synthetic datasets and then evaluated on
a test suite of 8 real-world datasets related to human cancer. The networks inferred
from the real-world data are compared against gene co-expression networks of equal
size, generated with 3 different methods. The comparison is performed from two
different points of view. We analyse the enriched biological terms in the set of network
nodes and the relationships between known disease-associated genes in a context of
the network topology. The comparison confirms both the biological relevance and the
complementary character of the knowledge captured by the FuNeL networks in
relation to similarity-based methods and demonstrates its potential to identify known
disease associations as core elements of the network. Finally, using a prostate cancer
dataset as a case study, we confirm that the biological knowledge captured by our
method is relevant to the disease and consistent with the specialised literature and
with an independent dataset not used in the inference process.

Availability: The implementation of our network inference protocol is available at:
http://ico2s.org/software/funel.html

Keywords: Machine learning, Biological knowledge extraction, Network inference,
Functional networks

Background
The inference of biological networks is a highly relevant and challenging task in systems
biology and integrative bioinformatics. Biological networks are graphs in which nodes
represent genes or proteins, and a connection between them indicates some kind of bio-
logical relationship, e.g. regulatory or functional. The network inference is, in an essence,
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an attempt to reverse engineer the biological relationships from the high-throughput
biological data [1].
Most biological network inference methods focus on the definition of gene regulatory

networks, in which edges represent direct regulatory interactions between genes [2–4].
Far less effort has been put into the design of methods to build functional networks in
which a connection indicates a functional relationship, e.g. membership in the same path-
way or protein complex. One of the typical uses of these networks is the identification of
functional modules (subset of genes with multiple internal connections and a few connec-
tions with genes outside the module that describe, explain or predict a biological process
or phenotype).
One of the earliest (but still widely used) approach to infer functional networks is the

“guilt-by-association” principle [5]. That is, if two genes show similar expression profiles,
it is assumed they are also functionally related (via a direct or indirect interaction). Ini-
tially, this paradigm was applied to infer networks from transcriptomics data, and this is
why in most of the literature it is known as the co-expression network inference principle.
Nevertheless, it is abstract enough to be applied to all kinds of biological data. It has been
demonstrated that co-expression networks are able to effectively identify pathways and
candidate biomarkers [6] or reveal gene modules representing a biological process per-
turbed in a disease [7], just to name a few examples, and the similarity-based approach
remains the dominant method of functional network inference today, with many recent
examples: [8–12].
A different approach that is recently gaining popularity, is the use of machine learning

techniques to infer biological networks. Due to the wide range of knowledge represen-
tations used within machine learning methods (e.g. classification rules, decision trees,
artificial neural networks, SVMkernels, etc.), they can discovermore complex and diverse
relationships, and overcome the limitations of the similarity-based methods. This is pos-
sible because within machine learning models the attributes are associated not because
they are similar (e.g. have similar expression profiles), but because together they detect
strong patterns. In addition, if learning is supervised, it can take advantage of the addi-
tional phenotype information (class labels of the samples, e.g. case and control) available
with the data. Therefore, by mining the complex machine learning models, it should be
possible to uncover new and different (biological) knowledge, that is likely to escape the
traditional approaches. Figure 1 illustrates these differences between the two approaches
(similarity-based methods vs. knowledge extraction from the machine learning models).
Alternative strategies exist to infer networks using machine learning. One approach is

to train machine learning models that directly predict network edges [13], but this pro-
cess requires an experimentally verified “ground truth” of known interactions and suitable
controls. A different approach, which is the focus of this work, is to generate machine
learning models from the biological data and then mine the structure of the models to
infer networks. Several types of machine learning have been successfully applied to this
task: unsupervised learning in the form of association rules [14], supervised learning
using regression (model trees [15]) or classification (random forest [16]).
The specific focus of this paper is the network inference from rule-basedmachine learn-

ingmodels, these have been successfully applied before to extract knowledge from genetic
data [17] and identify disease risk factors in a bladder cancer study [18]. Themethods pre-
sented in these works share some pipeline components with our current work, such as the
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Fig. 1 Two approaches to functional network inference: one based on the expression profile similarity and
the other based on the extraction of knowledge from machine learning models. The similarity-based
methods construct a new network edge X ↔ Y , when the similarity between the expressions of genes X and
Y across the samples is above a threshold. Methods based on machine learning, first build a predictive
model, in this example a rule-based model, using the samples phenotype (class labels) information and then
construct a network edge X ↔ Y , when genes X and Y are used together within that model to classify the
samples. As these two approaches lead to different functional networks, it is possible that they capture
complementary knowledge

permutation test and a 2-phase learning strategy. In our previous works we applied rule-
based machine learning to transcriptomics [19, 20], proteomics [21], lipidomics [22] and
protein structure data [23]. We formulated a paradigm called co-prediction (in opposition
to the classic co-expression) in which the prediction rules of a classification algorithm, in
our case BioHEL [24], are used to identify relationships between genes.
Co-prediction is based on the assumption that attributes (e.g. genes) within the same

classification rules, due to their co-operation in predicting the sample class, have an
increased likelihood of being functionally related to the biological process in ques-
tion (Fig. 2). Differently than co-expression, the co-prediction approach exploits the
phenotype information of the data (class labels) to detect functional relations.
However, from a methodological perspective, many questions remained unanswered.

Can the co-prediction approach identify known genetic relationships? How can we quan-
tify the biological significance of the co-prediction networks? What is the impact of data
pre-processing on the generated networks? Is this methodology able to capture knowl-
edge that escapes other methods? Are the discovered functional relationships meaningful
in the human disease context?

