organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6-Benzyl-3,4-dimethoxy-10-methylpyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6*H*)-one

Kathrin Meindl,^a* Daniel Stern,^a Fadime Mert-Balci^b and Uwe Beifuss^b

^aInstitut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany, and ^bBioorganische Chemie, Institut für Chemie, Universität Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany Correspondence e-mail: meindl@shelx.uni-ac.gwdg.de

Received 13 May 2009; accepted 4 September 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.030; wR factor = 0.080; data-to-parameter ratio = 16.3.

Pyrido[2',1':2,3]imidazo[4,5-*c*]isoquinolin-5(6*H*)-ones such as the title compound, $C_{24}H_{21}N_3O_3$, can be obtained in a few minutes in a microwave-assisted three-component reaction from 2-aminopyridines, isocyanides and 2-carboxybenzaldehydes. In the title compound, the pyrido[2',1':2,3]imidazo[4,5-*c*]isoquinolin-5(6*H*)-one ring system is almost planar (mean deviation 0.068 Å). The dihedral angle between the benzyl ring and the pyrido[2',1':2,3]imidazo[4,5-*c*]isoquinolin-5(6*H*)-one ring system is 78.2°. The crystal structure is stabilized by intermolecular C–H···O and C–H···N hydrogen bonds.

Related literature

For the biological activity of fused imidazo[1,2-a]heterocycles, see: Almirante *et al.* (1965); Gueiffier *et al.* (1998); Sanfilippo *et al.* (1988); Varma & Kumar (1999). This heterocyclic structure element is present in drugs such as alpidem (anxiolytic), zolpidem (hypnotic) and zolimidine (antiulcer), see: Meng *et al.* (2007). For the synthesis of pyrido[2',1':2,3]-imidazo[4,5-c]isoquinolin-5(6H)-ones by the microwave-assisted three-component reaction of 2-aminopyridines, isocyanides and 2-carboxybenzaldehydes, see: Mert-Balci *et al.* (2008).

Experimental

Crystal data $C_{24}H_{21}N_3O_3$ $M_r = 399.44$

Monoclinic, $P2_1$ a = 8.3650 (17) Å b = 7.0500 (14) Å c = 15.983 (3) Å $\beta = 92.27 (3)^{\circ}$

Data collection

```
Bruker APEXII diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
T_{min} = 0.965, T_{max} = 0.981
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.080$ S = 1.064479 reflections 274 parameters 1 restraint $\mu = 0.10 \text{ mm}^{-1}$ T = 100 K 0.35 × 0.20 × 0.20 mm

V = 941.8 (3) Å³

Mo $K\alpha$ radiation

Z = 2

16260 measured reflections	
4479 independent reflections	
4383 reflections with $I > 2\sigma(I)$)
$R_{\rm int} = 0.021$	

H-atom parameters constrained $\Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.20 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 1895 Friedel pairs Flack parameter: 0.2 (6)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C5-H5A\cdots N1^{i}$	0.95	2.68	3.4126 (16)	134
C18−H18A···O1 ⁱⁱ	0.95	2.36	3.1127 (16)	136
$C19-H19A\cdotsO1^{iii}$	0.95	2.58	3.3840 (16)	142

Symmetry codes: (i) -x, $y - \frac{1}{2}$, -z + 2; (ii) -x + 1, $y + \frac{1}{2}$, -z + 1; (iii) x + 1, y, z.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

Financial support by the BMBF (01RI05181) is greatly acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2108).

References

- Almirante, L., Polo, L., Mugnaini, A., Provinciali, E., Rugarli, P., Biancotti, A., Gamba, A. & Murmann, W. (1965). J. Med. Chem. 8, 305–312.
- Bruker (2006). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Gueiffier, A., Mavel, S., Lhassani, M., Elhakmaoui, A., Snoeck, R., Andrei, G., Chavignon, O., Teulade, J.-C., Witvrouw, M., Balzarini, J., De Clercq, E. & Chapat, J.-P. (1998). J. Med. Chem. 41, 5108–5112.
- Meng, T., Zhang, Z., Hu, D., Lin, L., Ding, J., Wang, X. & Shen, J. (2007). J. Comb. Chem. 9, 739–741.
