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Abstract

Hamiltonian Monte Carlo (HMC) is a Markov Chain Monte Carlo algorithm that is able to

generate distant proposals via the use of Hamiltonian dynamics, which are able to incorpo-

rate first-order gradient information about the target posterior. This has driven its rise in pop-

ularity in the machine learning community in recent times. It has been shown that making

use of the energy-time uncertainty relation from quantum mechanics, one can devise an

extension to HMC by allowing the mass matrix to be random with a probability distribution

instead of a fixed mass. Furthermore, Magnetic Hamiltonian Monte Carlo (MHMC) has been

recently proposed as an extension to HMC and adds a magnetic field to HMC which results

in non-canonical dynamics associated with the movement of a particle under a magnetic

field. In this work, we utilise the non-canonical dynamics of MHMC while allowing the mass

matrix to be random to create the Quantum-Inspired Magnetic Hamiltonian Monte Carlo

(QIMHMC) algorithm, which is shown to converge to the correct steady state distribution.

Empirical results on a broad class of target posterior distributions show that the proposed

method produces better sampling performance than HMC, MHMC and HMC with a random

mass matrix.

1 Introduction

The inference of complex probabilistic models using Markov Chain Monte Carlo (MCMC)

algorithms has become very common [1–7]. MCMC methods have been successfully applied

in a variety of fields including health, finance and cosmology [1, 4, 5, 8–15]. The goal of

MCMC methods is to construct a Markov chain that leaves the target posterior distribution

invariant [3, 16]. This allows the generated samples from the chains to be used to estimate

expectations with respect to the target posterior distribution. Examples of such constructions

include the Metropolis-Hasting [17] method, slice sampling [18] and Gibbs sampling [19].

While these algorithms are able to construct Markov chains that asymptotically converge to

the correct distribution, they still suffer from random-walk behaviour [3]. This results in high

correlations between the generated samples and consequently low effective sample sizes.

For instances where the target posterior is differentiable on the Euclidean manifold, Hamil-

tonian Monte Carlo (HMC) provides a powerful mechanism to sample from differentiable
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target posterior distributions [20, 21]. HMC extends the parameter space into the phase space

via the introduction of an auxiliary momentum variable which ensures that different energy

levels are explored. HMC exploits the first-order gradient information of the target density to

guide its exploration of the phase space. The use of gradient information reduces the random-

walk behaviour typically associated with the Metropolis-Hastings algorithm [3, 10, 21]. HMC

introduces the mass matrix for the momentum variable, trajectory length and step size param-

eters that need to be tuned for optimal results. Extensions of HMC include Riemannian Mani-

fold Hamiltonian Monte Carlo (RMHMC) [1], the No-U-Turn Sampler (NUTS) [22] and

Magnetic Hamiltonian Monte Carlo (MHMC) [6]. Furthermore, machine learning techniques

have also been utilised to enhance the efficiency of Monte Carlo sampling algorithms. In

Mcnaughton et al. [23], autoregressive neural networks are employed to boost the efficiency of

Monte Carlo methods, while Levy et al. [24] generalises Hamiltonian Monte Carlo using neu-

ral networks.

RMHMC extends HMC by incorporating second-order gradient information of the target

posterior. This allows RMHMC to take into account the local geometry of the target as it

explores the phase space, which is important for ill-conditioned distributions [1, 5, 7, 25]. This

results in the Hamiltonian being non-separable, which necessitates the use of implicit numeri-

cal integration schemes which are computationally expensive. On the other-hand, NUTS

extends HMC by automatically tuning the trajectory length and step size parameters of HMC,

which would need to be specified by the user [22, 25]. The trajectory length is tuned by itera-

tively doubling the trajectory length until either the parameters trace back, or the Hamiltonian

becomes infinite [22]. The step size is tuned by employing the dual averaging methodology

during the burn-in phase [22]. This removes the need for manual tuning of these parameters

and the associated costly pilot runs, making HMC more accessible to non-experts. A recent

extension to HMC is MHMC which adds a magnetic field to HMC [6]. This results in faster

convergence to the correct target density, and much lower auto-correlations between the gen-

erated samples when compared to HMC [4, 6, 26]. When the magnetic component of MHMC

is absent, MHMC and HMC have the same dynamics [4, 6, 26]. MHMC has similar execution

times to HMC, which illustrates the close relationship between HMC and MHMC.