Fig. 2 Co-prediction paradigm. Association between the genes is inferred from their co-occurrence in
classification rules
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To address these questions, we propose in this article a new network inference protocol,
called FuNeL (Functional Network Learning). FuNeL substantially extends our previous
work [19] by incorporating: (1) statistical filtering of inferred functional relationships
via permutation tests, (2) a multi-stage network generation to maximise the knowl-
edge extraction, and (3) a configurable feature selection stage to control the size of the
generated networks.
We first tested FuNeL’s ability to correctly identify functional relationships using a set

of synthetic datasets. Then, we evaluated FuNeL on 8 real-world transcriptomics datasets
related to different types of cancer. For each dataset we tested 4 different configura-
tions of the protocol and compared the inferred networks to co-expression networks of
equivalent size. In order to have an extensive evaluation of our approach, we employed
3 different methods to generate co-expression networks. We systematically looked at the
differences between co-prediction and co-expression networks from two points of view:
(1) the enriched biological terms and (2) the relationships between the genes known to be
associated with a particular type of cancer. Finally, we used a prostate cancer dataset as a
case study and performed a more detailed biological analysis of the enriched terms and
the disease related genes. We looked at the largest hubs and the most central nodes in the
prostate cancer co-prediction networks and studied their involvement in the disease. We
found literature support for the association between these topologically important genes
and prostate cancer, and we further confirmed it with an independent transcriptomics
dataset (not used as a source in the inference process). Overall, we found that the FuNeL
inferred networks: (1) capture relevant biological knowledge that is complementary to
the knowledge captured by different co-expression networks, and (2) more adequately
represent the relationships between genes associated with the disease targeted by each
dataset.

Materials andmethods
In this section we describe the proposed network inference protocol, the datasets from
which we inferred the networks and the experimental design we used to evaluate it.

The functional network inference protocol

The stages of the co-prediction inference protocol are illustrated in Fig. 3. Two of these
stages are optional (1 and 4), they lead to a total of 4 different protocol configurations.
If the first optional stage (feature selection) is performed, the original dataset is reduced
to the most relevant attributes. In the second stage a rule-based machine learning is
used to infer a network. This network is statistically refined in Stage 3, in which a per-
mutation test is used to filter out non-significant nodes. The final stage, in which the
network generation is repeated for the second time, is again optional. A complete time
complexity analysis of the FuNeL protocol is available in Section 2 of the Additional file
1: Supplementary Material.

Feature selection (stage 1) When datasets contain a large number of attributes, some
might be irrelevant to the prediction target and discarding them helps the classification
algorithm to focus its learning effort on the attributes that matters. Therefore, the feature
selection is the first stage of the inference process. To pick the relevant attributes we used
the support vector machine recursive feature elimination (SVM-RFE) [25]. We opted for
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Fig. 3 Stages of the functional network inference protocol

the SVM algorithm with a linear kernel as our preliminary studies suggested that it can
eliminate as much as 90 % of the original dataset attributes, without losing much of the
classification accuracy (see Section 1 in Additional file 1: Supplementary Material).

Rule-based network inference (stage 2) To infer the rule-based classification models
we used BioHEL [24]. It generates sets of classification rules using a genetic algorithm
and is able to work with large datasets. Due to the stochastic nature of BioHEL’s learning
process, each of its runs generates a different rule set. We leverage this fact by creating
a large number of alternative hypotheses of functional relationships via multiple runs of
the algorithm. For each dataset we run BioHEL 10,000 times and infer the network from
the consensus of all the generated rule sets. To do that, we use all the pairs of attributes
that appear together in the same classification rule as the network edges (co-prediction
paradigm). Then, we score each network node (attribute) by counting how many times it
has been used in the rules (node score).

Permutation test (stage 3) Given a list of edges (attribute-attribute associations)
extracted from the rule sets, we try to filter out the non-significant nodes. To determine
the node significance, we follow a statistical analysis procedure based on a permutation
test, similar to the one described in [17]. We generate 100 permutated datasets by ran-
domly shuffling the class labels. Next, we infer the co-prediction networks (as in Stage 2)
from these permutated datasets. Then, for each node, we calculate a distribution of scores
across the 100 networks generated from the permutated datasets. Using a one-tailed per-
mutation test, we assign to each node a p-value, to estimate how likely it is to draw its
score from the calculated distribution. With this process we make sure that the nodes
with high scores are really tied to the classes present in the data, and that the network
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truly represents functional relationships. To decide if a node is statistically significant we
use a typical α = 0.05 threshold.
After preliminary experiments we realised, that using significant nodes alone leads to

small and dense networks. To counter that, we relaxed the node pruning to also keep all
direct neighbours of the significant nodes.

Network construction (stage 4) There are two ways to interpret the result of the statis-
tical test (option 2 in Fig. 3). The first approach is to use the significant nodes as a filter for
the inferred relationships (edges) and remove all the edges between two non-significant
nodes. The second approach is to use the permutation test as a further feature selection
and build a new rule-based machine learning model using only the significant nodes. This
second run of the learning algorithm is then focused only on the statistically important
genes and creates the final network.

Protocol configurations As a result of two independent optional stages in the FuNeL
protocol, there are 4 different configurations that it can run with (see Table 1).We decided
to test them all and infer four networks from each dataset, one per configuration.