- Mert-Balci, F., Conrad, J., Meindl, K., Schulz, T., Stalke, D. & Beifuss, U. (2008). *Synthesis*, pp. 3649–3656.
- Sanfilippo, P. J., Urbanski, M., Press, J. B., Dubinsky, B. & Moore, J. B. Jr (1988). J. Med. Chem. 31, 2221–2227.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Varma, R. S. & Kumar, D. (1999). Tetrahedron Lett. 40, 7665-7669.

supplementary materials

Acta Cryst. (2009). E65, o2464-o2465 [doi:10.1107/S1600536809035806]

6-Benzyl-3,4-dimethoxy-10-methylpyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-one

K. Meindl, D. Stern, F. Mert-Balci and U. Beifuss

Comment

The fused imidazo[1,2-*a*]heterocycles have proven to be successful in the field of medicinal chemistry. They show important biological activities like antibacterial, antiviral, antifungal and anti-inflammatory properties (Gueiffier *et al.*, 1998, Almirante *et al.*, 1965, Varma & Kumar, 1999, Sanfilippo *et al.*, 1988). This heterocyclic structure element is present in drugs like alpidem (anxiolytic), zolpidem (hypnotic) and zolimidine (antiulcer) (Meng *et al.*, 2007). Recently, pyrido[2',1':2,3]imidazo[4,5-*c*]isoquinolin-5(6*H*)-ones, incorporating an imidazopyridine backbone, have been reported to exhibit potent antitumor activity *in vitro* (Meng *et al.*, 2007).

Pyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-ones can be readily synthesized by the three-component reaction between 2-aminopyridines, isocyanides and 2-carboxybenzaldehydes under acidic conditions with the use of microwaves within a few minutes (Mert-Balci *et al.*, 2008). The title compound (Fig. 1) was obtained from the corresponding compounds under similar conditions (Fig. 3). The pyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-one ring system is almost planar with a mean deviation from the plane of 0.0681 Å. The dihedral angle between the benzyl ring and the pyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-one ring system is 78.2°. The molecules are hydrogen-bonded through hydrogen atoms at the benzyl carbon atoms C18 and C19, respectively, acting as donors towards the carbonyl oxygen atom O1 in different symmetry equivalent molecules, and by the hydrogen atom at C5 donating towards the imidazole nitrogen atom N1 (Fig. 2), thus forming a 3-dimensional network.

Experimental

1 (1 mmol), 2 (1.09 mmol) and 3 (2.25 mmol) were suspended in toluene (2 ml) and placed in a 10 ml reaction vial that had been heated and cooled under argon. After the addition of MsOH (0.2 mmol), the vial was sealed with a septum and irradiated with microwaves (Discover by CEM; 2450 MHz; 300 W) at 160 °C for 7 min. The reaction mixture was allowed to cool to room temperature, diluted with CH_2Cl_2 (100 ml), and then washed with NaHCO₃ solution (2 × 100 ml). The residue obtained after drying the organic phase over MgSO₄ and concentration *in vacuo* was purified by column chromatography on silica gel (EtOAc) to yield the title compound 4 (yield 23%, m.p. 245–247°C). Crystallization from ethyl acetate provided suitable crystals of 4 for X-ray crystal structure analysis.

Refinement

H atoms bonded to C atoms were placed at calculated positions and refined using a riding model. The constrained C—H distances were 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene H atoms, respectively. The $U_{iso}(H)$ values were set at $1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for all other H atoms.

The absolute structure was confirmed by the method of Parsons' Q-values, which yielded an absolute structure parameter of 0.02 (18) (Parsons & Flack, 2004), and by a Hooft y parameter of -0.08 (16) (Hooft *et al.*, 2008).

Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Fig. 2. Hydrogen network in the crystal packing of the title compound. For clarity only H atoms involved in hydrogen bonds are shown. [Symmetry codes: (i) - x, y - 1/2, - z + 2; (ii) -x + 1, y + 1/2, - z + 1; (iii) x + 1, y, z; (iv) x - 1, y, z; (v) -x, y + 1/2, - z + 2; (vi) - x + 1, y - 1/2, - z + 1.]