One of the parameters that needs to be set in HMC is the mass matrix of the auxiliary

momentum variable. This mass matrix is typically set to equal the identity matrix [1, 6, 9, 21].

Although this produces good results, it is not necessarily the optimal choice across all target

distributions. In RMHMC, the mass matrix is set to be the Hessian of the negative log-density

—which is the fisher information metric [1, 25]. In Quantum-Inspired Hamiltonian Monte

Carlo algorithm (QIHMC) [7], the mass matrix is set to be a stochastic process. This is moti-

vated by the energy-time uncertainty relation from quantum mechanics, which allows a parti-

cle’s mass to be stochastic to rather fixed [7].

QIHMC has been shown to improve performance when sampling from a broad class of dis-

tributions which occur in sparse modeling via bridge regression, image denoising and Bayes-

ian neural network pruning [5, 7]. This is particularly important for spiky and multi-modal

distributions, where HMC is inefficient [5, 7]. The use of a random mass matrix is yet to be

considered in the context of MHMC in the literature. Given that MHMC is closely related to

HMC, one would expect that making the mass matrix random would result in improved sam-

pling performance when compared to MHMC with fixed mass.

In this work, we present the Quantum-Inspired Magnetic Hamiltonian Monte Carlo

(QIMHMC) algorithm which uses a random mass matrix in the non-canonical Hamiltonian

dynamics offered by MHMC. A proof that the proposed algorithm converges to the correct

distribution is presented. Numerical experiments across various benchmarks including the

Banana shaped distribution, multivariate Gaussian distributions and Bayesian logistic
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regression show that the proposed algorithm outperforms HMC, MHMC and QIHMC. The

main contributions of this work can be summarised as:

• We present the Quantum-Inspired Magnetic Hamiltonian Monte Carlo which employs a

stochastic mass matrix in Magnetic Hamiltonian Monte Carlo.

• We prove that the proposed algorithm converges to the correct target density.

• Numerical experiments on various target posteriors show that the proposed method outper-

forms Hamiltonian Monte Carlo, Magnetic Hamiltonian Monte Carlo and Quantum-

Inspired Hamiltonian Monte Carlo.

The remainder of this paper is structured as follows: Section 2 discusses the Markov Chain

Monte Carlo methods that form the basis of the new method, Section 3 presents the proposed

method, Section 4 outlines the target distributions considered, Section 5 outlines the experi-

ments conducted, Section 6 presents and discusses the results of the experiments and we pro-

vide a conclusion in Section 7.

2 Hamiltonian Monte Carlo methods

Instead of directly sampling the parameters, Hamiltonian Monte Carlo (HMC) introduces an

auxiliary momentum variable and then samples the parameters and momenta jointly. HMC

improves upon the Metropolis-Hastings [17] algorithm by using first-order gradient informa-

tion of the target to guide its exploration [9, 20], which leads to low auto-correlations between

the generated samples. The parameter vector w and momentum variable p, which is typically

chosen to be independent of w, form a dynamic system whose Hamiltonian is written as:

Hðw; pÞ ¼ UðwÞ þ KðpÞ ð1Þ

where U(w) is the negative log-likelihood of the target posterior distribution and K(p) is the

kinetic energy defined by the kernel of a Gaussian with mass matrix M [10]:

KðpÞ ¼
1

2
log ð2pÞDjMj
� �

þ
pTM� 1p

2
: ð2Þ

The equations governing the Hamiltonian dynamics step are defined by Hamilton’s equa-

tions at a fictitious time t as follows [8, 20]:

dw
@t
¼
@Hðw; pÞ

@p
;

dp
@t
¼ �

@Hðw; pÞ
@w

: ð3Þ

The evolution of this Hamiltonian system must preserve both volume and total energy [3, 21].

