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Functional pathology of the default mode network is posited to be central to social-cognitive impairment in au-
tism spectrum disorders (ASD). Altered functional connectivity of the default mode network3s midline core may
be a potential endophenotype for social deficits in ASD. Generalizability from prior studies is limited by inclusion
of medicated participants and bymethods favoring restricted examination of network function. This study mea-
sured resting-state functional connectivity in 22 8–13 year-old non-medicated childrenwith ASD and 22 typical-
ly developing controls using seed-based and network segregation functional connectivity methods. Relative to
controls the ASD group showed both under- and over-functional connectivity within default mode and non-
default mode regions, respectively. ASD symptoms correlated negatively with the connection strength of the de-
faultmodemidline core—medial prefrontal cortex–posterior cingulate cortex. Network segregation analysiswith
the participation coefficient showed a higher area under the curve for the ASD group. Our findings demonstrate
that the default mode network in ASD shows a pattern of poor segregation with both functional connectivity
metrics. This study confirms the potential for the functional connection of themidline core as an endophenotype
for social deficits. Poor segregation of the defaultmode network is consistentwith an excitation/inhibition imbal-
ance model of ASD.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Humans have an incredible capacity to reflect upon their own or
others3 emotional states. The default mode network (DMN) is a large-
scale brain network involved in processing one3s own or others3 emo-
tional state (Buckner et al., 2008). Impairments in this type ofmental re-
flection are part of the social-cognitive symptoms that define autism
spectrum disorders (ASD; Castelli et al., 2002; Kana et al., 2014;
ch, The Children3s Hospital of
A 19104, USA. Tel.: +1 267 426

. This is an open access article under
Lombardo et al., 2010; Uddin et al., 2008). The DMN has been hypothe-
sized as a candidate locus of pathology in ASD. This network includes
the medial prefrontal cortex (MPFC), medial parietal regions (posterior
cingulate cortex (PCC) and adjoining precuneus, and retrosplenial cor-
tex), lateral parietal regions (angular gyrus (AG)), and temporal regions.
In individuals with ASD, these regions show abnormal gray matter vol-
ume (Uddin et al., 2011), abnormal histopathology (Casanova et al.,
2006; Oblak et al., 2011), and reduced activation during tasks that re-
quire reflecting on emotional states (theory-of-mind and self/other
judgments; Castelli et al., 2002; Kana et al., 2014; Lombardo et al.,
2010; Uddin et al., 2008). Further, deactivation of DMN regions accu-
rately classified ASD from control subjects (Murdaugh et al., 2012).
Together, these findings support DMN functional pathology as a con-
tributor to social-cognitive impairments in ASD.
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Table 1
Summary table of all resting state default mode network studies in ASD.

Reference Groups/demographics Analysis Group differences

ASD Control

Kennedy and
Courchesne (2008)

n = 12 (8)*
Age M = 26.5
FSIQ M = 101.6

n = 13
Age M = 27.5
M = 105.6

Voxel-wise correlation based analysis from 3 a
priori regions-of-interest (MPFC, PCC, left AG)

Reduced FC in MPFC and left AG for ASD vs.
controls

Monk et al. (2009) n = 12 (10,8,7)
Age M = 26;
VIQ M = 117
PIQ M = 119

n = 12
Age M = 27
VIQ M = 110
PIQ M = 118

Pairwise correlation with PCC as seed and
correlated with 11 other DMN regions

1) Reduced FC in PCC-right SFG for ASD vs.
controls
2) Increased FC in PCC-right TempL and
PCC-right PHC for ASD vs. controls

Weng et al. (2010) n = 16 (6)
Age M = 15
VIQ M = 114
NVIQ M = 117

n = 14
Age M = 16
VIQ M = 113,
NVIQ M = 106

Pairwise correlation with PCC as seed and
correlated with 11 other DMN regions

Reduced FC from PCC to 9 of 11 DMN regions in
ASD vs. controls: RSC, bilateral MPFC, bilateral
SFG, bilateral TempP, bilateral PHC

Assaf et al. (2010) n = 15
Age M = 15.7
FSIQ M = 113.3

n = 15
Age M = 17.1
FSIQ M = 117.1

Independent components analysis −3 DMN
components were selected and compared for
strength of each component/sub-DMN network
between groups

Reduced FC in PrC (sub-network A) and MPFC
(sub-network C) for ASD vs. controls

Wiggins et al. (2011) n = 39 (17)
Age M = 14.0
VIQ M = 108.2
NVIQ M = 111.54

n = 41
Age M = 15.3
VIQ M = 116.5
NVIQ M = 105.4

Used a self-organizing map to identify subject
specific seed

Reduced FC from PCC to right superior frontal
gyrus and right IPL in ASD vs. controls

von dem Hagen et al.
(2013)

n = 17 (16)
Age M = 30
FSIQ M = 116
VIQ M = 112
PIQ M = 117

n = 24
Age M = 25
FSIQ M = 118
VIQ M = 115
PIQ M = 117

Compared DMN from ICA components and
voxel-wise correlation with MPFC, PCC, AG,
aInsula, and amyg as seeds. Small volume
corrected differences within 6 a priori seeds

1) ICA showed reduced FC in the MPFC for ASD
vs. controls
2) Seed based analysis showed reduced FC from
MPFC to TempL and to amyg

Lynch et al. (2013) n = 20
Age M = 9.96
FSIQ M = 112.6

n = 19
Age M = 9.88
FSIQ M = 112.2

Voxel-wise correlation with 3 seeds from
posterior midline DMN node (PCC, RSC, Prec)

1) Prec seed showed reduced FC in ASD to
cuneus, right thalamus, and bilateral cau-
date

2) RSC seed showed increased FC in ASD to
PHC, left pSTS, right pInsula, left TempP

