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Abstract

A general linear model is widely used for analyzing fMRI data, in which the blood oxygenation-

level dependent (BOLD) signals in gray matter (GM) evoked in response to neural stimulation 

are modeled by convolving the time course of the expected neural activity with a canonical 

hemodynamic response function (HRF) obtained a priori. The maps of brain activity produced 

reflect the magnitude of local BOLD responses. However, detecting BOLD signals in white matter 

(WM) is more challenging as the BOLD signals are weaker and the HRF is different, and may 

vary more across the brain. Here we propose a model-free approach to detect changes in BOLD 

signals in WM by measuring task-evoked increases of BOLD signal synchrony in WM fibers. 

The proposed approach relies on a simple assumption that, in response to a functional task, 

BOLD signals in relevant fibers are modulated by stimulus-evoked neural activity and thereby 

show greater synchrony than when measured in a resting state, even if their magnitudes do not 

change substantially. This approach is implemented in two technical stages. First, for each voxel 

a fiber-architecture-informed spatial window is created with orientation distribution functions 
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constructed from diffusion imaging data. This provides the basis for defining neighborhoods in 

WM that share similar local fiber architectures. Second, a modified principal component analysis 

(PCA) is used to estimate the synchrony of BOLD signals in each spatial window. The proposed 

approach is validated using a 3T fMRI dataset from the Human Connectome Project (HCP) at a 

group level. The results demonstrate that neural activity can be reliably detected as increases in 

fMRI signal synchrony within WM fibers that are engaged in a task with high sensitivities and 

reproducibility.
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1. Introduction

Functional MRI (fMRI) based on blood oxygenation level-dependent (BOLD) signals is 

well established for detecting and mapping neural activities in brain gray matter (GM). 

However, there are relatively few corresponding reports of fMRI studies of white matter 

(WM), partly due to continuing uncertainties regarding the sources of BOLD signals therein 

(Gawryluk et al., 2014; Mazerolle et al., 2020) as well as technical challenges in their 

reliable detection. Nonetheless, the existence and potential functional relevance of BOLD 

signals in WM have been validated by a growing number of recent studies, (see reviews 

in (Gore et al., 2019; Grajauskas et al., 2019)). These have been partially motivated by 

the fact that WM comprises about half of the brain parenchyma and plays an important 

role as the communication system of the brain, and so the functional properties of WM 

should be included in any complete model of brain organization. In addition, recent studies 

of diffusion fMRI demonstrate that neural activities in WM could trigger microstructural 

changes of axons, which provides a new perspective for functional studies of WM (Lin et 

al., 2014; Spees et al., 2013; Spees et al., 2018; Olszowy et al., 2021). In the emerging 

field of WM fMRI, analysis methods established for GM have been adopted and applied, 

including measures of function connectivity (Ding et al., 2018; Gao et al., 2021; Jiang et al., 

2019) and spectral analysis (Huang et al., 2018; Marussich et al., 2017; Ji et al., 2019; Li et 

al., 2021), and these have shown the potential of characterizing selected features of WM in 

neurodegenerative and other disorders.

The standard approach that has been widely used in fMRI studies of GM uses a general 

linear model (GLM) to detect activations that correspond to a change in the local BOLD 

signal magnitude, but this may not be appropriate for WM as suggested by previous 

reports (Li et al., 2019). The GLM assumes that the BOLD response to stimulation may 

be treated as a linear shift-invariant system so that the BOLD signals can be modeled 

by convolving the time course of neural activities with a hemodynamic response function 

(HRF). The GLM assumes that evoked neural activations are synchronous with the timings 

of presented stimuli or tasks that trigger hemodynamic responses (Poline and Brett, 2012) 

and correspond to a change in signal magnitude. This assumption may not be valid in all 

situations, especially in WM because it ignores intrinsic brain activities that preexist in 

the background and are unrelated to extrinsic stimuli. Such intrinsic brain activities were 
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considered noise before they were found to predict spatial patterns of functional connectivity 

(i.e., functional networks) in a resting state (Zhang and Raichle, 2010; Laird et al., 2011). A 

voxel in WM contains a large number of axons that connect neurons in different positions 

in GM (Schilling et al., 2018; Voigt et al., 2019) and these may produce asynchronous 

neuronal signals so that fMRI signals measured in a WM voxel may be more complex than 

those in GM and thus inconsistent with stimuli in tasks. A further assumption in the GLM 

is that the HRF keeps fixed for all positions, as implemented in SPM (Poline and Brett, 

2012). This assumption is not valid in all WM as previous studies have shown that HRFs 

measured in WM exhibit substantial regional variations (Li et al., 2019; Courtemanche et 

al., 2018). A potential solution to the issue of the spatially varying HRF is to use variants 

of a GLM that allow spatial-adaptive HRFs to be estimated by a set of Finite Impulse 

Response (FIR) bases (Kay et al., 2008). However, multiple coefficients associated with 

the set of FIR functional bases need to be determined in the modeling of HRF, where the 

noise-dependent overfitting in such approaches may prevent accurate activation mapping 

(Vincent et al., 2010). Moreover, many studies demonstrate that the hemodynamic responses 

characterized by BOLD signals are nonlinear in GM, where the hemodynamic responses 

are time-dependent and thus BOLD signals cannot be modeled by the convolution that is 

implemented in GLM (see the review in (Polimeni and Lewis, 2021)). The nonlinearity of 

hemodynamic responses would also exist in WM, which could also result in the invalidity 

of the GLM assumption. Besides, fMRI signal fluctuations in WM are substantially lower 

than those in GM (Yarkoni et al., 2009) due to the substantially lower blood volume in WM 

compared to GM (Gawryluk et al., 2014; Jochimsen et al., 2010) and the resulting lower 

BOLD signalnoise-ratio poses additional challenges to the analysis of WM.