Datasets

Synthetic datasets

To verify if FuNeL is able to correctly identify functional relationships we tested it on a set
of synthetic datasets. Although there are several generators that model expression data
with genetic relationships, such as GNW used in several DREAM challenges [26], they
generate unlabeled samples (without phenotype information, e.g. case vs. control) and the
class labels are necessary to perform the supervised learning at the core of FuNeL.
For that reason, we decided to use GAMETES instance generator [27], designed to cre-

ate genetic datasets with multi-locus disease associations, where no fewer than n loci can
predict a phenotype (disease status). GAMETES generates genotype data (rather than
gene expression data) based on models with specific genetic constraints, e.g. different
heritabilities or frequencies of the SNPs.
To generate the synthetic datasets, we used a set of 2-locus configurations similar to

what was employed in a recent work of Li et al. [28] to evaluate permuted random forest
networks of gene interactions. Specifically, the genetic models varied in terms of heri-
tability (0.001–0.4) and number of attributes (5–25), with fixed allele frequency of 0.2 and
2000 samples per dataset. For each configuration, we selected from 100 000 randommod-
els, two models with extreme value of the ease of detection metric (EDM) (the least and
the most difficult). Finally, for each selected model we generated 50 datasets, obtaining
4000 datasets in total.

Table 1 Protocol configurations used in the experiments

Configuration Description

C1 Reduced dataset + 1 stage of network generation

C2 Original dataset + 1 stage of network generation

C3 Reduced dataset + 2 stages of network generation

C4 Original dataset + 2 stages of network generation
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Real-world datasets

We used 8 publicly available human cancer microarray datasets (see Table 2). These
datasets represent a broad range of characteristics in terms of biological information
(different types of cancers), number of samples (patients) and number of attributes
(genes). For each dataset the attributes were defined by the probes used in the microar-
ray experiment. Generally, a gene can be represented by more than one probe and extra
post-processing step is needed to merge the information and generate networks where
nodes truly represent genes. We used MADGene [29] to map the Affymetrix probe IDs
into HUGO gene IDs, then for all probes mapped to the same gene, we merged the probes
and their connections. If a probe was unmapped it was removed from the network.
While in this instance we focused on transcriptomics datasets only, the FuNeL pro-

tocol is general and can be applied to other types of biological data too (proteomics,
lipidomics, etc.).

Co-expression networks

In this paper we are comparing our FuNeL networks against co-expression networks.
The co-expression paradigm identifies similarity of gene expression pattern under dif-
ferent experimental conditions. Co-expression edges are an abstraction of functional
relationships between genes and do not represent physical binding as in protein inter-
action or gene regulatory networks. Two genes are considered to be functionally related
(co-expressed), if their transcript levels are similar across a set of samples.
In here we employed three well known methods to infer co-expression networks, each

one uses a different metric to assess gene expressions similarity: Pearson correlation coef-
ficient, ARACNE [2] and MIC [30]. In the following subsections we briefly present those
methods, for more details check the cited original papers.

Pearson correlation coefficient

Pearson’s correlation coefficient (PCC) is a well known measure of linear dependence
between two variables. Applied to gene expression profiles, it measures the similarity
in the direction of gene response across samples. Its main disadvantages are the lack of
distributional robustness (it assumes data normality) and the sensitivity to outliers. We
generated the PCC-based co-expression networks using the SciPy Python library [31].

ARACNE: algorithm for the reconstruction of gene regulatory networks

The ARACNE method [2] measures the dependence between two gene expression pro-
files using mutual information. Mutual information I(X;Y ) estimates entropy to quantify

Table 2 Description of the source datasets used to infer networks

Name Attributes Samples Class labels

Dlbcl [63] 2647 77 Dlbcl; Follicular lymphoma

CNS [64] 7129 60 Survivor; Failures

Leukemia [65] 7129 72 AML; ALL

Lung-Michigan [66] 7129 96 Tumor; Normal

Lung-Harvard [67] 12534 181 Mesothelioma; ADCA

Prostate [41] 12600 102 Tumor; Normal

AML [68] 12625 54 Remission; Relapse

Colon-Breast [69] 22283 52 Colon cancer; Breast cancer
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the amount of information that Y contains about X (measured in bits). In contrast to
correlation, it is able to detect non-linear dependencies. ARACNE calculates I(X;Y )

for every pair of gene expression profiles X and Y, and applies the data processing
inequality to remove the majority of indirect dependencies. For each triplet X, Y and
Z the weakest link is removed, e.g. the edge between X and Y is removed if I(X;Y ) ≤
min(I(X;Z), M(Z;Y )) − ε. The tolerance threshold ε is used to adjust for the vari-
ance of the mutual information estimator. To generate the ARACNE based networks we
used the minet R package [32] with the following parameters: estimator = mi.empirical,
dis = equalwidth and ε = 0.

MIC: maximal information coefficient

The MIC [30] is a recently proposed measure of the strength of association between two
variables, closely related to mutual information. Instead of using a single discretisation
strategy to bin the compared variables, it chooses individual bins for each variable, such
that value of mutual information I(X;Y ) is maximised. Compared to standard estimation
of I(X;Y ) value used in ARACNE, the optimised estimation provided by MIC is able to
detect a wider range of non-linear associations. To generate MIC based networks we used
theminepy Python library [33] with the following parameters: α = 0.6 and c = 15.