3) PCC seed showed increased FC in ASD to
PHC, ERc/PRc, aLTC, TempP

Eilam-Stock et al.
(2014)

n = 17 (17)
Age M = 26.1
FSIQ M = 110.3

n = 15
Age M = 27.1
FSIQ M = 112.6

Voxel-wise correlation with whole-brain from a
PCC and an MPFC seed

1) Decreased FC in ASD group for Prec,
MPFC/ACC, pInsula, STG, ITG, GR, IPL and LOG,
2) Increased FC in ASD group within the medial
TempL

Jung et al. (2014) n = 19
Age M = 25.3
FSIQ M = 109.7

n = 21
Age M = 24.8
FSIQ M = 109.5

Voxel-wise correlation with whole-brain from a
PCC and MPFC seed

1) MPFC seed showed decreased FC in ASD
group for primary motor and sensory corti-
ces and MFG

2) PCC seed showed decreased FC in ASD group
for MPFC

Doyle-Thomas et al.
(2015)

n = 58 (58)
Age M = 12.5
FSIQ M = 98.7

n = 37
Age M = 12.7
FSIQ M = 116.9

Voxel-wise correlation with whole-brain from
an “eroded” Left PCC and Right PCC seed;
Secondary analysis of pairwise correlation with
PCC seeds to 8 other DMN regions

1) PCC seeds showed decreased FC in ASD to
left MPFC, bilateral AG, right ITG (whole--
brain)

2) PCC–MPFC connection was reduced in ASD
with pairwise correlations

3) PCC–MPFC functional connectivity de-
creased with age in ASD group, but in-
creased with age in control group

4) Slopes differed between groups on correla-
tion between DMN connections and mea-
sure of empathy. Better performance and
weaker correlations for ASD (left PCC-right
MPFC, right PCC to bilateral Prec, right
MPFC). Opposite pattern for right PCC to
right MTG

ACC = anterior cingulate cortex; AG = angular gyrus; aInsula = anterior insula; LTC = anterolateral temporal cortex; amyg = amygdala; ASD = autism spectrum disorder; DMN =
default mode network; ERc = entorhinal cortex; FC = functional connectivity; GR = gyrus rectus; IPL = intra-parietal lobule; ITG = inferior temporal gyrus; LOG = lateral occipital
gyrus; MPFC = medial prefrontal cortex; MTG = medial temporal gyrus; NVIQ = nonverbal IQ; PCC = posterior cingulate cortex; PHC = parahippocampal gyrus; pInsula = posterior
insula; PRc = perirhinal cortex; Prec = precuneus; pSTS = posterior superior temporal sulcus; RSC = retrosplenial cortex; SFG = superior frontal gyrus; STG = superior temporal
gyrus; TempL = temporal lobe; TempP= temporal pole; VIQ = verbal IQ.

* Number in parentheses is the portion of the sample that is included in medication free analysis. Multiple numbers indicates that analyses were run for individual medications (run
analyses without those taking stimulants or those taking SSRIs). Studies without a number in parentheses indicates no such analyses were conducted.
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Functional pathology of theDMN inASD is also apparent in function-
al connectivity analyses (temporal correlations between regions). Func-
tional connectivity can be measured in task-evoked and in task-free/
resting state (Smith et al., 2009) or during sleep (Fukunaga et al.,
2006). Resting state functional connectivity is posited to at least partly
reflect the statistical history of interactions between brain regions
(Dosenbach et al., 2007). In youth and adult ASD groups, task-evoked
functional connectivity of DMN regions is reduced relative to controls
during theory-of-mind (Mason et al., 2008), social exclusion (Bolling
et al., 2011), and face processing (Kleinhans et al., 2008) tasks. Similarly,
resting-state studies show that functional connectivity of the DMN is al-
tered in ASD. Themidline core, the PCC–MPFC connection, is consistent-
ly reduced in adults and adolescentswith ASD relative to controls (Assaf
et al., 2010; Doyle-Thomas et al., 2015; Jung et al., 2014; Kennedy and
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Courchesne, 2008; Monk et al., 2009; Ray et al., 2014; Rudie et al.,
2012a; von dem Hagen et al., 2013; Weng et al., 2010; Wiggins et al.,
2011) and predicts social impairment in ASD across the age span
(Assaf et al., 2010; Doyle-Thomas et al., 2015; Eilam-Stock et al., 2014;
Jung et al., 2014; Monk et al., 2009; see Table 1). However, non-
midline DMN regions like the AG (Doyle-Thomas et al., 2015;
Kennedy and Courchesne, 2008; Lynch et al., 2013; Monk et al., 2009;
Weng et al., 2010) or amygdala/temporal regions (Lynch et al., 2013;
von dem Hagen et al., 2013) show mixed results of over- and under-
connectivity to the PCC or MPFC in both youth and adults with ASD.
The convergence of findings from both task-evoked and task-free
functional connectivity paradigms, which both indicate atypical
midline DMN function in ASD, has raised this circuit3s potential as an
endophenotype for ASD.