A model-free approach, without the assumptions mentioned above, that produces robust 

detection of activity-related BOLD signals in WM is thus needed. An alternative to the 

GLM that incorporates the temporal coherence of a voxel with respect to its neighbors may 

provide a means of activation mapping without modeling the BOLD signal or assuming 

local changes in signal magnitude. This approach is inspired by previous findings that the 

regional homogeneity (ReHo) of fMRI signals in GM is modulated by stimuli presented 

in tasks (Zang et al., 2004; Yuan et al., 2013; Lv et al., 2013). The ReHo approach 

relies on the fact that voxels within a GM volume at a macroscopic scale constitute a 

functional unit in which the synchrony of inter-voxel time courses can be enhanced under 

functional loading. In contrast to GM, anatomical structures of the WM feature complex 

interwoven networks, in which fibrous tissues constitute elongated functional units for 

neural signal transmission and thus show structural anisotropy. Brain functional processes 

embedded in such an anisotropic substrate should also exhibit anisotropic spatial profiles. 

This has been demonstrated by previous studies of BOLD signals in WM (Ding et al., 

2013; Ding et al., 2016; Schilling et al., 2019), which reported structure-specific temporal 

correlations along WM tracts in a resting state that become more pronounced in relevant 

structures under a task loading. Given the relationships between local fiber architectures and 

WM function, we propose a new approach for mapping activity-related BOLD signals in 

WM that incorporates a metric of BOLD signal synchrony. This approach introduces two 

technical innovations. First, an adaptive spatial window in the form of fiber-architecture 

informed neighborhood is created for each voxel, within which time courses are collected 
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and weighted. The neighborhood is determined using diffusion orientation distribution 

functions (ODFs) obtained from high angular resolution diffusion imaging (HARDI) data. 

A similar concept was proposed in a previous report that used anisotropic spatial filtering 

to enhance noisy BOLD contrasts in WM (Abramian et al., 2021). Second, a modified 

principal component analysis (PCA) is applied to time courses of fMRI data to estimate 

the synchrony of time courses within the fiberarchitecture-informed window of each voxel. 

Taken together, the proposed approach overcomes the intrinsic limitations of GLM based 

analyses of BOLD signals in WM.

In the following, the proposed model-free mapping of neural activations is illustrated using a 

3T fMRI dataset from the Human Connectome Project (HCP) at a group level. First, spatial 

patterns within activation maps are evaluated by reference to anatomical structures of WM 

fibers derived from diffusion MRI. Then, the influence of task loading on activation are 

investigated by comparing activation maps derived from motor-task fMRI data with those 

acquired in a resting-state. Motor-task enhanced activations in WM are demonstrated in WM 

regions related to the primary motor cortex, or M1, which are determined by WM fiber 

tracking with seed points in M1. Furthermore, the sensitivity, specificity and reproducibility 

of the proposed method are assessed statistically based on fiber-tracking-based parcellations 

of task-related and unrelated WM regions.

2. Methods

The proposed approach consists of two major steps implemented on a voxel-by-voxel basis 

(Fig. 1). First, a fiber-architecture-informed spatial window is created for each voxel using 

ODFs constructed from HARDI data. Second, a modified PCA is used to estimate the 

synchrony of fMRI time courses based on this spatial window. Detailed algorithms and 

procedures of the proposed approach are described as follows.

2.1. Design of fiber-architecture-informed spatial window

Principles from the recently emerging field of graph signal processing (GSP) (Shuman et 

al., 2013; Ortega et al., 2018) provide an elegant framework to design the fiber-architecture-

informed spatial window. Based on the GSP framework, we analyze fMRI time courses at 

a discrete set of positions, which form a set of vertices of a topological graph, in such a 

way that underlying constraints from fiber architectures can be accounted for by edges of 

the graph. Here, we denote a graph as G = {V, E, W as usual, which consists of a finite 

set of vertices V with ∣V∣ = N, a set of edges E, and a weighted connection matrix W. Wi,j 

represents the connection strength of edge e = (i, j) that connects vertices i and j. On the 

vertices of the graph, we define a vector f ∈ ℝN to represent a set of auxiliary quantities to 

be used to generate spatial windows, where the i-th component of the vector, f(i), represents 

the value at the i-th vertex in V.

For this study, voxel-wise graphs are constructed using ODFs derived from HARDI data 

with an isotropic voxel size, which have been well described in previous reports (Abramian 

et al., 2021; Iturria-Medina et al., 2007). In each graph, every vertex corresponds to a voxel 

in 3D MR images with weighted connections to its neighbors. The connection weight of 

any two neighboring voxels depends on the coherence of diffusion orientations between 
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the two voxels. As a result, two neighboring voxels residing in the same fiber tract have 

relative larger weight than those in different fiber tracts. Note that a high angular resolution, 

a high voxel resolution and an isotropic voxel size of diffusion MRI data are beneficial to 

accurately characterize fiber-architecture-informed connections in the graph.

Building on the topological properties of the fiber-architectureinformed graph, a spatial 

window is created for each vertex/voxel by simulating diffusion on the graph with point 

sources located at each vertex. A kernel is defined for the diffusion process in the spectral 

domain, which is derived from a Laplacian matrix defined in GSP. Specifically, a Laplacian 

matrix of G is defined as L = D − W, where D denotes the graph’s degree matrix, which is 

diagonal with elements di,i = ∑j wi,j; the graph operator L is a real symmetric matrix, and 

thus has a complete set of orthonormal eigenvectors {uℓ} ℓ=1,2…,N and associated eigenvalues 

{λℓ}ℓ=1,2,…,N satisfying Luℓ = λℓuℓ. With these eigenvectors, the graph signal f can be 

transformed into the spectral domain,

f(ℓ) = ∑
i = 1

N
uℓ

T(i)f(i) = uℓ
Tf, ℓ = 1, 2, …, N (1)

This spectral representation allows an exact reconstruction, i.e., the signal f can be recovered 

as

f = ∑
ℓ = 1

N
f(ℓ)uℓ . (2)

In the graph spectral domain, the kernel of diffusion (Turner, 2002) can be defined as