Fig. 3. Microwave-assisted synthesis of the title compound.

\ 6-Benzyl-3,4-dimethoxy-9-methylpyrido[2',1':2,3]imidazo[4,5-c]\ isoquinolin-5(6H)-one

$F_{000} = 420$
$D_{\rm x} = 1.408 {\rm Mg} {\rm m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 6111 reflections
$\theta = 2.7 - 28.4^{\circ}$
$\mu = 0.10 \text{ mm}^{-1}$
T = 100 K

 $\beta = 92.27 (3)^{\circ}$ $V = 941.8 (3) \text{ Å}^3$ Z = 2

Data collection

Bruker APEXII diffractometer	4479 independent reflections
Radiation source: fine-focus sealed tube	4383 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.021$
Detector resolution: 8.3333 pixels mm ⁻¹	$\theta_{max} = 28.5^{\circ}$
T = 100 K	$\theta_{\min} = 2.4^{\circ}$
ω scans	$h = -10 \rightarrow 11$
Absorption correction: multi-scan (SADABS; Bruker, 2006)	$k = -9 \rightarrow 9$
$T_{\min} = 0.965, T_{\max} = 0.981$	$l = -21 \rightarrow 21$
16260 measured reflections	

Block, orange

 $0.35 \times 0.20 \times 0.20$ mm

Refinement

Hydrogen site location: difference Fourier map
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0521P)^2 + 0.1311P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{max} < 0.001$
$\Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.20 \text{ e} \text{ Å}^{-3}$
Extinction correction: none
Absolute structure: Flack (1983)
Flack parameter: 0.2 (6)

Secondary atom site location: difference Fourier map

Special details

Experimental. Intensities were measured with a Bruker APEX II area detector

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.10209 (10)	-0.19983 (13)	0.60571 (5)	0.02146 (17)
02	0.00203 (10)	-0.51480 (13)	0.68116 (5)	0.02068 (17)
03	-0.16121 (10)	-0.64479 (12)	0.80584 (5)	0.02256 (18)
N1	0.16148 (11)	0.18429 (14)	0.89977 (6)	0.0188 (2)
N2	0.28372 (11)	0.29948 (15)	0.78537 (6)	0.01719 (18)
N3	0.19436 (11)	0.04583 (14)	0.68445 (5)	0.01692 (19)
C1	0.11724 (12)	-0.12940 (17)	0.67556 (7)	0.0167 (2)
C2	0.05157 (13)	-0.21455 (17)	0.75221 (6)	0.0163 (2)
C3	-0.01653 (12)	-0.39733 (17)	0.74838 (6)	0.0174 (2)
C4	-0.09563 (13)	-0.46934 (17)	0.81773 (7)	0.0187 (2)
C5	-0.10004 (13)	-0.36386 (18)	0.89150 (7)	0.0196 (2)
H5A	-0.1545	-0.4124	0.9379	0.024*
C6	-0.02551 (13)	-0.18914 (17)	0.89725 (7)	0.0186 (2)
H6A	-0.0260	-0.1206	0.9484	0.022*
C7	0.05077 (12)	-0.11180 (17)	0.82860 (7)	0.0163 (2)
C8	0.13440 (12)	0.06634 (16)	0.83200 (6)	0.0167 (2)