1.1. Limitations in connectivity methods

However, gaps remain in our understanding of the DMN3s functional
connectivity in ASD, which limit its potential as an endophenotype.
Most studies have used a region-to-region correlation or seed-region-
to-whole-brain regression approach that has yielded a consistent pat-
tern of lower DMN functional connectivity in youth and adults with
ASD (Cherkassky et al., 2006; Kennedy and Courchesne, 2008; Monk
et al., 2009; von dem Hagen et al., 2013; Weng et al., 2010; Assaf et al.,
2010; Wiggins et al., 2011; Eilam-Stock et al., 2014; Jung et al., 2014;
Doyle-Thomas et al., 2015), but provides a limited field of view (von
dem Hagen et al., 2013). Region-to-region analyses only assess func-
tional connectivity among the selected regions. Seed-region-to-whole-
brain regression analyses provide full-brain coverage but only from
the selected seeds, and most prior studies did not use seeds from all
DMN regions (Doyle-Thomas et al., 2015; Jung et al., 2014; Lynch
et al., 2013;Monk et al., 2009;Weng et al., 2010). Using a single (or sub-
set) of seeds for regression analyses may skew the interpretation of an
entire network. Characteristics of cross-network relationships, such as
the degree of network segregation or integration, have proven useful
in understanding normative developmental changes during childhood
(Fair et al., 2007; Satterthwaite et al., 2013b), individual differences in
behavioral traits (e.g. anxiety, empathy, socialness) (see review
Vaidya and Gordon, 2013), and altered neural function in psychiatric
and neurological disorders with altered network segregation (Bassett
and Bullmore, 2009).

Graph theorymetrics are a newer approach to quantifying the segre-
gation and integration of a network (Bullmore and Sporns, 2009;
Rubinov and Sporns, 2010). Two studies utilized graph theory in charac-
terizing the DMN (and other networks) in youth with ASD (Ray et al.,
2014; Rudie et al., 2012a). Both studies convergedwith seed basedfind-
ings to demonstrate generally reduced magnitude of connections with-
in the DMN, and increased magnitude/number of connections between
DMN and non-DMN regions.

Employing a traditional seed-based approach and a graph theory ap-
proach to the same data set enriches the present study3s capacity to in-
form the literature. The present studywill be able to integrate these two
forms of functional connectivity analyses in the same participants to
demonstrate that the two approaches converge upon the same result
in the same set of children.

1.2. Interference of psychotropic medication

Psychotropic medication likely influenced past DMN studies in ASD.
For example, SSRIs reduced MPFC functional connectivity to medial
temporal regions in healthy adults (McCabe and Mishor, 2011). Treat-
ment with atypical antipsychotics in schizophrenia (Sambataro et al.,
2010), and stimulants or SNRIs in ADHD (Marquand et al., 2011;
Wilson et al., 2013) have increased PCC–MPFC functional connectivity.
Almost all youth and adult ASD groups in past DMN studies were
imaged while taking selective serotonin reuptake inhibitors (SSRIs)
(Assaf et al., 2010; Lynch et al., 2013; Monk et al., 2009; von dem
Hagen et al., 2013;Weng et al., 2010;Wiggins et al., 2011), neuroleptics
(Assaf et al., 2010; Lynch et al., 2013; Monk et al., 2009; Weng et al.,
2010; Wiggins et al., 2011), antipsychotics (Assaf et al., 2010; Monk
et al., 2009; Weng et al., 2010; Wiggins et al., 2011), stimulants (Assaf
et al., 2010; Lynch et al., 2013; Monk et al., 2009; Weng et al., 2010;
Wiggins et al., 2011), alpha-2A agonists (Lynch et al., 2013; Monk
et al., 2009), selective norepinephrine reuptake inhibitors (SNRIs)
(Monk et al., 2009), and anti-convulsants (Assaf et al., 2010; Weng
et al., 2010). Some of these studies reported secondary analyses show-
ing that medications did not influence group differences in the DMN,
but the sample sizes of most of these studieswere too small to be defin-
itive (b10) and likely too small to confirm relationships with symptoms
in youth and adults (Assaf et al., 2010; Kennedy and Courchesne, 2008;
Lynch et al., 2013; Monk et al., 2009;Weng et al., 2010). Several studies
had larger samples ofmedication free youth (Doyle-Thomas et al., 2015;
Wiggins et al., 2011), and adults (Eilam-Stock et al., 2014; von dem
Hagen et al., 2013) with ASD. One, which examined a large sample of
non-medicated youth with ASD did observe reduced PCC–MPFC func-
tional connectivity in children with ASD, and PCC–MPFC connectivity
strength correlated with a measure of empathy (Doyle-Thomas et al.,
2015). However, this study recruited a wide age-range of 6–17 years,
and the DMN is known to change with age (Fair et al., 2007;
Satterthwaite et al., 2013b). Thus, to confirm the DMN as an
endophenotype of ASD this finding requires additional, independent
replication inwhich ameasure of ASD symptoms is used and the poten-
tial influence of age is minimized.

1.3. Age and head motion confounds

In most prior studies, participants3 age was not tightly controlled.
The largest pediatric study of children with ASD observed reduced
PCC–MPFC functional connectivity in a sample ranging from early child-
hood to emerging adulthood (6–17 years) (Doyle-Thomas et al., 2015),
but a study restricted to 9–13 year-olds did not observe reduced PCC–
MPFC functional connectivity (Lynch et al., 2013). This finding may be
related to developmental changes in PCC–MPFC functional connectivity
during that age period (Gordon et al., 2011; Supekar et al., 2010), med-
ication status, or a true non-difference. Thus, a study with a narrower
age range may help to sort out the potential role of development in
these two discrepant findings.

Small amounts of head motion biases measurement towards re-
duced functional connectivity between distant regions such as frontal
and posterior cortices (Power et al., 2012; Satterthwaite et al., 2013b;
Van Dijk et al., 2012). ASD groups often move more than controls
(Yerys et al., 2009),whichmay result in spurious lower PCC–MPFC func-
tional connectivity in ASD (Deen and Pelphrey, 2012). To assess the po-
tential of the DMN as an endophenotype of ASD it is important to
examinewithin and cross-network functional connectivity in a restrict-
ed age range of children while controlling for potential confounds asso-
ciated with medication usage excessive head motion.