Inference of the co-expression networks counterparts

To fairly compare the co-prediction and co-expression networks generated from the same
data, we had to make sure they match in size. To do that, for every co-prediction network
C withm edges and n nodes, we created two co-expression counterparts:

• SE(C): co-expression network with m edges
• SN(C): co-expression network with n nodes

Pearson and MIC methods directly compute the pairwise similarity between the gene
expressions. Given that, we generated SE(C) usingm gene pairs with the highest similarity
coefficient. To build SN(C) we used as many top gene pairs as needed, to reach at least n
nodes (as we included all pairs tied on the similarity value, sometimes we end up with a
few nodes more).
ARACNE uses a pruning procedure and generates a weighted network, not a list of

pairwise similarities. When the resulting network was smaller than m edges or n nodes,
we increased the default tolerance threshold ε to obtain a large enough network. This was
the case for the CNS (ε = 0.002) and the Dlbcl datasets (ε = 0.043). Then we used the
edge weights to select top gene pairs, as in the case of Pearson and MIC methods.
Several examples of inferred co-prediction networks and corresponding co-expression

networks are visualised in Section 7 of the Additional file 1: Supplementary Material
and are accompanied, in there, by an initial analysis of selected topological properties in
Section 3. All generated networks are provided in the Additional file 2.

Enrichment analysis

To understand the biological information captured by the generated networks we con-
ducted an enrichment analysis. This is a statistical method of checking whether a set of
genes have common characteristics. In our study, the set is defined by the nodes of the
generated functional network and is analysed with PANTHER [34]. Because many statis-
tical tests are performed (one for each term) at the same time, PATHER uses Bonferroni
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correction for multiple testing with α = 0.05. We searched for two categories of bio-
logical knowledge: Gene Ontology (GO) terms and PANTHER pathways (176 primarily
signalling pathways). From the set of GO term, we selected only the manually curated
annotations that were supported by experimental evidence.

Disease association analysis

To evaluate the predictive power of the generated networks, and to assess their rel-
evance within a cancer-related context, we analysed the relationships between known
disease-associated genes. We used two sources for the disease associations: Malacards (a
meta-database of human maladies consolidated from 64 independent sources) [35] and
the union of several manually curated databases (OMIM [36], Orphanet [37], Uniprot [38]
and CTD [39]). A complete list of disease-associated genes is provided in the Additional
file 3.
We looked at two properties: (1) the proximity of the disease-associated genes within

a network and (2) the number of triangles in a network, containing one or more
disease-associated genes. Higher proximity represents stronger functional relationship
between genes involved in the disease. Triangles represent groups of attributes used
together across different prediction rules, and therefore indicate strong mutual relation-
ship between the genes (useful in the discovery of potential new disease associations).
Triangles are also the smallest non-trivial motifs that can be found in a complex network
and over-represented motifs usually identify functional units of biological processes in
cells [40].
The proximity of disease-associated genes was measured using the average shortest

path length (SPL). The proximity was defined as a ratio of two distances: average SPL
between all pairs of the non-associated genes and average SPL between all pairs of
disease-associated genes A:

1
n

n∑

i=1
wi

SPL(CCi \ A)

SPL(A)
, where wi = |CCi|∑n

j=1 |CCj|
As the generated networks often were disconnected (had more than 1 connected com-

ponent), we introduced a weight wi that represents the relative size of a connected
component CCi. Components with less than 3 nodes or disease-associated genes were
not used in the calculation.

Results
The main results described in this section are based on the analysis of 8 real-world
datasets. The only exception is the subsection below, which reports the test results on
synthetic datasets.

Identification of predefined relationships in synthetic datasets

To verify how well FuNeL is able to identify functional relationships, we tested it first
on synthetic datasets generated using GAMETES. We used 80 different model config-
urations that varied in heritability, number of SNPs and ease of detection, and tested
the success rate on 50 datasets per model. Given the small number of attributes in the
synthetic datasets, we used only the C2 protocol configuration in the tests (no feature
selection, single learning phase). The percentage of successfully identified relationships
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for each model is reported in Table 3. We counted as success the presence of an edge
between the interacting pair of SNPs in the inferred network.
As expected a higher success rate was obtained for models where relationships were

easy to detect (H-EDM). The performance increased with higher values of heritabil-
ity and 100 % success rate was obtained for heritability values above 0.05 regardless
of model difficulty. The overall results are similar to those reported in [28], or even
slightly better, as FuNeL’s success rate was unaffected by the increase in the number of
SNPs.

Complementarity of the enriched terms

To test how unique are the biological terms (GO terms and pathways) over-represented
in the inferred FuNeL networks, we measured an overlap between terms found for each
type of network. We defined the overlap between terms enriched for networks inferred
using configurations Ca and Cb as:

O(Ca,Cb) = c
ua + ub + c

where c is the number common terms, ua is the number of unique terms for Ca and ub
is the number of unique terms for Cb (see Additional file 4 for a complete list of enriched
terms).
Table 4 summaries the pair-wise overlap between the 4 different FuNeL configurations.

For GO terms we reported the average overlap between the: biological process, cellular
component and molecular function categories. Although configurations that operate on
the same dataset (C1–C3 and C2–C4) shared the most terms/pathways, the overlap is
quite far from 100 %. Thus the remaining difference is a result of the second training
stage. Configurations used on different datasets (i.e. different set of attributes) resulted in
networks sharing less than 40 % GO terms and 20 % pathways.
Similarly, we analysed the term overlap between co-prediction and co-expression by

comparing the Ci networks with their co-expression counterparts SE(Ci) and SN(Ci) gen-
erated with different approaches (see Table 5). We found the percentage of overlap to be
similar across the different inference methods. The overlap in enriched terms was never
higher than 62 % (still leading to a difference around 40 %) and was the largest for con-
figuration not using feature selection (C2 and C4). In general the percentages were lower
for biological pathways with a minimum of only 10 % of shared terms. Low values of