K(λ) = e−τλ (3)

where τ is a free parameter determining the spatial extent of diffusion on a graph, and it can 

be intuitively treated as the duration of diffusion. Given an initial point source f0 (t = 0), the 

transient diffusion profile at time point t can be derived as

f(t) = ∑N
ℓ = 1K λℓ f0(ℓ)uℓ = ∑N

ℓ = 1e−λℓtuℓ
Tf0uℓ (4)

To create a spatial window centered at a voxel i we define this point source by setting the 

initial profile f0 to be equal to 1 at the position i and 0 otherwise. The transient profile f(t) at 

the time point t is further processed to yield the fiber-architecture-informed spatial window, 

the width of which can be adjusted by the parameter τ. To be specific, the window is defined 

by taking voxels with M largest values of f(t), which is subsequently normalized with their 

summation,
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Fi(j) = f(j, τ) ∕ ∑
j = 1

M
f(j, τ) (5)

In this study, the largest parameter M is taken under an empirical constraint 

∑j = 1
M f(j, τ) > 0.95, wherein small values in the diffusion profile of each voxel are removed 

to improve computational efficiency.

2.2. PCA based on fiber-architecture-informed window

In previous reports, the synchrony of fMRI time-courses in a parcellated region have 

been quantified using PCA (Tian et al., 2020), wherein the variance explained by the 

first principal component gauges the extent of synchrony. Here, the conventional PCA 

is modified to allow the integration of fiber architecture information, referred to as a 

modified PCA based on a fiber-architecture-informed window (FAIW-PCA). Basically, the 

raw fMRI time courses are first normalized with respect to the mean values and the standard 

deviations. Then, within each window Fi centered at the position i, the normalized time 

courses are rearranged into a matrix (X) of dimension T × M, where T denotes the number 

of time frames and M the number of voxels within the window. We denote a time course in 

X as xi, the i-th column in the matrix X, and formulate the FAIW-PCA as an optimization 

problem, where the first principal component v1 can be obtained by

v1 = arg max
‖v‖ = 1

∑
j = 1

M
Fi(j) ⋅ xj ⋅ v 2

(6)

Note that, without the weights Fi(j), this optimization problem will degenerate into a 

conventional PCA. Here, Fj(j) is applied in the optimization such that the time courses 

associated with the voxels near the center position are emphasized more in the first principal 

component obtained, which emphasizes the spatial specificity of the synchrony estimate. We 

further write this optimization in matrix form,

v1 = arg max
‖v‖ = 1

vTXTQXv (7)

where the matrix Q = diag [(Fi(1), Fi(2), …,Fi(M)]. With simple algebraic manipulations, 

Eq. (7) can be written as

v1 = arg max vTHv
vTv

(8)

where H = XTQX. H is a positive-definite matrix, and thus has a complete set of 

orthonormal eigenvectors {vℓ}ℓ=1,2, …,M and associated eigenvalues {σℓ}ℓ=1,2, …,M, σℓ ≥ σℓ+1 ≥ 

0 that satisfy Hvℓ = σℓvℓ. The quantity to be maximized in Eq. (8) is a Rayleigh quotient. The 

quotient’s maximum possible value is the largest eigenvalue σ1, which is associated with the 

solution v1. Finally, the synchrony of time courses is estimated by
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Synchrony = σ1 ∕ ∑M
ℓ = 1 σℓ (9)

Note that, as ∑ℓ = 1
M σℓ = 1 due to the normalization of the window Fi(j) the synchrony can 

be simply estimated by σ1, σ1 ∈ [0, 1].

2.3. Data and preprocessing

Datasets: Human MRI datasets used in this study were sourced from the WU-Minn 

Human Connectome Project (HCP) database (Van Essen et al., 2013; Smith et al., 2013), 

which included a 128 subject sub-group (54% female, age range = 22–37) that passed image 

quality control criteria and completed all imaging acquisitions. The datasets comprised 

resting-state fMRI, motor-task fMRI, T1-weighted MRI and diffusion-weighted MRI (DWI) 

and were downloaded from the HCP repository as minimally preprocessed data. The HCP 

data acquisition was approved by the Washington University Institutional Review Board 

and informed consent was obtained from all subjects. Parameters of MRI acquisitions and 

the minimal preprocessing are fully described in reference (Glasser et al., 2013). The HCP 

motor task contained 16 blocks, each of which consisted of a visual cue (3 s) and ten 

identical movement trials (12 s). Five movement types were included in the task–right hand, 

left hand, right foot, left foot, and tongue, each of which was repeated once. The dataset was 

separated into two groups: the first 64 subjects for a primary dataset and other 64 subjects 

for an independent validation dataset.

Preprocessing: The HCP preprocessed functional and diffusion data are in different 

neurological spaces (fMRI data in ACPC space; and DWI data in MNI space). Reasonably 

accurate co-registration of images between the two MRI modalities, which typically involves 

nonlinear transformations, is critical for the proposed approach. In this work, the HCP 

preprocessed fMRI volumes were nonlinearly registered into ACPC space, and then up-

sampled to the voxel resolution of the DWI data (i.e., 1.25 mm isotropic). This spatial 

transformation was performed by leveraging the mni2acpc.nii displacement maps provided 

within the HCP preprocessed data. Note that the ACPC space was chosen as the working 

space in this study to avoid a spatial transformation on DWI data that would necessitate 

a complex adjustment of axonal orientations (Alexander et al., 2001). In addition, the 

segmentation volumes (aparc+aseg.nii) provided within the HCP data were down-sampled 

to the working resolution, from which a WM mask was created. Further preprocessing of 

fMRI data in this study included four steps as follows. First, cerebrospinal fluid (CSF) 

nuisance signals and 12 variates of head motion were regressed out from time courses 

of fMRI data. Second, the volumes of fMRI data within the WM mask were spatially 

smoothed with a Gaussian smoothing kernel of 3-mm full width at half maximum. Spatial 

smoothing this way could prevent signal contamination from nearby GM. Note that, besides 

improving the signal-to-noise ratio in BOLD time courses, the spatial smoothing can reduce 

the sensitivity of the proposed approach to potential co-registration errors at some cost of 

spatial specificity. Third, time courses were bandpass filtered to retain frequencies from 0.01 

to 0.10 Hz. Finally, the means of the filtered time courses were subtracted, and the data then 
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normalized to unit variance. In the HCP datasets, each session of fMRI (resting state/motor 

task) comprises two runs (left-to-right and right-to-left phase encoding). In this study, the 

two runs were temporally concatenated for each session to improve the performance of 

FAIW-PCA and counterbalance potential effects of the phase-encoding. Note that, for the 

motor task data, time frames of the two runs were truncated to be the same as those of the 

resting-state data before the concatenation.