1.4. Present study

We evaluated the DMN resting state functional connectivity with
two complementary approaches. We first used a seed-based analysis
approach with six canonical DMN regions (Van Dijk et al., 2010). We
then used a network analysis approach with a graph theory metric
(i.e., participation coefficient, the ratio of within and cross-network
functional connectivity) (Bullmore and Sporns, 2009; Rubinov and
Sporns, 2010). The seed-based analysis identifies the most severely al-
tered functional connectivity patterns for each DMN region—connec-
tions surviving multiple comparisons corrections—and facilitates
cross-study comparison. The network analysis is complementary,
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because it aggregates all of the individual DMN regions3 functional con-
nectivity into a single DMN score that quantifies within-network con-
nectivity (segregation) and cross-network connectivity (integration).
We imaged 8–13 year-old non-medicated children with ASD and typi-
cally developing controls, using established procedures to minimize
head motion artifacts (Satterthwaite et al., 2013a). With seed-based
analyses, we predicted that we would observe reduced functional con-
nectivity of the MPFC–PCC connection in the ASD group, and individual
differences in MPFC–PCC connectivity strength would correlate nega-
tively with the severity of social-cognitive impairments within the
ASD group (Assaf et al., 2010; Doyle-Thomas et al., 2015; Jung et al.,
2014; Monk et al., 2009). Past studies have not examined the functional
connectivity of remaining DMN nodes in children with ASD; therefore
we lacked bases for making predictions for those regions. At the net-
work level, prior mixed findings within the DMN coupled with recent
knowledge of over-connectivity whenmotion is well-controlled in chil-
dren with ASD (Supekar et al., 2013) lead us to predict a disruption in
the segregation of the DMNwith other large-scale networks. Therefore,
we predicted the ASD group3s DMN participation coefficient would be
higher than controls, representing reduced DMN segregation from
other networks.
2. Method

2.1. Participants

Twenty-two non-medicated children with ASD and 22 typically
developing control (TDC) children matched on age, IQ, and sex
ratio were included in the study (see Table 2). Five additional chil-
dren (3 ASD) were excluded due to excessive motion. All children
had Full-Scale IQ N 80, and no history of seizure disorder. All ASD par-
ticipants were not on psychotropic medication while completing the
scan, except for one participant whowas prescribed a stimulant. This
one child was medication free for 24 h prior to scanning, and exclud-
ing this child did not change the results. These childrenwere part of a
prior study3s cohort (Supekar et al., 2013). ASD diagnoses were made
using DSM-IV-TR criteria and confirmed with the Autism Diagnostic
Observation Schedule (ADOS) (Lord et al., 2000) and Autism Diag-
nostic Interview—Revised (Lord et al., 1994). TDCs were screened
for developmental delays, learning, psychiatric, and neurological dis-
orders through a phone interview, and T-scores below the threshold
of clinical score (T-score b 65) for all childhood psychiatric disorders
on the Child and Adolescent Symptom Inventory (Gadow and
Sprafkin, 2010).
Table 2
Participant characteristics.

TDC ASD p-Value

(n = 22) (n = 22)

Chronological age (years)
0.93M (SD) 11.37 (1.56) 11.41 (1.51)

Range 8.50–13.58 8.42–13.83 –
Full Scale IQ

M (SD) 117.64 (10.67) 112.68 (13.66) 0.19
Range 104–136 83–138 –

Sex-ratio (M:F) 18:4 18:4 1.00
ADI-R

Reciprocal social interaction – 20.05 (5.37)
Communication – 15.95 (4.49)

Repetitive behaviors – 4.86 (1.98)
ADOS

Social + communication M (SD) – 11.00 (3.19)
Severity score M (SD) – 6.59 (1.74)

ASD = autism spectrum disorder; TDC = typically developing control.
The Institutional Review Boards of the participating institutions ap-
proved the research protocol, consent was obtained from parents and
assent from participants in accordance with the Declaration of Helsinki,
and participants received monetary compensation.

2.2. Imaging procedure

Functional images were acquired on a 3 T Siemens Trio scanner
using a T2*-sensitive gradient echo pulse sequence: 154 whole-brain
volumes, 43 slices, TR/TE/FOV/flip angle/voxel size = 2000/31 ms/
256 × 256 mm/90°/3 mm isotropic. Seven children (5 TDC) received
an alternate sequence: 150 whole-brain volumes, 37 slices, TR/TE/
FOV/flip angle/voxel size = 2000/30 ms/192 × 192 mm/90°/3 mm iso-
tropic. A high-resolution T1-weighted image for co-registration of
the functional images was acquired with Siemens MPRAGE sequence:
TR/TE/TI/FOV/slices/flip angle = 1900/2.52/900 ms/256 × 256 mm/
176 1 mm3 slices/90°. Participants were instructed to keep their eyes
open and lie still while the monitor displayed a black screen. Resting
state data were collected in the middle of a sequence of fMRI runs for
the seven children receiving an alternate sequence, but first for the re-
maining children; all results remained significant after excluding those
seven children.

2.3. Subject level time series processing

All preprocessing was completed in FSL (Smith et al., 2004) or using
in-house scripts (Satterthwaite et al., 2013a). Functional images were
brain extracted, the first four volumes were removed to allow for
BOLD signal stabilization, and then all images were slice-time corrected,
motion corrected to the median volume, spatially smoothed (7 mm
FWHM), grand mean scaled with mean-based intensity normalization,
and co-registered with boundary-based registration. Each subject3s
time series was then normalized into the Montreal Neurological Insti-
tute standard anatomical space (2 mm template) using the deformable
registration via attribute matching and mutual saliency software (Ou
et al., 2011). Prior to motion artifact correction, we compared the
mean relative displacement between groups generated by FSL3s
MCFLIRT, which is the mean value of the root mean square relative to
the previous volume. Groups were matched (ASD M = 0.09, SD =
0.04; TDC M = 0.09, SD = 0.04; p = 0.78).