As the Hamiltonian in Eq (1) is separable, to traverse the space we can employ the leapfrog

integrator [8, 20]. The update equations for the leapfrog integration scheme are:

ptþε
2
¼ pt þ

ε
2

@Hðwt; ptÞ

@w

wtþε ¼ wt þ εM
� 1ptþε

2

ptþε ¼ ptþε
2
þ
ε
2

@H wtþε; ptþε
2

� �

@w
:

ð4Þ

Due to the discretisation errors arising from the leapfrog integration, HMC utilises the
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Metropolis-Hastings algorithm in which the parameters w� are accepted with probability:

Pðaccept w�Þ ¼ min 1;
exp ð� Hðw�; p�ÞÞ
exp ð� Hðw; pÞÞ

� �

: ð5Þ

The overall HMC sampling process follows a Gibbs sampling scheme, where we sample the

momentum and then sample a new set of parameters given the drawn momentum. Algorithm

1 shows the pseudo-code for the HMC where ε is the discretisation step size and L is the trajec-

tory length.

Algorithm 1: Hamiltonian Monte Carlo
Input: N, ε, L, winit, H(w, p)
Output: ðwÞNm¼0

1: w0  winit
2: for m ! 1 to N do
3: pm� 1 � N ð0;MÞ
4: pm, wm = Leapfrog(pm−1, wm−1, ε, L, H) in Eq (4)
5: δH = H(wm−1, pm−1) − H(wm, pm)
6: αm = min(1, exp(δH))
7: um � Unif(0, 1)
8: wm = Metropolis(αm, um, wm, wm−1) in Eq (5)
9: end for

Although HMC improves on the Metropolis-Hastings algorithm and reduces random-walk

behaviour, it still produces relatively high auto-correlations in the samples. Magnetic Hamilto-

nian Monte Carlo (MHMC) is a special case of non-canonical HMC corresponding to motion

of a particle in a magnetic field [6, 27], which aims to improve the exploration of the target dis-

tribution [6]. This magnetic field adds an extra degree of freedom and can be tuned to attain

significantly better sampling performance compared to HMC with very little extra computa-

tional cost [4, 6, 26].

MHMC utilises the same Hamiltonian as in HMC, but exploits non-canonical Hamiltonian

dynamics where the canonical matrix now has a non-zero element on the diagonal [4, 6]. The

MHMC dynamics are:

d
dt

w

p

" #

¼
0 I

� I G

" #
rwHðw; pÞ

rpHðw; pÞ

2

4

3

5 ð6Þ

where G is the magnetic field. The update equations for the leapfrog-like integration scheme

in MHMC are given as [6]:

ptþε
2
¼ pt þ

ε
2

@Hðwt; ptÞ

@w

wtþε ¼ wt þ G� 1 exp ðGεÞ � Ið ÞM� 1ptþε
2

ptþε
2
¼ exp Gεð Þptþε

2

ptþε ¼ ptþε
2
þ
ε
2

@H wtþε; ptþε
2

� �

@w
:

ð7Þ

Eq (7) shows that MHMC only differs from HMC dynamics through the presence of a non-

zero G [4, 6]. MHMC and HMC have exactly the same dynamics when the magnetic compo-

nent is absent. This can be seen by performing a matrix Taylor series expansion of exp(G ε) in

the wt+ε update in Eq (7) and then setting G = 0.
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As with HMC, these non-canonical dynamics in MHMC cannot be integrated exactly, and

a numerical integration scheme with a Metropolis-Hastings acceptance step must be utilised

to ensure detailed balance. The algorithm for MHMC is the same as the HMC algorithm in

Algorithm 1, except that the leapfrog integration scheme is replaced by the leapfrog-like inte-

gration scheme corresponding to MHMC in Eq (7).