2.4. Synchrony mapping using FAIW-PCA

Synchrony mapping using FAIW-PCA was performed on the HCP image data that had 

been co-registered in ACPC space. To begin with, a whole brain graph was constructed for 

each subject using the afore-mentioned approach with HARDI data. Following reference 

Abramian et al., 2021), two tuning parameters {α, β} were set to {0.9, 50} in the generation 

of the graph so that the nature of elongated fibers can be characterized with high fidelities. 

With the graph constructed, the two-step activation mapping described in Sections II(2.1) 

and II(2.2) was performed voxel-wise: (1) a local fiber-architecture-informed window was 

created for each voxel by the spectral kernel approach, and (2) FAIW-PCA was performed to 

estimate the synchrony of fMRI time-courses on the basis of fiber architecture information 

within the window. The parameter of the kernel τ, which determines the spatial extent of 

signal diffusion on fibers, was optimized to ensure the distribution of the synchrony σ1 (σ1 ∈ 
[0, 1]) in WM was peaked around 0.5.

2.5. Validation of FAIW-PCA-based activation mapping

We validated the proposed approach at a group level in MNI space. To do so, synchrony 

maps computed from each subject in the primary dataset and the independent validation 

dataset were co-registered into MNI space by leveraging the acpc2mni.nii displacement 

maps provided within the HCP preprocessed data. Then, an additional co-registration is 

performed between synchrony maps estimated from resting state and motor task using 

SPM12. Finally, the individual synchrony maps averaged to yield group-average synchrony 

maps. Then, to characterize the task-induced changes in synchrony, difference maps were 

calculated as

Δsyn = 2 × SM − SR
SM + SR

(10)

where SR and SM are the synchronies measured in resting state and motor task, respectively; 

values of Δsyn indicate the strength of neural responses to the task. The group-average 

synchrony maps and their difference maps estimated from the primary dataset were 

analyzed as follows: (1) the group-average synchrony maps from resting states were 

investigated first by reference to anatomical structures conveyed by T1-weighted (T1 w) 

images and fractional anisotropy maps derived from the HARDI data. (1) fiber tracking 

was implemented in the DSI Studio software package Yeh et al., 2010) to extract WM 

regions related to the primary motor cortex (M1) and the auditory cortex (A1&A2); the 

synchrony maps from the two functional states were compared with an emphasis on the 

M1 related WM regions; the auditory cortex is mainly associated with processing auditory 

information, which is in principle not involved in motor tasks and expected to undergo 
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minimal variations between the two functional states; thus, the specificity of the proposed 

approach was assessed by comparing the increase in WM activations under the motor 

task in the task-related and unrelated regions. (3) the regional synchronies were compared 

between the two functional states using the HCP tractography atlas of WM available 

on the website: http://brain.labsolver.org/diffusion-mri-templates/tractography. (4) group 

level statistical maps of Δsyn-based activation were compared with those of GLM-based 

activation; the GLM-based activation mapping was performed with the preprocessed task 

fMRI data that underwent identical spatial smoothing and regressions of nuisance signals 

including cerebrospinal fluid and head motion; the GLM based activation mapping was 

implemented using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12), where the 

task conditions were convolved with a canonical HRF to generate five predictors that were 

included in the motor model –right hand, left hand, right foot, left foot, and tongue; each 

predictor covered the duration of 10 movements trials (12 s); the 3 s cue period prior to each 

motor block was modeled separately to account for visual activation related to the cue word 

presented on the screen at the beginning of each block; linear contrasts were computed to 

estimate activation for each movement type versus baseline and versus all other movement 

type; on a single subject level, conditions were contrasted against each other to create a 

parametric image that reflected the percent signal changes invoked by the tasks; on the group 

level, a one sample t-test was applied to the parametric images across all subjects to create 

a map of the brain activation; finally, activated voxels were reported at a threshold P < 

0.05 with family-wise error rate (FWE) correction. (5) comparisons of Δsyn-based activation 

maps between the primary dataset and the independent validation dataset were performed to 

validate the reproducibility of the proposed approach.

3. Results

Fig. 2 shows group-average synchrony maps reconstructed with the motor-task fMRI 

dataset collected from 64 participants in HCP, and FA color maps reconstructed with the 

DTI dataset from a representative participant as well as T1 w images. Many continuous 

structures can be observed with high synchrony in both GM and WM. In the GM, 

the synchronous structures agree grossly with anatomical structures identified in the T1 

w images. In the WM, synchronous structures exist almost exclusively in regions that 

contain large axonal fascicles, with some typical examples denoted by red arrows that 

exhibit uniform fiber orientations in the FA color maps. These spatial patterns in WM 

are reasonable in terms of their relationship to functional neuroanatomy. For instance, the 

fiber bundles in occipital WM convey mainly visual signals so that voxels within them 

tend to have synchronous BOLD signals. Conversely, the WM regions that include fibers 

with heterogenous orientations (indicated by heterogeneities in FA colors) or crossing fibers 

(visualized as dim FA colors) exhibit low values in the synchrony maps, which can be 

appreciated in the regions denoted by green arrows in Fig. 2. This is explainable by the 

fact that the fibers leading to different locations in GM tend to have asynchronous neural 

activities and thus asynchronous BOLD signals.