Table 3 FuNeL success rate in identification of disease-predicting SNPs

5 SNP 10 SNP 15 SNP 20 SNP 25 SNP

Her. L-EDM H-EDM L-EDM H-EDM L-EDM H-EDM L-EDM H-EDM L-EDM H-EDM

0.001 6 % 16 % 8 % 18 % 4 % 10 % 4 % 12 % 12 % 16 %

0.005 8 % 82 % 0 % 86 % 6 % 80 % 2 % 82 % 8 % 72 %

0.01 8 % 96 % 8 % 100 % 8 % 100 % 12 % 100 % 14 % 100 %

0.05 14 % 100 % 60 % 100 % 42 % 100 % 34 % 100 % 34 % 100 %

0.1 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %

0.2 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %

0.3 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %

0.4 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %

The datasets differed with respect to heritability, number of SNPs and detection difficulty (L-EDMmodels were the hardest,
H-EDM the easiest)
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Table 4 Average overlap of enriched GO terms and pathways between different FuNeL
configurations. The overlap was averaged across all 8 datasets

Gene Ontology Pathways

C1 C2 C3 C4 C1 C2 C3 C4

C1 — 0.353 0.749 0.405 — 0.186 0.513 0.183

C2 — 0.321 0.701 — 0.095 0.591

C3 — 0.364 — 0.104

C4 — —

terms overlap indicate that the co-prediction and the co-expression approaches can be
seen as complementary. Despite starting from the same dataset, they generate networks
expressing different biological information.

Quantifying the amount of captured biological knowledge

The amount of biological knowledge (number of enriched terms) captured by a network
is related to its size (number of nodes). To fairly compare the networks of different sizes
we used the normalised Enrichment Score (ES):

ES = number of enriched terms
number of nodes

The score assesses if a network contains biologically related nodes. The higher it is, the
larger is a biological similarity between the nodes of a network. All computed score values
are available in the Additional file 5.
To have a global view of the performances of each inference method in term of ES,

we performed a two-step analysis for each enrichment category. First, using the ES, we
ranked the networks generated by each method in order to identify the best perform-
ing one. See Section 4 of the Additional file 1: Supplementary Material for the complete
analysis.
Once we identified the best network for each method, we ranked them together by

ES and calculated their average rank across the datasets. The results of this analysis are
reported in Table 6. MIC performed best when ES was calculated using the GO terms (it
was ranked first in each of those categories). When ES was calculated using the biological
pathways, C4 and ARACNE SE(C1) shared the highest rank.
Table 6 shows that the best performing networks for each method were mostly C3 co-

expression counterparts, in particular SN(C3). This is consistent with the result of the
topological analysis in Section 3 of the Additional file 1: Supplementary Material were

Table 5 Average overlap of enriched GO terms and pathways between the co-prediction and
co-expression networks

Co-expression (SE) Co-expression (SN)

Method Cat. C1 C2 C3 C4 C1 C2 C3 C4

Pearson GO 0.280 0.414 0.297 0.432 0.315 0.576 0.367 0.488
path. 0.223 0.260 0.258 0.190 0.264 0.400 0.175 0.287

ARACNE GO 0.348 0.621 0.272 0.565 0.333 0.612 0.277 0.535
path. 0.126 0.463 0.139 0.479 0.085 0.423 0.016 0.356

MIC GO 0.316 0.513 0.283 0.487 0.300 0.614 0.289 0.527
path. 0.097 0.339 0.142 0.315 0.112 0.469 0.080 0.352

Each co-expression network Ci was compared to the corresponding co-expression networks SE(Ci) and SN(Ci). The overlap was
averaged across all 8 datasets
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Table 6 Average ranks based on the Enrichment Score for the best performing networks of each
inference method

Category FuNeL Pearson ARACNE MIC

GO BP C4 (3) SE(C3) (1.5) SN(C3) (4) SN(C3) (1.5)

GO MF C3 (3.5) SN(C3) (3.5) SN(C3) (2) SN(C3) (1)

GO CC C3 (4) SN(C1) (3) SN(C3) (2) SN(C3) (1)

Patwhays C4 (1.5) SN(C2) (3.5) SE(C1) (1.5) SE(C3) (3.5)

Average 3 2.88 2.38 1.75

For each category and for each method, we report the network used in the analysis. The ranks (in brackets) were averaged across
all 8 datasets, and the highest ranks are shown with bold font. The last row reports the average ranks across all the biological
categories. The following abbreviations were used for GO categories: biological process (BP), molecular function (MF) and cellular
component (CC)

these networks were found to have the lowest number of nodes, and suggests that smallest
networks tend to be more enriched. The difference in performance between the FuNeL
configurations is mainly a result of the application of the second machine learning phase
(the best networks were C3 and C4).
In Additional file 1: Table S9 we reported the results of a similar analysis where we com-

pared the similarity-based inference methods against FuNeL (ranks in there range from
1 to 12: 4 Ci + 4 SE(Ci) + 4 SN(Ci). In this pairwise analysis, FuNeL networks performed
similarly to Pearson and ARACNE. We did not observe any consistent winner across all
the enrichment categories. MIC seems to have better results than FuNeL only for GO cat-
egories, as emerged from Table 6, while FuNeL networks tend to be more enriched for
biological pathways.