An issue that we are yet to address is the selection of the mass matrix M in both HMC and

MHMC. In practice, M is commonly set to equal the identity matrix I [4, 6, 10]. Although this

produces good results, this approach is not always the optimal approach to use [7]. In this

work, we set M to be a stochastic process. When applied to HMC, this approach gives result

to the Quantum-Inspired Hamiltonian Monte Carlo of Liu and Zhang [7]. A contribution of

this work is that we utilise a random mass matrix in MHMC to create the Quantum-Inspired

Hamiltonian Monte Carlo (QIMHMC) algorithm which we describe in the following section.

3 Quantum-Inspired Magnetic Hamiltonian Monte Carlo

We now present the Quantum-Inspired Magnetic Hamiltonian Monte Carlo (QIMHMC)

method which employs a random mass matrix in MHMC. This proposed algorithm has the

same dynamics as MHMC in Eqs (6) and (7), with the exception that the mass matrix is ran-

dom and is re-sampled before generating the auxiliary momentum variable. The algorithmic

description of QIMHMC is presented in Algorithm 2.

The proposed algorithm has been named Quantum-Inspired Magnetic Hamiltonian Monte

Carlo as it utilises a random mass matrix, which is consistent with the behaviour of quantum

particles. In quantum mechanics, a particle can have a mass which is random and has its own

distribution, while in classical mechanics a particle has a fixed mass. The classical version of

the proposed algorithm is the Magnetic Hamiltonian Monte Carlo method. When a random

mass is utilised as inspired by quantum particles, the result is Quantum-Inspired Magnetic

Hamiltonian Monte Carlo. Furthermore, this naming convention in consistent with that used

by Liu and Zhang [7] for Hamiltonian Monte Carlo. Their work differs with ours in that now

the quantum particle is subjected to a magnetic field as well.

As we have introduced another source of randomness in the form of a random mass matrix

into MHMC, we need to show that the proposed algorithm converges to the correct steady

state distribution. This is provided in Theorem 3.1, which guarantees that the proposed algo-

rithm produces the correct steady state distribution [7].

Theorem 3.1. Consider continuous-time Hamiltonian dynamics with a deterministic
time-varying positive-definite mass matrix M(t) in Eq (7). The marginal density πw(w)/

exp(−U(w)) is a unique steady state distribution in the w space if momentum re-sampling steps

ppðpÞ / exp pTMðtÞ� 1p
2

� �
are included.

Proof. Consider the joint distribution of (w, p, M) given by π(w, p, M). Here we have

dropped the explicit dependence of M on t because M(t) obeys the mass distribution PM(M)

for all t. Employing Bayes theorem we have that:

pðw; p;MÞ ¼ pðw; pjMÞPMðMÞ

pðw; p;MÞ / expð� UðwÞÞ exp
pTM� 1p

2

� �

) pðwÞ ¼
R

p

R

Mpðw; p;MÞdwdM

pðwÞ / expð� UðwÞÞ

ð8Þ
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which means that the marginal steady state distribution π(w) is the correct posterior

distribution.

An aspect that we are yet to address is which distribution PM(M) should be used for the

mass matrix. This is still an open area of research [5, 7]. In this paper, we consider the simple

case where M is a diagonal matrix with the entries being sampled from a log-normal distribu-

tion where the mean is zero and the standard deviation, which we refer to as the vol-of-vol, is

equal to a tunable parameter α. We present the sensitivity analysis to the chosen value of α in

Section 5.3.

Note that the algorithm for QIHMC used in this paper is the same as that outlined in Algo-

rithm 2, except that in step 5 we use the leapfrog integration scheme in Eq (4).

Algorithm 2: Quantum-Inspired Magnetic Hamiltonian Monte Carlo
Input: N, ε, L, winit, H(w, p), G
Output: ðwÞNm¼0

1: w0  winit
2: for m ! 1 to N do
3: M � PM(M)  re-sample mass matrix
4: pm� 1 � N ð0;MÞ
5: pm, wm = Integrator(pm−1, wm−1, ε, L, H, G) in Eq (7)
6: δH = H(wm−1, pm−1) − H(wm, pm)
7: αm = min(1, exp(δH))
8: um � Unif(0, 1)
9: wm = Metropolis(αm, um, wm, wm−1) in Eq (5)
10: end for

4 The target posteriors

In this section, we outline the target distributions that we considered in this work. These target

posterior densities have been extensively used in the literature [1, 4–6, 12, 28, 29], including

the seminal work of Girolami and Caldehead [1].