Fig. 3 compares the group-average synchrony maps estimated from the resting-state and 

motor-task fMRI data on the basis of WM tractograms, in which the motor-task-related brain 

activations can be visually appreciated. In Fig. 3A&B, M1 and A1&A2 related WM regions 
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were determined by using fiber tracking with seed points defined in the corresponding 

cortical regions. It can be seen that, in both M1 GM regions and the related WM regions, 

the synchrony maps exhibit substantially higher intensities during the motor task than in 

the resting-state. Coactivations of the associated GM and WM regions are quantitively 

visualized by the maps of synchrony difference (Δsyn) between the two states in the bottom 

row of Fig. 3C. In contrast, the WM regions associated with the auditory cortex have no 

significant changes between the two states. The changes in synchrony in M1 and A1&A2 

related WM regions are further compared in Fig. 4, in which the synchronies during the 

motor task are plotted against those from the resting state. The offset distances of points in 

the scatter plots from the identity line reflect changes in WM voxels. Here, the changes in 

BOLD signals in the M1-related region are substantially larger than those of the A1&A2 

related WM region, in which the scatter points are tightly and symmetrically distributed 

along the identity line. Unexpectedly, no obvious increases in synchrony are observed in 

the internal capsule while some increases are observed in the WM regions that are not 

connected with M1. In addition, the difference maps exhibit a broad asymmetry, where the 

deep WM regions in the left hemisphere show more broad increased synchronies than the 

right counterpart of the brain.

Fig. 5 compares the synchronies of time courses collected from the resting state and motor 

task data. These time courses are extracted in a FAIW that associated with a typical voxel 

in the M1 related WM tract, where the typical voxel is determined in a Δsyn map estimated 

from a single subject by selecting a voxel with a high intensity. The paradigm of the HCP 

motor task in Fig. 5A provides a reference for the analysis of the time courses. In Fig. 

5B and C, the 1st principal component (PC) of FAIW-PCA and color maps show overall 

temporal patterns of time courses from the two states. Note that the PCs derived from the 

two states exhibit no obvious dependences on the timing of the motor task. On the other 

hand, the synchrony of the time courses from the motor task shows an increase compared 

with those from the resting state, which is quantified by the first eigenvalue of FAIW-PCA 

(σ1) and can be intuitively appreciated by comparing the color maps that show the coherence 

of the time courses across the voxels (i.e., along the vertical direction) in the corresponding 

FAIW. In summary, the analysis of time courses demonstrates the nonlinear nature of WM 

hemodynamics and the limitation of the GLM assumption in WM that implies a linear 

correspondence between the BOLD time courses and the external paradigm of the task, 

which demonstrates that the synchrony is a more robust metric for activation mapping 

without any model assumptions.

In Fig. 6, tract-wise changes in synchrony from resting state to motor task are examined 

for 46 fiber tracts defined in the HCP population-averaged tractography atlas. Fig. 6A 

shows statistical comparisons for each fiber tract, where paired student tests were used 

to identify significant changes in tract-averaged synchronies from 64 individual subjects. 

As seen, the synchrony during the motor task significantly increased for 34 fiber tracts 

with P < 0.05, and for 15 fiber tracts with P < 0.01. Among those tracts that changed, 

the majority are directly engaged in sensorimotor functions or visual processing including 

tracts in/linking the cerebellum and brainstem (cerebellum (CB), middle cerebellar peduncle 

(MCP), superior cerebellar peduncle (SCP), inferior cerebellar peduncle (ICP), vermis (V) 

and medial lemniscus (ML)) (Catani and Thiebaut de Schotten, 2008; Dell’Acqua et al., 
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2013), the corticospinal tract (CST) (Cho et al., 2007), the corpus callosum (CC) (Saenz 

and Fine, 2010) and the optic radiation (OR) (Hofer et al., 2010). Note that many fiber 

tracts that are not directly involved in motor function or vision also show changes in Fig. 

6A presumably because they are associated with motor network indirectly. For instance, 

the observed changes in the corticostriatal pathway (CS) may be explained by its role in 

motor planning as this fiber tract connects to the putamen, a main basal ganglia structure 

responsible for motor control (Haber, 2016). Tract-wise increases in synchrony are further 

visually illustrated in Fig. 6B. Here, the differences in tract-averaged synchrony are assigned 

as intensities to the corresponding tracts with significant increases in synchrony (P < 0.05), 

which are then displayed as 2D images using maximum intensity projection for axonal, 

sagittal and coronal views. High intensities in the figure appear mainly along the CST, 

consistent with the functional dominance of the sensorimotor pathways involved in the 

execution of the motor task.

Fig. 7 compares group level statistical maps of Δsyn-based and GLM-derived changes 

(B), with FA color maps as anatomical references of WM (A). In the statistically inferred 

activation maps from both approaches, t-values thresholded with FDR-corrected P values 

of 0.05 are shown in Fig. 7B. The GLM-indicated activation maps show that the whole 

M1 cortical region is engaged by the composite task that includes foot, hand and tongue 

movements, which agree well with previous results (Barch et al., 2013). Besides, the insular 

cortex that is engaged in motor control also exhibits activations in GLM statistical maps. 

The Δsyn-based results also highlight the cortical region of M1 with smaller coverages 

in the tongue motor cortex and insular cortex than the GLM-based activations. This can 

be actually deduced from Fig. 3 in which these regions in Δsyn-based activation maps 

have similarly high synchronies in both the resting state and the motor task. On the other 

hand, there are significant Δsyn-based changes in WM regions that are hardly captured by 

the GLM approach. Theses detected activations span large WM regions that are directly 

or indirectly associated with M1 (See the preceding paragraph). This demonstrates the 

power of our approach to detect functional changes in WM, though some of the detected 

changes in WM appear to be more disperse or discontinuous than in GM. This phenomenon 

may largely be attributable to inter-subject variabilities of functional structures in WM, 

which typically have elongated geometry, thus tending to confound group level statistical 

analyses due to imperfect registrations. These spatial variabilities are demonstrated by the 

synchrony structures denoted by the red arrows in Fig. 7C, which shows synchrony maps 

of three typical subjects that have been registered into MNI space. In spite of the use of 

fine nonlinear registrations, elongated subtle synchrony structures in WM show discernable 

spatial variations among these subjects.