Evaluation of the networks in a disease context

To verify if the topology of the inferred networks is biologically meaningful, we analysed
how it defines the relationships between genes that are known to be associated with a
disease targeted by each dataset. We expected the disease-associated genes to be more
closely connected than other genes and to be present in functional units, such as triangle
motifs. We measured the proximity of the disease-associated genes (i.e. how closely con-
nected they are compared with non-disease-associated genes) and counted the number
of triangular relationships present in each network (i.e. the percentage of triangles con-
taining one, two or three disease-associated genes). We repeated the two-step analysis as
presented in Section Quantifying the amount of captured biological knowledge by using
the gene-disease metrics for the ranking. The results are reported in Table 7. The detailed
results for each inference method are available in Section 5 of the Additional file 1:
Supplementary Material.
The average ranks, for both sources of disease associations, suggest that co-prediction

outperforms the other inference paradigms. The proximity of the disease-associated
genes was in general higher in C2 network. Therefore, the co-prediction paradigm has
identified the core elements of the network more accurately. This result highlights the
benefits of including functional information, whenever these are available, in the network
inference process (FuNeL is using the class labels assigned to the samples of the dataset),
in contrast to the co-expression approach solely based on gene expression similarity
(unsupervised).
There is also a clear difference in the number of disease-associated genes participating

in the triangles; co-prediction networks were ranked higher than the co-expression net-
works. The only category in which MIC had a higher rank was 3A. However, considering
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Table 7 Average ranks based on the disease-associations for the best performing networks of each
inference method

Source Category FuNeL Pearson ARACNE MIC

Curated 1A C2 (1) SN(C2) (4) SN(C3) (2.5) SN(C2) (2.5)

2A C3 (1) SN(C3) (2) SE(C2) (3) SN(C2) (4)

3A C1 (2) SN(C1) (3) SE(C4) (4) SE(C2) (1)

Proximity C2 (1) SN(C3) (2.5) SE(C4) (2.5) SE(C2) (4)

Average 1.25 2.88 3 2.88

Malacards 1A C2 (1) SN(C2) (4) SN(C4) (3) SE(C4) (2)

2A C2 (1.5) SN(C4) (4) SE(C4) (1.5) SN(C2) (3)

3A C3 (2) SN(C4) (3) SE(C2) (4) SN(C2) (1)

Proximity C2 (1) SE(C4) (4) SE(C4) (3) SE(C2) (2)

Average 1.78 3.75 2.88 2

For each category and for each method we report the network used for the analysis. The ranks (in brackets) were averaged across
all 8 datasets, and the highest ranks are shown with bold font. The Average row reports the average ranks across all the categories.
The number of disease-associated genes participating in a triangle is denoted as 1A, 2A and 3A

that there were not many triangles with disease-associated genes, many ties affected the
ranks in this category. Overall, these results demonstrate the higher predictive potential
of the FuNeL networks in identifying new disease associations.

Prostate cancer case study: enriched terms

To compare in detail the difference in biological knowledge captured by the co-prediction
and co-expression networks, we followed our global analysis with a case study focused on
a dataset targeting a single disease — prostate cancer [41]. We were especially interested
in specific knowledge captured by one paradigm but not the other.
In Figs. 4 and 5 we compared the co-prediction and Pearson co-expression networks

inferred from the prostate cancer dataset.We focused on unique GO terms and pathways,
enriched only in one type of networks. For the sake of readability we filtered out the
generic GO terms (with depth < 9 in the GO hierarchical structure). C2 was the network
with the largest number of unique terms, followed by C4 and SN(C2). We found 16 GO
terms and 21 pathways unique to co-prediction networks and only 3 GO terms and 4
pathways unique to co-expression networks. A similar disproportion in favour of the co-
prediction networks was found in comparison with MIC and ARACNE networks (see
Additional file 1: Figures S2 and S3).
We found several of the unique GO terms enriched in the co-prediction networks to

be related to prostate cancer. The role of the Protein ubiquination in prostate cancer was
recently analysed and showed an impact for its treatments [42]. ERK pathway is involved
in the motility of prostate cancer cells [43]. Prostate cancer cells seems to alter the nature
of their calcium influx to promote growth and acquire apoptotic resistance [44]. Fur-
thermore, the role of calcium homeostasis in the majority of the cell-signaling pathways
involved in carcinogenesis has been well established, prostate cancer included [45].
A number of enriched pathways specific to co-prediction networks are also highly

relevant to the prostate cancer. Several studies demonstrated the involvement of the
JAK/STAT pathway in the prostate cancer development [46, 47]. There is multiple
evidence suggesting that one of the major aging-associated influences on prostate
carcinogenesis is oxidative stress and its cumulative impact on DNA damage [48, 49].
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Fig. 4 Number of unique enriched GO terms (biological process) for each network configuration (generated
from the prostate cancer dataset). On the x-axis we show the 12 investigated networks. On the y-axis we
show the names of enriched terms unique to co-prediction or Pearson co-expression networks. Red terms are
associated with co-expression networks, blue with co-prediction. Empty columns indicate networks with no
unique terms

Finally, FAS (also called Apo1 or CD95) plays a central role in the physiological regula-
tion of programmed cell death and has been implicated in the pathogenesis of various
malignancies and diseases of the immune system including prostate cancer [50].
We also performed an additional analysis of the biological terms related to the hubs

(highly connected nodes) of the inferred networks. A node v was considered to be a
hub if its degree was at least one standard deviation above the mean network degree. To
compare the networks, we used the 10 most frequent Gene Ontology terms (biological
processes with at least depth 10) shared among each network’s hubs. When considering
Pearson inference approach for co-expression we found 16 unique terms for co-prediction
networks, 19 unique terms for co-expression networks and 11 common terms. The results
further highlight biological terms exclusively associated either with co-prediction and
co-expression networks. The complete analysis (method by method) is available in the
Additional file 1: Supplementary Material (Figures S4, S5 and S6).
A further analysis of term overlap was conducted using only the best performing net-

works in the curated disease-association analysis (namely C2 for FuNeL, SN(C3) for
Pearson, SE(C4) for ARACNE and SE(C2) for MIC, see Section 5 of the Additional
file 1: Supplementary Material for details). In Fig. 6 we show the overlap of GO terms
(including all three GO categories) and pathways across networks from different infer-
ence algorithms. In both categories FuNeL had much larger number of unique terms than
the co-expression methods and it shared the largest number of terms with ARACNE.
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Fig. 5 Number of unique enriched biological pathways for each network configuration (generated from the
prostate cancer dataset). On the x-axis we show the 12 investigated networks. On the y-axis we show the
names of enriched terms unique to co-prediction or Pearson co-expression networks. Red terms are
associated with co-expression networks, blue with co-prediction. Empty columns indicate networks with no
unique terms

In total 122 common GO terms were found between all the methods, while there was
only 1 common pathway. Figure 6 further highlights the complementarity between the
co-prediction and co-expression approaches in terms of captured biological knowledge.