С9	0.24986 (13)	0.32389 (17)	0.87093 (7)	0.0181 (2)
C10	0.31098 (13)	0.48761 (18)	0.91234 (7)	0.0197 (2)
H10A	0.2867	0.5093	0.9691	0.024*
C11	0.40443 (13)	0.61520 (17)	0.87209 (7)	0.0210(2)
C12	0.44105 (14)	0.57844 (18)	0.78680 (8)	0.0221 (2)
H12A	0.5087	0.6638	0.7588	0.027*
C13	0.38171 (14)	0.42520 (17)	0.74504 (7)	0.0202 (2)
H13A	0.4072	0.4041	0.6884	0.024*
C14	0.20519 (13)	0.13373 (16)	0.76184 (7)	0.0169 (2)
C15	0.25250 (13)	0.13309 (17)	0.60803 (6)	0.0176 (2)
H15A	0.2373	0.2721	0.6112	0.021*
H15B	0.1874	0.0860	0.5593	0.021*
C16	0.42737 (13)	0.09168 (16)	0.59426 (7)	0.0168 (2)
C17	0.48763 (14)	0.12660 (17)	0.51524 (7)	0.0199 (2)
H17A	0.4187	0.1738	0.4714	0.024*
C18	0.64788 (14)	0.09259 (18)	0.50067 (8)	0.0245 (2)
H18A	0.6879	0.1175	0.4470	0.029*
C19	0.74952 (14)	0.02273 (19)	0.56382 (9)	0.0269 (3)
H19A	0.8587	-0.0014	0.5534	0.032*
C20	0.69096 (15)	-0.0119 (2)	0.64258 (9)	0.0269 (3)
H20A	0.7605	-0.0588	0.6863	0.032*
C21	0.53069 (14)	0.02215 (17)	0.65755 (7)	0.0216 (2)
H21A	0.4914	-0.0023	0.7114	0.026*
C22	-0.13252 (15)	-0.51842 (19)	0.62248 (8)	0.0253 (2)
H22A	-0.1096	-0.6038	0.5761	0.038*
H22B	-0.1525	-0.3903	0.6007	0.038*
H22C	-0.2273	-0.5636	0.6506	0.038*
C23	-0.23837 (15)	-0.72755 (19)	0.87505 (8)	0.0253 (3)
H23A	-0.2809	-0.8524	0.8589	0.038*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H23B	-0.3263	-0.6454	0.8915	0.038*
H23C	-0.1610	-0.7417	0.9223	0.038*
C24	0.47030 (15)	0.7900 (2)	0.91476 (8)	0.0273 (3)
H24A	0.4605	0.7778	0.9754	0.041*
H24B	0.4101	0.9013	0.8946	0.041*
H24C	0.5833	0.8050	0.9020	0.041*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0245 (4)	0.0245 (4)	0.0156 (4)	-0.0009 (3)	0.0033 (3)	-0.0029 (3)
O2	0.0243 (4)	0.0195 (4)	0.0182 (4)	0.0043 (3)	0.0001 (3)	-0.0029 (3)
O3	0.0264 (4)	0.0185 (4)	0.0230 (4)	-0.0020 (3)	0.0031 (3)	0.0031 (3)
N1	0.0191 (4)	0.0215 (5)	0.0156 (4)	0.0032 (4)	-0.0004 (3)	-0.0014 (4)
N2	0.0173 (4)	0.0184 (4)	0.0160 (4)	0.0033 (4)	0.0008 (3)	-0.0005 (4)
N3	0.0181 (4)	0.0199 (5)	0.0129 (4)	0.0010 (4)	0.0027 (3)	0.0003 (4)
C1	0.0141 (4)	0.0207 (5)	0.0152 (5)	0.0038 (4)	0.0025 (4)	0.0010 (4)
C2	0.0148 (4)	0.0196 (5)	0.0146 (5)	0.0047 (4)	0.0007 (4)	0.0011 (4)
C3	0.0161 (5)	0.0200 (5)	0.0159 (5)	0.0049 (4)	0.0000 (4)	0.0002 (4)
C4	0.0166 (5)	0.0188 (5)	0.0207 (5)	0.0030 (4)	-0.0007 (4)	0.0026 (4)