4.1 Banana shaped distribution

The Banana shaped density is a 2-dimensional non-linear target which was first presented in

Haario et al. [30]. The likelihood and prior distributions are given as:

yjw � N ðw1 þ w2
2
¼ 1;s2

yÞ; w1;w2 � N ð0; s2
wÞ ð9Þ

We generated one hundred data points for y with s2
y ¼ 4 and s2

w ¼ 1. Due to independence of

the data and parameters, the posterior distribution is proportional to:

Yi¼N

i¼1

pðykjwÞpðw1Þpðw2Þ: ð10Þ

where N = 100 is the number of observations.

4.2 Multivariate Gaussian distributions

The objective is to sample from D-dimensional Gaussian distributions N ð0;SÞ. The covari-

ance matrix S is set to be diagonal, with the standard deviations simulated from a log-normal

distribution with mean zero and unit standard deviation. In this work, we consider the num-

ber of dimensions D to be in the set {50, 100}.
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4.3 Bayesian logistic regression

We model the real world binary classification datasets shown in Table 1 using Bayesian logistic

regression. The negative log-likelihood l(D|w) function associated with logistic regression is

given by:

lðDjwÞ ¼
XN

i

yilogðw
TxiÞ þ ð1 � yiÞlogð1 � wTxiÞ ð11Þ

where D is the data and N is the number of observations. Thus, the target unnormalised poste-

rior log distribution is given as:

ln pðwjDÞ ¼ lðDjwÞ þ ln pðwjbÞ ð12Þ

where ln p(w|β) is the log of the prior distribution on the parameters given the hyperpara-

meters β. We model the parameters w as having a Gaussian prior with each parameter having

zero mean and standard deviation β = 10. These settings are the same as those used in Girolami

and Caldehead [1].

5 Experimental setup

We now outline the settings used for the experiments, the performance metrics used and we

perform a sensitivity analysis to the vol-of-vol parameter α.

5.1 Settings

In all our experiments, we compare the performance of QIMHMC to HMC, MHMC and

QIHMC using the following metrics: acceptance rate of the generated samples, the effective

sample size and the effective sample size normalised by execution time.

The acceptance rate metric measures the number of generated samples that are accepted in

the Metropolis-Hastings acceptance step of the algorithm. The higher the number of accepted

samples for the same step size, the more preferable the method. The effective sample size met-

ric is a commonly used metric for assessing the sampling efficiency of an MCMC algorithm. It

indicates the number of effectively uncorrelated samples out of the total number of generated

samples. The larger the effective sample size, the better the performance of the MCMC

method. The effective sample size normalised by execution time metric takes into account the

computational resources required to generate the samples and penalises MCMC methods that

require more computational resources to generate the same number of uncorrelated samples.

The larger this metric, the better the efficiency of algorithm.

The vol-of-vol parameter α is set depending on the particular target density. The sensitivity

analysis for α is presented in Section 5.3. We set α to 0.1 for the Banana shaped distribution

and α was set to 0.3 for the other targets.

The trajectory length for all the MCMC methods considered in this work was set to 100

across all the targets. For the Banana shaped distribution, we used a step size of 0.1 for all the

Table 1. Real world benchmark datasets. N represents the number of observations. D represents the number of

model parameters.

Dataset Features N D
Heart 13 270 14

Australian credit 14 690 15

German credit 24 1 000 25

https://doi.org/10.1371/journal.pone.0258277.t001
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MCMC methods. Step sizes of 0.07 and 0.05 were used for each value of D, in that order, for

the multivariate Gaussian distributions, with the Bayesian logistic regression datasets all using

a step size of 0.02. Ten independent chains were run for each method on each target distribu-

tion. A total of 3 000 samples were generated for each target, with the first 1 000 samples dis-

carded as burn-in. This was sufficient for all the algorithms to converge on all the targets. All

experiments were conducted on a 64bit CPU using PyTorch.