Prostate cancer case study: disease associations

We searched the literature and the public cancer databases (not used in the inference
process), to verify if key nodes in the generated networks are associated with prostate

Fig. 6 Overlap of enriched terms between the best performing networks in the disease-association analysis
(curated databases). On the left the overlap of GO terms (including all 3 categories: BP, CC and MF), on the
right the overlap of pathways
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cancer. As a measure of node importance we used the node degree (number of connec-
tions) and the betweenness centrality (number of shortest paths between all pair of nodes
pass through a given node).

Literature analysis We picked the top 3 most connected nodes (hubs) for each of the
four co-prediction networks. The set contained six genes:GSTM2,NELL2, CFD, PTGDS,
PAGE4 and LMO3. All the genes from this set, except LMO3, were also found to be the
most central nodes (with highest betweenness centrality).
Almost all these genes are related with prostate cancer:

• NELL2 contributes to alterations in epithelial-stromal homeostasis in benign
prostatic hyperplasia and codes for a novel prostatic growth factor [51], and is also an
indicator of expression changes in cancer samples [52],

• CFD (adipsin gene) is over expressed in PP periprostatic adipose tissue of prostate
cancer patients [53],

• PTGDS (and other 2 genes) are expressed at consistently lower levels in clinical
prostate cancer tissues and form a signature that predicts biochemical relapse [54],

• PAGE4 modulates androgen receptor signaling, promoting the progression to
advanced lethal prostate cancer [55], and has a significantly lower expression level in
patients with prostate recurrent disease [56],

• LMO3 interacts with p53, a well known gene tumour suppressor in prostate
cancer [57].

The only gene without literature support was GSTM2. It might represent a good target
for further experimental verification.

Validation on independent data To further validate the biological significance of the
inferred networks, we used an independent prostate cancer dataset [58] from the cBio-
Portal for Cancer Genomics [59]. We analysed the top 10 hubs (nodes with highest
degree) and the top 10 central nodes (with highest betweenness centrality) in the co-
prediction network that better performed in the gene-disease association analysis using
the curated databases: C2 (see Additional file 1: Table S14). The genes with highest degree
were: PTGDS, PAGE4,NELL2,GSTM2, PARM1,MAF, LMO3,COL4A6, RBP1 andABL1.
For the betweenness centrality, the set was almost identical, only RBP1 was replaced by
MYH11. On average the expression in samples was altered in 31.8 % cases for hubs and in
35.6 % cases for central nodes. The most altered genes were found to be downregulated
at the mRNA level: COL4A6 (65 %), MYH11 (58 %), PARM1 (53 %) and GSTM2 (52 %).
In addition, genomic alterations in several key genes have been found to be strongly
co-occurent (e.g. PTGDS – GSTM2, PAGE4 – COL4A6, PAGE4 – RBP1, etc.).
When we repeated this analysis for the co-expression networks that were best ranked

in the gene-disease analysis using the curated databases (SN(C3) for Pearson, SE(C4) for
ARACNE and SE(C2) for MIC), we found that on average the alteration level was consis-
tently lower, at most half of the co-prediction key genes. The percentages of alterations
are represented as boxplots in Fig. 7, while the average alterations are reported in Table 8.
As Fig. 7 shows, our method is able to identify many more genes with higher percentage
of alteration than other methods. Therefore, the topologically important nodes in the best
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Fig. 7 Distribution of the percentage genomic alteration in the samples of an independent dataset for top
10 hubs and central nodes. The topologically important genes were selected from the best performing
networks in the disease-association analysis on curated datasets

co-prediction network represent genes more strongly related to the prostate cancer, with
over two times more frequent genomic alterations.
The detailed list of genomic alterations for top 10 hubs and top 10 central nodes for each

analysed network is shown in Section 6 of the Additional file 1: Supplementary Material
(Figures S7–S14).

Discussion
We proposed FuNeL, a protocol to infer functional networks based on the co-prediction
paradigm where the structure of a rule-based machine learning model (in this paper the
rules of a classification algorithm called BioHEL) is used to identify relationships between
genes.We tested FuNeL on synthetic datasets and obtained a high success rate in identify-
ing pairwise relationships between attributes. Encouraged by this result, we hypothesised
that a rule-based machine learning model, with its complex knowledge representation,
might be used to identify biologically meaningful relationships that escape the standard
inference methods.
To test this hypothesis, we evaluated 4 different configurations of the inference pro-

tocol using 8 cancer-related transcriptomics datasets. We compared FuNeL with other
3 co-expression inference methods by using networks of matching size generated from
the same data. We looked at the differences, between co-prediction and co-expression,
from three points of view: basic topological properties, enriched biological terms and
relationships between known disease-associated genes.