Fig. 8 demonstrates the reproducibility of the FAIW-PCA activation mapping, which is 

validated by two independent datasets (Group 1 and Group 2). The group-average Δsyn 

maps estimated from the two datasets are displayed in Fig. 8A, which show very similar 

spatial patterns of the enhancement of synchrony by the task. Fig. 8B,C show statistical 

t maps of Δsyn-based activations for the two datasets, which are thresholded with FDR-

corrected P values of 0.05. To quantify the similarity between the activation maps from the 

two datasets, the Dice coefficient was calculated as
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D = 2 ∣ MG1 ∩ MG2 ∣
∣ MG1 ∣ + ∣ MG2 ∣ (11)

where MG1 and MG2 are two sets of activated voxels detected from Group 1 and Group 2, 

respectively and ∣·∣ denotes set cardinality. The Dice coefficient is constrained to the range of 

[0, (Gawryluk et al., 2014)], where a value 1 signifies perfect overlap between the two maps 

and a value 0 represents no overlap. In this study, Dice coefficients of the two activation 

maps in B is 0.76, which demonstrates a high reproducibility of the FAIW-PCA activation 

mapping.

4. Discussion

Localizing neural activations under specific functional loadings is fundamental to 

understanding the functional organization of the brain. GLM-based activation mapping has 

been the standard approach for detecting and localizing task-evoked activations in GM, and 

assumes that BOLD signals in response to neural activation can be modeled by convolving 

the time course of neural activity with a fixed HRF that is determined a priori (Boynton et 

al., 2012). However, this approach is inappropriate for WM. In this study, we proposed a 

model-free approach to detect changes in BOLD signals associated with neural activities in 

WM by measuring the enhancement of synchrony in WM BOLD signals during a functional 

task. The model-free approach draws upon an assumption that, under functional loadings, 

BOLD signals in relevant WM fibers are modulated by stimulus-evoked neural responses 

and thereby become more synchronized than in a resting state. This approach consists of 

two major steps. First, a fiber-architecture-informed spatial window is created with ODFs 

constructed from HARDI data, which characterizes a topographically defined neighborhood 

of a voxel that is isomorphic to local fiber architectures within WM. Second, a modified 

PCA is used to estimate the synchrony of BOLD signals based on the spatial window. The 

proposed approach is validated using a cohort of 3T fMRI datasets from the HCP, which 

demonstrates that the changes associated with neural activation can be reliably detected as 

enhancements of fMRI signal synchrony in the fibers that are engaged in the presented task.

Structures defined by intrinsic synchronous signals exist in both GM and WM and have 

similar boundaries with other definitions of anatomical and functional structures (Fig. 2). 

For GM, they appear as separable volumes with low degrees of anisotropy that are consistent 

with identifiable functional areas or units that to date have been implicitly assumed in the 

study of the functional connectome (i.e., Brodmann areas). In contrast to GM, functional 

units of WM measured by fMRI are elongated fibers that facilitate the transmission of neural 

signals along the fibers, which are identifiable by WM synchrony structures shown in Figs. 

2 and 7C at group and individual levels, respectively. These synchrony structures can be 

clearly observed in a resting state and become more pronounced in functionally-relevant 

structures under task loading (Fig. 3), which agrees with previous findings that correlations 

of BOLD signals in relevant WM bundles increase with tasks (Ding et al., 2013; Ding et 

al., 2016; Schilling et al., 2019). Note that the regions that contain parallel fascicles tend to 

have higher levels of synchrony than those with incoherent orientations because some fibers 

in the latter scenario are in principle connected to different functional units in GM such 
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that the synchrony of BOLD signals is not apparent. Compared with synchrony structures 

that are merely derived from fMRI data (Zhao et al., 2022), the fiber-architecture synchrony 

structures characterize more spatial details in WM.

By comparing group-average synchrony maps derived from resting-state and motor-task 

fMRI data, we demonstrate that BOLD signal synchrony can be enhanced by task loading 

in both GM and WM (Fig. 3-6). For the GM, group level statistical maps of Δsyn-based 

activations in the M1 region show a moderate overlap with those of GLM-based activations, 

although with a smaller coverage than the latter, especially in the tongue motor cortex and 

the insular cortex (Fig. 7). The missing voxels of Δsyn-based activations in the tongue motor 

cortex may be explained by subconscious swallowing activity that inevitably occurs during 

the resting state acquisitions, which is implied by the observation in Fig. 3 that the missing 

regions in Δsyn-based activation maps have similar synchronies in both the resting state 

and the motor task. Likewise, the insular cortex, which possesses multiple functions such 

as interoceptive attention, multimodal sensory processing, autonomic control and perceptual 

self-awareness (Nieuwenhuys, 2012; Benarroch, 2019), may be equally activate in the two 

states, and thus show similar synchronies. The Δsyn maps exhibit large increases in the 

M1-related WM regions in Fig. 3, which demonstrates that Δsyn-based activation mapping 

possesses a distinctive capability to detect activity-related signal changes in WM that are not 

captured by the GLM approach. This highlights the possibility that changes in synchrony 

do not depend on net increases in BOLD signal. Further statistical analysis based on a 

population-averaged tractography atlas demonstrate that many fiber tracts that are indirectly 

associated with M1 also show significant enhancements of BOLD signal synchrony (Fig. 6). 

Although many WM regions are involved in the motor task (Gonzalez-Castillo et al., 2012), 

the M1-related WM exhibit most significant changes, as shown Fig. 6B. In addition, some 

WM regions that are not directly associated with the motor cortex also exhibit substantial 

enhancements of synchrony under the motor task (Fig. 3), which poses challenges in 

interpreting delta-syn maps. One potential explanation is a massive engagement of WM 

in the execution of the motor task, which is implied by earlier reports that GM across almost 

the entire brain can be activated by a simple task (Gonzalez-Castillo et al., 2012).