Weminimized headmotion artifacts by using a validated procedure
that regresses out common motion and physiological noise with a 36-
parameter model from the time course of each voxel (Satterthwaite
et al., 2013a). The confound regression model included 24 parameters
related tomotion artifact: six realignment parameters, the temporal de-
rivative of each realignment parameter, and inclusion of the quadratic
term for the previous 12 parameters. A total of 12 parameters related
to physiological noise were estimated from the mean global signal re-
gression, white matter (WM), and cerebrospinal fluid (CSF); their tem-
poral derivatives; and the quadratic terms for the previous 6
parameters. WM and CSF were defined on a subject-specific basis
through segmentationof the T1-weighted image usingDeformable Reg-
istration via Attribute Matching and Mutual-Saliency Weighting soft-
ware (Ou et al., 2011) and other internal software (Multiplicative
Intrinsic Component Optimization). Prior to regression, we band-pass
filtered the functional time series, the seed, and the confound regressors
to retain frequencies between 0.01 and 0.08 Hz. Seed and confound re-
gressors were filtered to prevent a mismatch in the frequency domain
and to allow the best fit between the confound parameters and the
retained signal frequencies (Hallquist et al., 2013).

2.4. Seed-based analysis

Fourmillimeter radius spheres for six DMNregions of interest (ROIs)
were generated in MARSBAR (Brett et al., 2002), centered around
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coordinates taken from a largeN study that established the reliability of
DMN functional connectivity (Van Dijk et al., 2010). The DMN ROIs in-
cluded the PCC (MNI coordinates: 0, −53, 6), MPFC (0, 52, −6), left
and right AG (−48,−62, 36; 46,−62, 32), and left and right hippocam-
pus (HC; −24, −22, −20; 24, −22, −20; see Fig. 1). For each partici-
pant, a multiple regression was conducted with the extracted time
series for each seed ROI entered as the covariate of interest, and the
36 confound signals entered as covariates of no interest. This resulting
map was transformed to a z-stat map with Fisher3s r-to-z transforma-
tion, and then entered into group-level random effects analysis, with
age, sex, Full-Scale IQ, and root mean squared volume-to-volume dis-
placement of all voxels as covariates of no interest. Voxel-wise and
cluster-extent thresholds of Z N 2.6 and p b 0.05 were used.

To replicate prior research within the ASD group, we conducted
post-hoc correlations between the ADOS calibrated severity score
(Gotham et al., 2009) and Fisher3s r-to-z values for connections that dif-
fered between groups. Prior studies showed a correlation between the
MPFC–PCC connection and ADOS scores in adults and children (Assaf
et al., 2010; Doyle-Thomas et al., 2015; Jung et al., 2014; Monk et al.,
2009). Because of the existing evidence supporting an a priori hypothe-
sis that theMPFC–PCCwould correlate with ASD symptoms, we did not
include it in our multiple comparisons correction; for all other correla-
tions between ADOS scores and functional connections we used a
False Discovery Rate of q b 0.05 to correct for multiple comparisons
(Benjamini and Hochberg, 1995).
2.5. Network segregation analysis

We extracted time series data from a 264-ROI parcellation scheme,
which was previously mapped to 14 functional networks with an inde-
pendent sample (Power et al., 2011). The functional networks include
the DMN, visual, auditory, salience, cingulo-opercular, frontal–parietal,
memory retrieval, cerebellum, sensory-somatomotor-hand, sensory-
somatomotor-mouth, subcortical, ventral attention, dorsal attention,
and uncertain. The uncertain network includes ROIs that do not corre-
late with any functional network. We created a 264 × 264 functional
connectivity matrix of pairwise Pearson3s correlations. We converted
correlations into a sparse and binary form (Power et al., 2011), and
Fig. 1.Two-sample t-tests comparing the functional connectivitymapsof theASD and TDC
groups by each seed ROI. Yellow spheres on the medial or lateral surface represent the
seeds. Spheres are larger than 4mm for visualization purposes. The TDCNASD comparison
is shown in the orange-yellow palette, and the ASD N TDC comparison is shown in the
blue-light blue palette. All differences survive a voxel threshold of Z N 2.6 and cluster
corrected at p b 0.05. The group difference of lower right AG-frontal pole cluster in ASD
is not visible in this figure, but can be seen in Fig. S3.
then calculated the participation coefficient of each ROI across a range
of binarization thresholds to characterize the properties of the DMN
(Power et al., 2011; Rubinov and Sporns, 2010). This approach mini-
mizes potential spurious connections. The participation coefficient is a
summary network topology measure that quantifies how connected a
defined ROI is to other ROIs within and across networks (Rubinov and
Sporns, 2010). A higher participation coefficient indicates more cross-
network connections, denoting network integration. In contrast, a
lower participation coefficient indicates more within-network connec-
tions, denoting segregation. We created a mean DMN participation co-
efficient by taking the mean of all 58 ROIs labeled as DMN regions
within the established community structure of this ROI set (Power
et al., 2011). We plotted the participation coefficient for each
individual3s DMN using a range of binarization thresholds ranging
from r = .1 to r = .7, and then calculated the DMN3s Area Under the
Curve (AUC). Higher AUC scores correspond to greater network integra-
tion across all thresholds, and lower scores correspond to greater segre-
gation. Group differences in AUC were compared in an analysis of
covariancewhere age, sex, Full-Scale IQ, and rootmean squarewere en-
tered as covariates. For all analyses, we examined functional connectiv-
ity within a mask that included voxels present in every participant3s
scan. This led to partial cerebellum coverage, and included the following
cerebellum ROIs from the 264-parcellation scheme: (−18,−76,−24);
(−16, −65, −20), (−32, −55, −25); and (22, −58, −23). Group dif-
ferences are interpreted within the 14 network community structure
(Power et al., 2011). In one seed-based analysis a cluster emerged in
the nucleus accumbens which is not represented in Power et al.
(2011) a priori community structure; therefore, we interpreted this
finding within the broader literature which points to this region as
highly relevant for processing reward signals (Knutson et al., 2000;
O3Doherty, 2004). The inclusion of the reward network in the seed-
based analysis brings the total number of potential networks to 15,
while the graph theory analysis only included the 14 network commu-
nity structure.