Table 8 Average percentage of genomic alteration for top hubs and central nodes in the
independent dataset

Genes FuNeL Pearson ARACNE MIC

Hubs 31.8 % 14.2 % 12.3 % 15.2 %

Central nodes 35.6 % 14.7 % 12.2 % 17.1 %
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The comparison of networks topology (see Section 3 of the Additional file 1: Sup-
plementary Material) revealed the influence of the protocol options. Not surprisingly,
both the feature selection and the second training phase reduced the size of the net-
works, but at the same time, increased the clustering coefficient and the number of
connections. The clustering coefficient was found to be lower in almost all the ARACNE
networks, probably due to the pruning procedure, it was also lower in many MIC
networks. Moreover, when feature selection was applied, the resulting networks had
higher clustering coefficient than Pearson co-expression networks with the same num-
ber of edges. Interestingly, all co-expression networks were less compact, with up to
3 times higher diameter for Pearson and ARACNE and up to 7 times higher for
MIC.
The differences in networks topology translated to differences in contained biologi-

cal information. The overlap between enriched GO terms and pathways across protocol
configurations was generally low, indicating that different configurations infer net-
works that capture different biological knowledge. The same terms overlap between
the co-prediction networks and their equivalent co-expression counterparts was even
lower, never exceeding 62 %. We interpret that as evidence, that the biological knowl-
edge captured by the two paradigms is not completely redundant, but in a large part
complementary.
The most apparent differences between the networks were observed during the analysis

of the connections between genes known to be related to a specific disease. The disease-
associated genes were more closely connected (higher proximity) in the co-prediction
networks, which means that the disease-related nodes of the network were closer to its
core. We also found that the number of functional units (triangle motifs), that can iden-
tify new gene-disease associations, was higher in the co-prediction networks. Therefore,
we conclude that the co-prediction networks better capture the abstract concept of
functional relationship.
The prostate cancer case study further confirmed this conclusion. We found enriched

GO terms and biological pathways, unique to the co-prediction networks, to be reported
in the literature as related to prostate cancer. Furthermore, FuNeL generated networks
enriched with knowledge totally missed by all the co-expression networks when using
the prostate cancer dataset. We also found that genes corresponding to the topologically
important nodes in the co-prediction networks: (1) were altered in a high percentage
of tumour samples in an independent cancer transcriptomic study, and (2) were already
associated with prostate cancer according to the specialised literature. Therefore, the
co-prediction networks not only capture biological knowledge complementary to the
co-expression networks, but also highlights better the important genes involved in the
disease process.
The superior performance of FuNeL networks in identifying the disease-associated

genes is likely a result of effective use of the class labels of the samples, which the
similarity-based methods ignore. Although it would be tempting to attribute this per-
formance difference entirely to the use of supervised learning in FuNeL, it would be
an overstatement, as the knowledge of explicit links between genes and diseases is not
available to it in training. Our hypothesis is that this is rather a result of differences
in expression values of the disease-associated genes, which taken together are able to
discriminate between sample phenotypes.
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Given that our co-prediction networks were found to be not only biologically mean-
ingful, but also complementary to similarity-based functional networks, we believe that
network inference based on machine learning models deserves to be studied in more
detail in the future. In here we only touched the subject of feature selection and network
post-processing, and although we now know they indeed influence the network topology
and its biological interpretation, there are many strategies to choose from in that respect.
At the same time, the machine learning step in the FuNeL protocol does not have to

be limited to the rule-based machine learning methods. We can imagine unsupervised
methods, such as the Apriori algorithm for association rule learning, or other super-
vised methods, such as decision tree algorithms (e.g. C4.5 or random forest), replacing
BioHEL in the FuNeL protocol. Some adjustment would be necessary to extract the
knowledge from a different model representation, but the rest of the protocol could
remain unchanged. For example in the case of the decision trees, relationships could be
inferred between attributes that share the same path from the root to the leaves of a tree.
This potential flexibility in the choice of a learning algorithm, together with the ability to
apply the protocol to different types of data, becomes important in the context of results
correctness. As has been discussed to a great length in [60], when methods or data used
in the network inference process are tightly controlled, some results will replicate more
easily than others not because they are correct, but due to a replicable bias. Therefore
a diversity in methods and data is a necessary condition to be able to converge on the
scientific truth.
Finally, in terms of testing new functional networks, there is a limit of how thorough and

complete a manual literature analysis can be, which leads to a great need of synthetic or
experimentally validated benchmarks, similar to those proposed for protein-protein inter-
action networks or gene regulatory networks. Although we understand that this would be
a difficult and challenging task, we see this as a necessary step on the way to refining the
functional inference methods.

Conclusions
We presented FuNeL: a protocol for the inference of functional networks from rule-based
machine learning models. FuNeL is based on the co-prediction paradigm, which hypoth-
esises that genes used together with a rule-based machine learning model, are more likely
to be functionally related. We verified that FuNeL correctly identifies relationships in
synthetic datasets and we thoroughly compared FuNeL to three co-expression inference
methods: Pearson correlation coefficient, ARACNE and MIC, on 8 real-world datasets.
We contrasted the different approaches by looking at the inferred networks topology,
enriched biological terms and the relationships between genes associated with cancer.
We found that FuNeL networks capture relevant biological knowledge that is comple-
mentary to what is captured by the co-expression approaches, and demonstrated that
FuNeL networks are better at identifying relationships between genes with known disease
associations.
In future works wewill explore the extension of the protocol withmethods that combine

topology and biological enrichment [61, 62].Wewould also like to test FuNeL using differ-
ent machine learning algorithms. As previously discussed, FuNeL is a flexible protocol in
which themachine learning algorithm can be easily interchanged. Therefore, we will try to
assess the impact of different learning algorithms in the inference of functional networks.
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