A high reproducibility of the proposed approach was demonstrated in this study, while its 

sensitivity and specificity warrant further studies. As shown in Fig.8, the reproducibility of 

the proposed approach was validated using two independent groups of participants where 

statistical t maps reports Δsyn-based activations thresholded with the FDR-corrected P 

values of 0.05. Dice coefficient of the activation maps estimated from the two groups is 0.76, 

which demonstrates high reproducibility of the FAIW-PCA activation mapping (Fig. 8). The 

Δsyn-based activations can be clearly observed in the M1-related WM regions that are closer 

to the cortical surface. However, no substantial increases in synchrony are observed in the 

internal capsule that includes the pathways of CST, which suggests a limited sensitivity 

of the proposed approach. There are two potential reasons for the unexpected phenomena. 

First, the targeted projection pathways pass through the anterior two-thirds of the posterior 

internal capsule, so that this portion contains densely packed fiber bundles each projecting 

to a different area of the motor cortex. In the HCP task paradigm used for this work, these 

fiber bundles are selectively activated but in a sequential manner, which could decrease the 

temporal synchrony in nearby voxels in this region. Second, the SNR in this deep WM 
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region is insufficient for a reliable detection because the sensitivity of the receiver coil is 

much lower than the regions that are closer to the cortical surface. In addition, the lower 

sensitivity of the receiver coil in deep WM regions along with the dextromanuality of the 

subjects at a group level may account for the asymmetry observed in the difference map. 

Not to our expectations, there are substantial enhancements of synchrony in many WM 

regions that are not directly connected with the M1, which warrants a further validation 

of the specificity of the proposed approach. For example, the specificity can be more 

comprehensively investigated by comparing activation maps estimated from different tasks 

that activate distinct WM regions. Ideally, standard task designs with identical repeated tasks 

and relative longer rest periods will be more effective for the validation of the specificity 

than the HCP motor task design that involves a mixture of different motor tasks.

To validate the proposed approach with large-sample datasets, we analyzed the open-access 

HCP datasets of 128 participants, though the parameters of MRI acquisition and the designs 

of the fMRI tasks were not tailored for our study, which thus led to some limitations. 

First, parameters of MRI acquisitions in the HCP data are optimized for fMRI of GM. In a 

future study, the parameters of MRI acquisitions can be optimized for detecting synchrony 

of BOLD signals in WM, which may not require high temporal resolution. The short 

repetition time used in the HCP fMRI acquisition with a relatively high temporal resolution 

could lead to an insufficient signal recovery (i.e., T1 relaxation) between successive volume 

acquisitions, in which the net magnetization in a voxel of 3D fMRI volume cannot ensure 

an SNR that allows for reliable measurements of BOD signals. On the other hand, a longer 

TR could result in more physiological contaminations in fMRI signals via cardiorespiratory 

aliasing (Raitamaa et al., 2019). Hence, a compromise between the two factors is necessary 

for a further optimization of temporal resolution. Note that the flip angle and the echo 

time along with the repetition time could be further synergistically optimized based on the 

relaxation times of WM. Second, the motor task of the HCP involves five different motions 

that produce only about 17 data points in each time course for each motion. Some regions 

in brain that are engaged by only one motion may be more difficult to be detected by our 

approach because the measurement of the synchrony is sensitive to the number of data 

points in time courses. This limitation in the task design can reduce the sensitivity of the 

proposed approach, which may be one reason for the loss of activations detected compared 

to the GLM results. In a future study, increasing the data points that are modulated by 

identical repeated stimuli can be used to increase the sensitivity of the proposed method, 

which may allow the FAIW-PCA-based activation mapping at a single-subject level.

5. Conclusions

The GLM-based activation mapping that is well-established for detecting BOLD signal 

changes in a task in GM is not well suited for studies of activity-related signal changes 

in WM. In this study, we proposed a model-free approach to detect task-evoked signal 

changes in WM by measuring increases in BOLD signal synchrony within local fiber 

architectures. Using the HCP datasets, we validated that the proposed approach could detect 

BOLD signal changes in WM fibers that engaged in the motor task with high sensitivities 

and reproducibility. This approach promises to provide a standardized tool to map neural 

responses in WM.
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Fig. 1. 
Schematic of fiber architecture informed synchrony mapping in human white matter (WM). 

The algorithm of the proposed approach consists of two major steps. First, a spatial 

window is created for each voxel based on local fiber architectures. In this step, orientation 

distribution functions (ODFs) constructed from diffusion MRI data provide the information 

on fiber architectures, which are then used to generate a topological graph for WM. In this 

graph, every vertex corresponds to a voxel in MR images, with weighted connections to 

its neighbors. The edge weights are determined by the coherence between the directions 

of diffusion and the orientation of the graph edges. Then, diffusion on the graph with a 

point source located at each vertex is simulated to produce a diffusion profile that can 

be further used as a fiber-architecture-informed window (FAIWs). Here, typical FAIWs 

created for four voxels (P1, P2, P3 and P4) demonstrate that they are adaptive to local fiber 

architectures. Second, a modified PCA is implemented to estimate the synchrony of fMRI 

time courses based on the FAIWs from the first step to yield activation maps. In the modified 

PCA, the FAIWs emphasize the time courses associated to voxels near the central position 

with high weights, which ensures the spatial specificity of the synchrony estimate.
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Fig. 2. 
Group-average synchrony maps reconstructed with the motor-task fMRI dataset collected 

from 64 participants in HCP, and FA color maps reconstructed with the DTI dataset as 

well as T1w images from a representative participant. There are many structures with high 

synchrony in both GM and WM. In the GM, the synchrony structures agree grossly with 

anatomical structures identified in the T1w images. In the WM, synchrony structures exist 

almost exclusively in regions that contain large axonal fascicles, with some typical examples 

denoted by red arrows that exhibit uniform fiber orientations in the FA maps. Conversely, the 