C5	0.0172 (5)	0.0239 (6)	0.0181 (5)	0.0037 (4)	0.0038 (4)	0.0038 (4)
C6	0.0193 (5)	0.0226 (5)	0.0142 (4)	0.0049 (4)	0.0022 (4)	0.0003 (4)
C7	0.0144 (5)	0.0197 (5)	0.0147 (4)	0.0040 (4)	0.0006 (4)	0.0006 (4)
C8	0.0156 (5)	0.0201 (5)	0.0143 (5)	0.0045 (4)	0.0012 (4)	-0.0001 (4)
C9	0.0174 (5)	0.0217 (6)	0.0152 (5)	0.0054 (4)	-0.0001 (4)	0.0002 (4)
C10	0.0191 (5)	0.0228 (6)	0.0171 (5)	0.0045 (4)	-0.0013 (4)	-0.0033 (4)
C11	0.0182 (5)	0.0198 (6)	0.0246 (5)	0.0045 (4)	-0.0028 (4)	-0.0030 (5)
C12	0.0210 (5)	0.0206 (6)	0.0246 (5)	0.0018 (4)	0.0006 (4)	0.0009 (4)
C13	0.0215 (5)	0.0196 (5)	0.0196 (5)	0.0022 (4)	0.0027 (4)	0.0020 (4)
C14	0.0166 (5)	0.0184 (5)	0.0156 (5)	0.0033 (4)	0.0003 (4)	0.0000 (4)
C15	0.0176 (5)	0.0215 (5)	0.0139 (4)	0.0018 (4)	0.0021 (4)	0.0020 (4)
C16	0.0174 (5)	0.0148 (5)	0.0182 (5)	-0.0001 (4)	0.0020 (4)	-0.0016 (4)
C17	0.0218 (5)	0.0170 (5)	0.0212 (5)	-0.0004 (4)	0.0037 (4)	-0.0002 (4)
C18	0.0253 (6)	0.0177 (5)	0.0313 (6)	-0.0036 (5)	0.0114 (5)	-0.0005 (5)
C19	0.0171 (5)	0.0208 (6)	0.0433 (7)	-0.0013 (4)	0.0058 (5)	-0.0043 (5)
C20	0.0216 (6)	0.0241 (6)	0.0346 (6)	0.0039 (5)	-0.0052 (5)	-0.0017 (5)
C21	0.0230 (5)	0.0211 (6)	0.0205 (5)	0.0031 (4)	-0.0004 (4)	-0.0011 (4)
C22	0.0304 (6)	0.0237 (6)	0.0214 (5)	-0.0029 (5)	-0.0042 (4)	-0.0009 (5)
C23	0.0236 (6)	0.0234 (6)	0.0290 (6)	-0.0007 (5)	0.0042 (5)	0.0065 (5)
C24	0.0243 (6)	0.0246 (6)	0.0327 (6)	-0.0004 (5)	-0.0018 (5)	-0.0076 (5)

Geometric parameters (Å, °)

O1—C1 1.2238 (14) C11—C24 1	1.5027 (17)
O2—C3 1.3702 (14) C12—C13 1	1.3538 (17)
O2—C22 1.4364 (14) C12—H12A 0	0.9500
O3—C4 1.3634 (14) C13—H13A 0	0.9500
O3—C23 1.4273 (15) C15—C16 1	1.5162 (15)
N1—C9 1.3246 (16) C15—H15A 0	0.9900

supplementary materials

N1—C8	1.3772 (14)	С15—Н15В	0.9900
N2—C13	1.3838 (15)	C16—C21	1.3932 (16)
N2—C14	1.3852 (16)	C16—C17	1.4001 (16)
N2—C9	1.4180 (14)	C17—C18	1.3905 (16)
N3—C14	1.3833 (14)	C17—H17A	0.9500
N3—C1	1.3983 (15)	C18—C19	1.384 (2)
N3—C15	1.4675 (14)	C18—H18A	0.9500
C1—C2	1.4888 (15)	C19—C20	1.3905 (19)
C2—C3	1.4093 (17)	С19—Н19А	0.9500
C2—C7	1.4198 (15)	C20—C21	1.3920 (17)
C3—C4	1.4080 (15)	C20—H20A	0.9500
C4—C5	1.3956 (16)	C21—H21A	0.9500
C5—C6	1.3820 (18)	C22—H22A	0.9800
С5—Н5А	0.9500	C22—H22B	0.9800
C6—C7	1.4015 (16)	С22—Н22С	0.9800
С6—Н6А	0.9500	C23—H23A	0.9800
С7—С8	1.4376 (16)	С23—Н23В	0.9800
C8—C14	1.3735 (15)	С23—Н23С	0.9800