3. Results

3.1. Seed-based analysis

3.1.1. Group differences from DMN seeds to DMN regions.
Compared to controls, the ASD group showed reduced functional

connectivity from the PCC seed to a region in MPFC, and from the
MPFC seed to a region in the PCC. The ASD group also had lower func-
tional connectivity between the MPFC seed and the right temporal
pole, as well as between the right AG seed and a left frontal pole region
(see Fig. 1 and Table 3). See the SI for within group DMNmaps. We fur-
ther re-analyzed this datawith 6mmradius sphere ROIs. This secondary
re-analysis demonstrated that the pattern of results was not changed by
ROI size (see SI).

3.1.2. Group differences from DMN seeds to the rest of the brain.
Compared to the TDC group, the ASD group showed reduced func-

tional connectivity between the DMNROIs and several regions involved
in primary sensory networks (Visual, Somatosensory, Motor), higher-
level association networks (Fronto-Parietal), as well as the Subcortical
andReward networks. TheDMNROIs also had increased functional con-
nectivity with several regions in primary sensory networks (Visual, So-
matosensory, Motor) and higher-level association networks (Salience
and Ventral Attention). See Table 3 for detailed descriptions of group
differences for each seed.

3.1.3. Correlation with social symptoms
There was a significant negative correlation between the MPFC

seed–PCC cluster and ASD symptoms, r = −0.51, p = 0.01. See Fig. 2.
The correlation between the PCC seed–MPFC cluster andASD symptoms



Table 3
Group differences in FC of default mode network regions with seeds.

Region BA Peak MNI
coordinate

Voxels Peak
z-score

X Y Z

PCC
ASD N TDC Supramarginal gyrus 40 54 −40 32 725 4.23

Lingual gyrus 19 18 −48 −10 374 4.23
Occipital pole 17 −8 −92 8 361 3.76
Occipital pole 19 18 −92 26 282 3.66
Fusiform gyrus 37 −30 −48 −14 149 4.24
Fusiform gyrus 37 38 −66 −20 143 3.83

TDC N ASD Nucleus accumbens – −6 20 −4 730 4.55
Medial prefrontal
cortex

10 10 48 −8 279 4.23

Orbitofrontal cortex 47 32 38 −10 212 4.27
Cerebellum – 0 −48 −30 125 4.05

MPFC
ASD N TDC Cerebellum – −26 −50 −24 279 3.97
TDC N ASD Precuneus/PCC 31/23 −2 −58 24 535 4.55

Temporal pole 38 36 14 −26 525 4.47
Pallidum – 16 −8 −2 162 5.10

Left AG
ASD N TDC Pallidum – −16 −2 −2 342 3.24

Putamen – −26 −14 8 122 3.82
Insula 13 40 −16 −2 90 3.59

Right AG
ASD N TDC Frontal pole 10 −28 48 28 243 4.41

Mid-cingulate/SMA 6 8 −2 48 241 5.04
TDC N ASD Lateral occipital 7 28 −76 40 269 4.54

Frontal pole 10 20 38 −6 114 3.58
Left HC
ASD N TDC pSTG 21 48 −36 0 239 3.60

Cerebellum – −2 −44 −8 148 3.87
Pallidum – −22 −8 0 138 3.54
Thalamus – −14 −32 2 106 4.1
Cerebellum – 42 −64 −26 104 3.57

TDC N ASD Lingual gyrus 18 4 −90 −10 114 3.56
Right HC
ASD N TDC Middle cingulate 31 10 −22 42 112 3.95
TDC N ASD Lateral occipital 19 −42 −82 10 626 5.34

Postcentral gyrus 1 68 −14 30 204 4.1
Occipital pole 18 0 −94 28 135 3.9

BA=Brodmann3s area; PCC=posterior cingulate cortex; pSTG=posterior superior tem-
poral gyrus; SMA = supplementary motor area.
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was in the same direction, but non-significant, r=−0.34, p=0.13. No
other correlations survived FDR correction.
Fig. 2. This scatterplot shows the significant negative correlation between functional connectiv
Autism Diagnostic Observation Schedule (ADOS).
3.2. Network segregation analyses

Mean AUC was significantly lower in the TDC group (M = 28.95;
SD = 2.02) than the ASD group (M = 30.14, SD = 1.97), z = 1.99,
p b 0.05 (see Fig. 3), indicating poorer DMN segregation in the ASD
group.We explored whether this effect was driven by reduced segrega-
tion between the DMN and specific networks by comparing the raw
(weighted) mean participation coefficient for each network across
groups. The participation coefficient for the DMN–Salience network
was higher in ASD than the TDC group, F(1,38) = 5.48, p = 0.02 (see
SI for details).
4. Discussion

Comprehensive examination of DMN functional connectivity in non-
medicated children with ASD yielded three main findings: First, as hy-
pothesized, the connections between the midline DMN core regions,
MPFC and PCC, were reduced in the ASD group relative to controls.
Within the ASD group, lower connectivity in this connection PCC–
MPFC strength correlated with poorer social function. Second, seed-
based analyses showed a mixed pattern of under- and/or over-
connectivity in ASD children between multiple DMN nodes and those
of other networks including Visual, Subcortical, Motor, Somatosensory,
Salience, Ventral Attention, and Reward. These findings were evident
even when manipulating the size of the seed ROI. Third, network anal-
yses revealed that the DMN interactedwith other networks to a greater
extent in the ASD group, as indicated by a higher participation
coefficient.