WM regions that include fibers with heterogenous orientations (indicated by heterogeneities 

in FA colors) or crossing fibers (visualized as dim FA colors) exhibit low intensities in the 

synchrony maps, which is showcased in the regions denoted by green arrows.
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Fig. 3. 
Comparison of group-average activation maps obtained from resting-state fMRI data and 

motor-task fMRI data on the basis of WM fiber tractograms. (A), exhibition of fiber 

tracking. The primary motor cortex (M1) and auditory cortex (A1&A2) related WM regions 

were determined by using fiber tracking with seed points defined in the corresponding 

cortical regions. (B), typical slices of fiber intensity maps estimated from fiber tracking. The 

fiber intensity of the M1 and A1&A2 related WM regions are displayed with red-yellow 

and blue colors, respectively. (C) synchrony maps and the corresponding difference maps 

displayed at the same slice indexes with the images in B. In both M1 GM regions and the 

related WM regions, the synchrony maps exhibit substantially higher intensities under motor 

task than those estimated from the resting-state, which demonstrates coactivations of the 

associated GM and WM regions. Note that dark lines are added in the difference maps to 

indicate the boundaries between the GM and WM.
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Fig. 4. 
Scatter pots of activations for the voxels in the primary motor-cortex (M1) related WM 

region (A) and the auditory cortex (A1&A2) related WM region (B). Distances from points 

to an identity line measure the degree of activations. Activations in the M1 related WM 

region are substantially higher than those of the A1&A2 related WM region, in which the 

scatter points are tightly and symmetrically distributed along the identity line.
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Fig. 5. 
Comparison of the synchronies of time courses collected from the resting state and motor 

task data at an induvial level. (A), paradigm of the HCP motor task. The motor task contains 

16 blocks, each of which consists of a visual cue (3 s) and ten identical movement trials (12 

s). Five movement types are included in the task–right hand, left hand, right foot, left foot, 

and tongue, each of which is repeated once. The task paradigm provides a reference for the 

analysis of the time courses. (B), a typical Δsyn map estimated from a single subject. Based 

on the Δsyn map, the time courses are extracted from a FAIW of a typical voxel, which is 

determined in this map by selecting a voxel with a high intensity in the M1 related WM 

tract. (C&D), the 1st principal component (PC) of FAIW-PCA and color mapping of time 

courses from the resting state and motor task. They show overall temporal patterns of time 

courses. Note that the PCs derived from the two states exhibit no obvious dependences on 

the timing of the motor task. On the other hand, the synchrony of the time courses from the 

motor task shows an increase compared with those from the resting state, which is quantified 

by the first eigenvalue of FAIW-PCA (σ1) and can be intuitively appreciated in the color 
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maps that show the coherence of time courses across the voxels (i.e., along the vertical 

direction) in the corresponding FAIW.
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Fig. 6. 
Tract-wise comparison of synchrony between resting state and motor task for 46 fiber tracts 

defined in the HCP population-averaged tractography atlas. (A), statistical comparisons 

of synchrony for each fiber tract. Paired t-test was implemented with tract-averaged 

synchronies estimated individually from 64 subjects. The error bars indicate standard 

deviations of the tract-average synchronies across subjects. The result of statistical analysis 

shows that the synchrony under the motor task significantly increases for 34 fiber tracts with 

P < 0.05, and for 15 fiber tracts with P < 0.01. (B), maximum intensity projection images of 

differences in tract-averaged synchronies. To visually illustrate activations of the fiber tracts, 

the differences in tract-averaged synchrony are assigned as intensities to the corresponding 

tracts with significant increases in synchrony (P < 0.05), which are displayed as 2D images 

using maximum intensity projections for axonal, sagittal and coronal views. High intensities 

in the figure appear mainly along the CST, consistent with the functional dominance of the 

sensorimotor pathways involved in the execution of the motor task.
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Fig. 7. 
Comparison of group level statistical maps of Δsyn- and GLM-based activation with 

anatomical references of fiber structures. (A), FA color maps from one representative 

participant. The FA color maps show fiber structures. (B), group level statistical maps of 

Δsyn- and GLM-based activation. The statistical maps of Δsyn-based changes are derived 

by voxel-wise paired t-test of differences between resting state and motor task with a 

false discovery rate (FDR) correction for the 64-subject dataset. The statistical maps of 

GLM-based activation are estimated by using the standard SPM toolbox. In the statistically 

inferred activation maps from both the approaches, t-values thresholded with the FDR-

corrected P values of 0.05 are shown in B. The GLM-based activation maps indicate that the 

whole primary motor cortex (M1) is engaged by the composite task that includes foot, hand 

and tongue movements. The Δsyn-based activations also highlight the cortical region of M1 

and show smaller coverages in the insular cortex (R1) and the tongue motor cortex (R2) than 

the GLM-indicated activations. Moreover, the Δsyn-based activations exhibit in WM regions 

that are hardly captured by the GLM approach. The green arrows indicate the activations 

in WM that have similar spatial patterns with fiber structures identified in FA color maps. 

(C), synchrony maps of three typical subjects displayed in MNI space. There are discernable 

inter-subject variabilities of elongated fibers (indicated by red arrows) among these subjects, 

which could confound the statistical analysis at group level, and thus may account for the 

dispersity and discontinuity of activations detected in WM.
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Fig. 8. 
The reproducibility of the FAIW-PCA activation mapping validated with two independent 

datasets (Group 1 and Group 2). (A), group-average Δsyn maps estimated from the two 

datasets. The two maps exhibit similar spatial patterns of the task-induced enhancement 

of synchrony. (B), statistical t maps of Δsyn-based activation from the two datasets. In 

B, t values are thresholded with the FDR-corrected P values of 0.05. Dice coefficient is 

calculated to quantify the similarity between the activation maps from the two datasets. Dice 

coefficients of the two activation maps is 0.76, which demonstrates a good reproducibility of 

the proposed approach.
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