As mentioned previously, the matrix G in the MHMC and QIMHMC methods provides an

extra degree of freedom which results in better sampling behavior than HMC [4, 6, 31]. It is

not immediately clear how this matrix should be set—this is still an open area of research [4, 6,

27]. In this work, we select only a few dimensions to be influenced by the magnetic field. In

particular, G was set such that G1i = g, Gi1 = −g and zero elsewhere for g = 0.2. These settings

are used across all the targets.

It is worth highlighting that, in this work, the mass matrix M is set to the identity matrix for

the HMC and MHMC methods. This is what is commonly used in practice [3, 4, 6, 26].

5.2 Multivariate effective sample size

This work employs the multivariate effective sample size metric developed by Vats et al. [32]

instead of the minimum univariate ESS metric typically used in analysing MCMC results. The

minimum univariate ESS measure is not able to capture the correlations between the different

parameter dimensions, while the multivariate ESS metric is able to incorporate this informa-

tion [1, 4, 5, 32]. The minimum univariate ESS calculation results in the estimate of the ESS

being dominated by the parameter dimensions that mix the slowest, and ignoring all other

dimensions [4, 5, 32]. The multivariate ESS is calculated as:

ESS ¼ n�
jLj

jSj

� �1
D

ð13Þ

where n is the number of generated samples, D is the number of parameters, Λ is the sample

covariance matrix and S is the estimate of the Markov chain standard error. When D = 1, the

multivariate ESS is equivalent to the univariate ESS measure.

It is worth noting that for the case where D> 1, the disadvantage of the multivariate ESS

approach is with regards to the estimation of Λ and S. If non-stable approaches are used, they

can lead to unreliable results [32]. This is particularly important when D is large.

5.3 Sensitivity to the vol-of-vol

In this section, we present the sensitivity analysis for the chosen vol-of-vol parameter α. We

considered values of α 2 {0.1, 0.3, 0.5, 0.7, 0.9}, with all the other settings being the same as

those outlined in Section 5.1. The results are presented in Fig 1. The results show that the ESS

has a tendency of decreasing for both QIHMC and QIMHMC with increasing α on both the

Australian and German credit datasets. Furthermore, QIMHMC outperforms QIHMC for all

values of α on both an ESS and normalised ESS basis, showing the robust results that can be

obtained from QIMHMC.

6 Results and discussion

We present the performance of the MCMC methods outlined above across all the targets dis-

tributions using different performance metrics in Fig 2 and Tables 2 to 4. In Fig 2, the plots on

the first row for each dataset show the effective sample size, and the plots on the second row

show the effective sample size normalised by execution time. The results are for the 10 runs of
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each algorithm. In Tables 2 to 4, each column corresponds with the results for a particular

MCMC method. Values that are in bold indicate that the MCMC method outperforms on that

particular metric.

The execution time t in Fig 2 and Tables 2 to 4 is in seconds. The results in Tables 2 to 4 are

the mean results over the 10 runs for each algorithm. We use the mean values over the 10 runs

in Tables 2 to 4 to form our conclusions about the performance of the algorithms.

The results in Fig 2 and Tables 2 to 4 show that the proposed QIMHMC method outper-

forms all the other methods across the ESS and normalised ESS performance metrics and on

all the targets. The outperformance improving with increasing dimensionality of the problem.

As expected, MHMC always outperforms HMC on all the targets and across all the metrics.

This is in line with what has been previously observed [4, 6, 27]. MHMC and QIMHMC pro-

duce similar performance on the acceptance rate metric.