The present findings should be interpreted in light of the following
methodological considerations. First, seed/ROI specifications differ be-
tween our study and prior research (Assaf et al., 2010; Di Martino
et al., 2014; Doyle-Thomas et al., 2015; Jung et al., 2014; Kennedy and
Courchesne, 2008; Lynch et al., 2013; Monk et al., 2009; Weng et al.,
2010); however, our ability to replicate differences in PCC–MPFC con-
nectivity, as well as the relationship to ASD symptoms lessens concern
about this difference. We also elected to use an independent, validated
a priori community for our graph theory analyses rather than deriving
community structures from our own sample. There is no agreement
about which community structure is best, and implementation of
other parcellation schemesmay have yielded different results; however
we selected a community structure that was optimized for measuring
intrinsic connectivity networks in resting state data. We also opted for
ity of theMPFC seed to a cluster in PCC (y-axis) and the Calibrated Severity Score from the



Fig. 3. Network analysis: the AUC plot for each group3s participation coefficient (y-axis)
across the range of minimum thresholds (x-axis).
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an independent community, as establishing a community from our own
TDC group would likely bias our results towards greater group differ-
ences because the TDC group is a perfectmatch to the community struc-
ture and the ASD group is not. Building a combined community
structure would complicate interpretation, as this would not represent
normative network architecture.

The second important methodological decision was that global signal
regression (GSR) was employed in this study. GSR is the single most ef-
fective processing step for removing motion-related artifact in functional
connectivity data (Power et al., 2014; Satterthwaite et al., 2013b), which
is critically important when comparing groups likely to demonstrate dif-
fering degrees ofmotion, as in this study. However,we recognize that this
procedure introduces a substantial negative bias in connectivity values
(Fox et al., 2009), which can make it difficult to interpret observed nega-
tive connectivity strengths. Accordingly, we interpret all results from the
present study in relative terms, e.g. as reflecting differences in the level of
seed-to-region or network integrationbetween the groups, rather than in
absolute terms, e.g. as two regions or networks being more vs. less nega-
tively connected in the groups.

Third, our ASD sample3s cognitive ability was in the High Average
range, which facilitates cross-study comparison, but limits generaliza-
tion to those with intellectual disability. In addition, many of the chil-
dren in our ASD sample may have received psychotropic medication
in their lifetime and the long-term effects on functional connectivity
cannot be quantified in the present study. However, we controlled for
active psychotropic medication use on functional connectivity of the
DMN.

Fourth, while we controlled for age, sex, and IQ, which are known to
affect DMN functional connectivity in adolescents with ASD (Wiggins
et al., 2011) and typical development (Satterthwaite et al., 2014); we
did not match participants on puberty stages, which may have contrib-
uted to group differences.

4.1. The DMN midline core

Our study clarifies the nature of the DMNmidline connection (PCC–
MPFC) in ASD. First, consistentwithmost prior studies in ASD, function-
al connectivity of the PCC–MPFC was reduced in ASD. Importantly, this
resultwas found in the present study after controlling for active psycho-
tropic medication treatment and head motion, which is a critique of
prior studies (Deen and Pelphrey, 2012). There is only one study to
date that has examined a large non-medicated group of children with
ASD (Doyle-Thomas et al., 2015), whereas other studies of youth and
adults examined small non-medicated subsets (b10) (Assaf et al.,
2010; Kennedy and Courchesne, 2008; Lynch et al., 2013; Monk et al.,
2009;Weng et al., 2010). The prior large pediatric sample and the pres-
ent study of non-medicated children suggest that medication effects do
not drive reduced within-DMN functional connectivity in ASD. Further-
more, unlike past studies, we employed rigorous controls for head mo-
tion which, when uncontrolled, may bias functional connectivity
estimates towards a pattern predicted by theoretical models of
ASD—higher local functional connectivity and lower long-range func-
tional connectivity (Deen and Pelphrey, 2012). Controlling for medica-
tion and head motion bolster confidence in the now well-replicated
observation of weaker PCC–MPFC functional connectivity in youth and
adults with ASD, as well as its negative correlation with ASD symptom
severity (Assaf et al., 2010; Eilam-Stock et al., 2014; Jung et al., 2014;
Monk et al., 2009). While only the MPFC seed yielded a significant rela-
tionship with ASD social symptoms, the PCC seed to MPFC cluster
yielded a relationship of a medium effect (Cohen, 1988), which may
have been underpowered to reach significance. We used the calibrated
severity score rather than raw ADOS scores, which is a superior metric
of symptom severity because of its independence from chronological
age and verbal IQ (Gotham et al., 2009).

Our DMN midline functional connectivity findings converge with
prior evidence of altered midline functional connectivity in ASD youth
and adults (Cherkassky et al., 2006; Doyle-Thomas et al., 2015; Eilam-
Stock et al., 2014; Jung et al., 2014; Monk et al., 2009; Weng et al.,
2010), as well as atypical structural findings (Ameis et al., 2013;
Cauda et al., 2011; Duerden et al., 2012; Ikuta et al., 2014; Jiao et al.,
2010; Oblak et al., 2010, 2011; Rojas et al., 2006; Shukla et al., 2011;
Uddin et al., 2011; Waiter et al., 2004) and task-evoked functional con-
nectivity findings (Bolling et al., 2011; Kleinhans et al., 2008; Mason
et al., 2008). The present study also converges with a recent, large
multi-site resting state study that showed reduced functional connec-
tivity between the PCC and MPFC in non-medicated children with ASD
(Doyle-Thomas et al., 2015). However, these two studies differ from a
third study of children with ASD that examined functional connectivity
of the DMN with two distinct ROIs that separated the PCC and
retrosplenial cortex based on anatomical boundaries (Lynch et al.,
2013). This anatomically based study did not observe reduced PCC–
MPFC functional connectivity, but instead observed increased functional
connectivity with medial temporal and insula regions, which predicted
social symptoms. The differing results of this study may relate to the in-
clusion of children taking psychotropic medication, differences in ROI
placement, or regression of white matter and cerebro-spinal fluid signal
in addition to global signal.Wenowknow that these differences inmeth-
od can contribute to discrepant findings across studies (Nair et al., 2014).