C9—C10	1.4160 (17)	C24—H24A	0.9800
C10-C11	1.3689 (18)	C24—H24B	0.9800
C10—H10A	0.9500	C24—H24C	0.9800
C11—C12	1.4325 (16)		
C3—O2—C22	114.36 (9)	N2—C13—H13A	120.2
C4—O3—C23	117.04 (10)	C8—C14—N3	124.06 (11)
C9—N1—C8	104.57 (9)	C8—C14—N2	106.58 (10)
C13—N2—C14	134.21 (10)	N3—C14—N2	129.36 (10)
C13—N2—C9	121.07 (10)	N3—C15—C16	113.18 (9)
C14—N2—C9	104.68 (9)	N3—C15—H15A	108.9
C14—N3—C1	120.01 (9)	С16—С15—Н15А	108.9
C14—N3—C15	122.98 (10)	N3—C15—H15B	108.9
C1—N3—C15	116.91 (9)	C16—C15—H15B	108.9
O1—C1—N3	118.80 (10)	H15A—C15—H15B	107.8
O1—C1—C2	123.97 (11)	C21—C16—C17	118.79 (11)
N3—C1—C2	117.16 (9)	C21—C16—C15	122.45 (10)
C3—C2—C7	119.22 (10)	C17—C16—C15	118.75 (10)
C3—C2—C1	119.65 (10)	C18—C17—C16	120.31 (11)
C7—C2—C1	121.08 (10)	C18—C17—H17A	119.8
O2—C3—C4	118.08 (11)	С16—С17—Н17А	119.8
O2—C3—C2	121.91 (10)	C19—C18—C17	120.50 (12)
C4—C3—C2	119.82 (10)	C19—C18—H18A	119.7
O3—C4—C5	125.26 (11)	C17—C18—H18A	119.7
O3—C4—C3	114.61 (10)	C18—C19—C20	119.63 (11)
C5—C4—C3	120.13 (11)	С18—С19—Н19А	120.2
C6—C5—C4	120.28 (11)	С20—С19—Н19А	120.2
С6—С5—Н5А	119.9	C19—C20—C21	120.10 (12)
С4—С5—Н5А	119.9	C19—C20—H20A	119.9
C5—C6—C7	120.85 (10)	C21—C20—H20A	119.9
С5—С6—Н6А	119.6	C20—C21—C16	120.65 (11)
С7—С6—Н6А	119.6	C20—C21—H21A	119.7

C6—C7—C2	119.51 (11)	C16-C21-H21A	119.7
C6—C7—C8	123.11 (10)	O2—C22—H22A	109.5
C2—C7—C8	117.35 (10)	O2—C22—H22B	109.5
C14—C8—N1	111.75 (10)	H22A—C22—H22B	109.5
C14—C8—C7	119.75 (10)	O2—C22—H22C	109.5
N1—C8—C7	128.45 (10)	H22A—C22—H22C	109.5
N1—C9—C10	129.72 (10)	H22B—C22—H22C	109.5
N1—C9—N2	112.40 (10)	O3—C23—H23A	109.5
C10—C9—N2	117.88 (10)	O3—C23—H23B	109.5
C11—C10—C9	121.21 (10)	H23A—C23—H23B	109.5
C11—C10—H10A	119.4	O3—C23—H23C	109.5
С9—С10—Н10А	119.4	H23A—C23—H23C	109.5
C10-C11-C12	118.42 (11)	H23B—C23—H23C	109.5
C10-C11-C24	122.11 (11)	C11—C24—H24A	109.5
C12—C11—C24	119.46 (11)	C11—C24—H24B	109.5
C13—C12—C11	121.70 (12)	H24A—C24—H24B	109.5
C13—C12—H12A	119.2	C11—C24—H24C	109.5
C11—C12—H12A	119.2	H24A—C24—H24C	109.5
C12—C13—N2	119.60 (11)	H24B—C24—H24C	109.5
С12—С13—Н13А	120.2		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!\!- \!$
C5—H5A…N1 ⁱ	0.95	2.68	3.4126 (16)	134
C18—H18A···O1 ⁱⁱ	0.95	2.36	3.1127 (16)	136
C19—H19A···O1 ⁱⁱⁱ	0.95	2.58	3.3840 (16)	142

Symmetry codes: (i) -*x*, *y*-1/2, -*z*+2; (ii) -*x*+1, *y*+1/2, -*z*+1; (iii) *x*+1, *y*, *z*.

Fig. 1