QIHMC outperforms HMC across all the targets. This confirms the results observed by Liu

and Zhang [7] using different target posteriors to those considered in this paper. This shows

the significant benefit that utilising a random mass can provide to the sampling properties of

HMC based samplers. However, the real performance gains are only realised when the vol-of-

Fig 1. ESS and ESS/t for ten runs of QIHMC (blue) and QIMHMC (orange) on the Australian and German credit datasets with varying choices of the vol-of-vol

parameter.

https://doi.org/10.1371/journal.pone.0258277.g001
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Fig 2. Results for the datasets over 10 runs of each method. For each dataset, the plots on the first row show the multivariate effective sample size and the plots on

the second row show the multivariate effective sample size normalised by execution time (in seconds). For all the plots, the larger the value the better the method. The

dark horizontal line in each violin plot represents the mean value over 10 runs of each algorithm.

https://doi.org/10.1371/journal.pone.0258277.g002
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vol parameter α has been appropriately tuned. The approach for tuning α is still an open

research problem, which we aim to address in future work.

7 Conclusion

We present the Quantum-Inspired Magnetic Hamiltonian Monte Carlo (QIMHMC) method

which employs a random mass matrix in the non-canonical dynamics of Magnetic

Table 2. Banana shaped distribution results averaged over 10 runs. The time t is in seconds. The values in bold indicate that the particular method outperforms the

other methods on that specific metric.

Banana shaped distribution

Metric HMC MHMC QIHMC QIMHMC

Acceptance 77.42 99.81 75.52 99.10

ESS 476 1 222 542 1 293

ESS/t 3.89 9.76 4.30 9.99

https://doi.org/10.1371/journal.pone.0258277.t002

Table 4. Bayesian logistic regression results averaged over 10 runs. The time t is in seconds. The values in bold indicate that the particular method outperforms the

other methods on that specific metric.

Heart dataset

Metric HMC MHMC QIHMC QIMHMC

Acceptance 92.90 99.00 92.48 98.92

ESS 1 284 1 633 1 574 1 786

ESS/t 4.55 5.71 5.43 6.21

Australian credit dataset

Acceptance 89.25 96.70 89.39 96.58

ESS 1 220 1 479 1 533 1 805

ESS/t 4.28 5.24 5.32 6.15

German credit dataset

Acceptance 77.92 89.08 75.89 86.27

ESS 1 185 1 557 1 341 1 636

ESS/t 1.95 2.58 2.17 2.70

https://doi.org/10.1371/journal.pone.0258277.t004

Table 3. Multivariate Gaussian distribution results averaged over 10 runs. The time t is in seconds. The values in bold indicate that the particular method outperforms

the other methods on that specific metric.

Gaussian with D = 50

Metric HMC MHMC QIHMC QIMHMC

Acceptance 78.90 83.03 79.84 89.3

ESS 1 469 1 622 1 606 1 921

ESS/t 3.02 3.32 3.23 3.76

Gaussian with D = 100

Acceptance 71.82 77.50 71.08 80.24

ESS 1 451 1 631 1 504 1 755

ESS/t 2.70 3.04 2.75 3.17

https://doi.org/10.1371/journal.pone.0258277.t003
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Hamiltonian Monte Carlo (MHMC). This results in significant sampling improvements over

MHMC. The new method is compared to Hamiltonian Monte Carlo (HMC), MHMC and

Hamiltonian Monte Carlo with a random mass matrix. The methods are compared on the

Banana shaped distribution, multivariate Gaussian distributions and on real world datasets

modelled using Bayesian logistic regression.

The empirical results show that the new method outperforms all the other methods on a

normalised effective sample size basis across all the targets. Furthermore, HMC with a random

mass matrix outperforms vanilla HMC. This shows the significant benefit provided by using a

random mass matrix to the sampling properties of HMC based samplers. A limitation of the

method is the need to tune the vol-of-vol parameter. Although typically smaller values of the

parameter improve the effective sample sizes, a more robust approach to the selection of the

parameter is still required.

This work can be improved upon by establishing a heuristic or an automated approach to

tune the vol-of-vol parameter. In addition, the tuning of the magnetic component could also

be of interest. In future work, we plan to apply the proposed method to the inference of Bayes-

ian neural networks using larger datasets such as MNIST.
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