Our results augment the potential of PCC–MPFC functional connec-
tivity as an endophenotype for social communication impairments in
ASD. Considering criteria listed by Castellanos and Tannock (2002), it
is a brain-based quantitative trait affiliated with the liability of ASD.
The final criterion is heritability, and there is initial evidence that sib-
lings of individuals with ASD show altered deactivation of the MPFC
during mentalizing tasks (Murdaugh et al., 2012). Future research in
this vein should focus on the clear demonstration of heritability within
1st degree family members using resting state data, tracking PCC–MPFC
functional connectivity across development in ASD to examine its po-
tential to predict long-term outcomes, and testing whether DMN func-
tional connectivity changes with behavioral or pharmacological
treatment.

4.2. DMN functional connectivity with other networks

Both statistical approaches used in this study suggest poor
segregation of the DMN in ASD. The two approaches differ in their
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measurement of functional connections. The seed-based approach ex-
amined relationships between the seed and every voxel in the brain,
and so every possible connection difference is probed in the analysis.
The network approach examined connections between ROIs that repre-
sented all networks within an established architecture, and this
provides a context of how the DMN interacts as a whole with
other large-scale networks. These different functional connectivity ap-
proaches converged to reveal atypical interactions between the DMN
and other networks in ASD compared to controls.

The seed-based results demonstrated a mixed pattern of over- and
under-connectivity for the DMN (i.e., the ASD group3s DMN showed in-
creased and decreased functional connectivity with regions in Visual,
Motor, Somatosensory, Subcortical, Cerebellum, Salience, and Ventral
Attention networks). This pattern converges with general conclusions
drawn across functional connectivity studies of ASD, which have
shown both increased and decreased functional connectivity across
higher association and sensory networks (Müller et al., 2011). At a min-
imum, these results support reduced network segregation of the DMN
in ASD. Ourfindings of reducedDMN segregation in ASD relative to con-
trols converges with prior studies in youth with ASD (Ray et al., 2014;
Rudie et al., 2012a,b; Shih et al., 2011). In two studies Rudie et al.
(2012a,b) demonstrated decreased segregation in youth with ASD in
the functional and structural connectivity of theDMN, visual, and senso-
rimotor, and social communication networks. Similarly, Ray et al.
(2014) demonstrated that the magnitude of connections within highly
connected or “rich-club” regions (MPFC and PCC) is smaller in children
with ASD than controls. Shih et al. (2011) demonstrated that youthwith
ASD exhibited decreased segregation of the superior temporal sulcus
with a social communication network that included DMN regions. By
one view of network interaction, the DMN's putative role of internal
prospective and reflective processing (Buckner et al., 2008; Raichle
et al., 2001; Zhang and Raichle, 2010) is facilitated by its interaction
with the Salience network,which directs toggling between intra-person
(i.e., DMN) and extra-person (attributed to Fronto-Parietal or Visual
networks) processing (Seeley et al., 2007; Uddin et al., 2014). We spec-
ulate that our secondary analysis revealing atypical DMN and Salience
network interactions in the ASD group relate to a new hypothesis that
altered DMN–Salience interactions reflect impaired toggling across
brain states (Uddin et al., 2014).

We observed greater DMN interaction with networks responsible
for signaling (Salience), processing (Visual, Sensorimotor, Ventral atten-
tion), and coordinating motor responses (Subcortical, Cerebellum).
Prior ASD studies observed similar functional connectivity alterations
between Fronto-Parietal and DMN networks, which predicted repeti-
tive behavior symptoms (Uddin et al., 2014) and regions responding
to theory-of-mind tasks and the ‘mirror neuron’ network (Fishman
et al., 2014). These findings, together with ours, converge on the
theme that functional connectivity alterations in ASD exist within net-
works and across networks (but see Di Martino et al., 2014). Higher
cross-network interaction of the DMN in ASD, quantified as a higher
participation coefficient in the present study, adds to other graph theory
measures such as degree centrality (Di Martino et al., 2014) and mean
global functional connectivity (Supekar et al., 2013), which also re-
vealed greater regional interaction in ASD, but without regard to net-
work assignment. Growing demonstrations of greater interaction
across brain regions (or networks) in ASD are compatible with an
emerging excitation/inhibition imbalance hypothesis of ASD. This hy-
pothesis is rooted in evidence of genetic, receptor, and enzyme deficits
in the gamma-aminobutyric acid (GABA) signaling in animal models
of ASD (Rubenstein, 2011; Rubenstein and Merzenich, 2003; Yizhar
et al., 2011). Diminished GABAergic function is hypothesized to disrupt
the excitatory/inhibitory balance at the neuronal level, and this affects
the formation and stabilization of synapses (presynaptic terminals and
dendritic spines) during brain development, which in turn, leads to
mostly over-connectivity and poorly segregated networks in ASD
(Pizzarelli and Cherubini, 2013; Rubenstein and Merzenich, 2003).
While our findings cannot directly address this hypothesis, MR spec-
troscopy has revealed GABA abnormalities in medial prefrontal cortex,
including theACC (Cochranet al., 2015). Future investigations that com-
bine multimodal approaches with longitudinal designs will provide the
necessary evidence to evaluate the excitation/inhibition hypothesis.
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