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Abstract

Motivation: The advent of multi-modal single-cell sequencing techniques have shed new light on molecular mecha-
nisms by simultaneously inspecting transcriptomes, epigenomes and proteomes of the same cell. However, to date,
the existing computational approaches for integration of multimodal single-cell data are either computationally ex-
pensive, require the delineation of parameters or can only be applied to particular modalities.

Results: Here we present a single-cell multi-modal integration method, named Multi-mOdal Joint IntegraTion of
cOmpOnents (MOJITOO). MOJITOO uses canonical correlation analysis for a fast and parameter free detection of a
shared representation of cells from multimodal single-cell data. Moreover, estimated canonical components can be
used for interpretation, i.e. association of modality-specific molecular features with the latent space. We evaluate
MOJITOO using bi- and tri-modal single-cell datasets and show that MOJITOO outperforms existing methods
regarding computational requirements, preservation of original latent spaces and clustering.

Availability and implementation: The software, code and data for benchmarking are available at https://github.com/
CostaLab/MOJITOO and https://doi.org/10.5281/zenodo.6348128.

Contact: ivan.costa@rwth-aachen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The technological advances of high-throughput single-cell sequenc-
ing enable us to characterize cellular heterogeneity of complex tis-
sues for distinct molecular players of cells such as transcripts,
proteins and chromatin (Efremova and Teichmann, 2020). The ad-
vent of multimodal technologies allow us to simultaneously measure
two or more modalities at the same cells, i.e. RNA and open chro-
matin (Hu et al., 2020; Cao et al., 2018; Ma et al., 2020); RNA and
protein (Stoeckius et al., 2017); and RNA, open chromatin and pro-
tein (Mimitou et al., 2021; Swanson et al., 2021). These methods
allow us to access how genetic information is associated at distinct
molecular levels, i.e. the effect of DNA accessibility changes on gene
expression or the expression of genes to proteins. However, data
produced by each modality has quite distinct characteristics regard-
ing their numerical values (e.g. low counts for open chromatin and
variable count values for RNA and proteins levels), dimensionality
(dozens for proteins, tens of thousands for genes, hundreds of thou-
sands for open chromatin) and levels of data sparsity (Argelaguet
et al., 2021; Li et al., 2021). These make the integrative analysis of
multi-modal data a challenging task.

Here, we are interested in the problem of estimating a shared la-
tent space from parallel multiomic approaches, where two or more
modalities are measured in the same cells. A few methods have been
proposed for this problem. These follow two main frameworks:
metric learning and latent variable learning. Weighted nearest neigh-
bors (WNN) (Hao et al., 2021)) and Schema (Singh et al., 2021)

explore, respectively, nearest neighbors and quadratic programming
to estimate a single distance matrix representing the integrated
multimodal data. Both approaches explore efficient algorithms, but
do not explicitly provide models associating molecular features to
the ‘latent space’. MOFA (Argelaguet et al., 2020), scAI (Jin et al.,
2020), totalVI (Gayoso et al., 2021) and LIGER (Kriebel and
Welch, 2022) explore distinct methods for matrix factorization and
estimation of shared latent spaces between modalities. Moreover,
estimated matrices can be used for model interpretation, i.e. decom-
posed matrices can be used to associate molecular features with the
latent space. Overall, these methods have a large number of free
parameters including the size of the latent space (or rank of the low
dimensional matrices). These methods require the optimization of
the size of the latent space, which in turn increases computational
costs. Of note, the main application of LIGER is the integration of
experiments within a modality (Welch et al., 2019). The data inte-
gration evaluated here refers to a latter version of LIGER (Kriebel
and Welch, 2022), which can only be used for two modalities and a
subset of the molecular features need to be common in both modal-
ities. Also, the implementation of some methods (totalVI (Gayoso
et al., 2021) and scAI (Jin et al., 2020)) only allow integration of
particular modalities (i.e. scRNA-seq and protein abundance for
totalVI; scRNA-seq and scATAC-seq for scAI).

Two recent works have explored canonical correlation analysis
(CCA) for problems close to the one addressed here. Symphony
(Kang et al., 2021), which has as main objective to build reference
single-cell atlas, used CCA to obtain a joint space in a case study
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with CITE-seq data. However, this approach does not support more
than two modalities and was not evaluated concerning its interpret-
ability or computational requirements. DIABLO (Singh et al., 2019)
extends generalized canonical analysis for integration of bulk multi-
modal datasets with respect to different phenotypes. It requires class
labels for the samples, which are used for feature selection.
However, such class labels are usually not provided in single-cell
multi-modal datasets, as explored here.

2 Approach

Here, we propose Multi-mOdal Joint IntegraTion of cOmpOnents
(MOJITOO), an efficient method that is based on CCA to learn a
shared latent space for any single-cell multimodal data protocol.
The canonical components can be interpreted as factors and be used
to characterize feature relevance by relating features across modal-
ities (Fig. 1). In contrast to matrix factorization methods,
MOJITOO does not require the definition of parameters such as the
rank of the matrix. Furthermore, it provides an approach to estimate
the size of the latent space after a single execution of CCA.
MOJITOO is provided as an R package and is compatible with
common single-cell pipelines for RNA, proteins (Seurat; Hao et al.,
2021) and ATAC modalities (Signac; Stuart et al., 2021).
MOJITOO builds upon a simple CCA procedure presented in a case
study in Symphony (Kang et al., 2021) and differs from DIABLO
(Singh et al., 2019), as it does not require labels for data integration.

We evaluate MOJITOO and competing methods (WNN,
MOFA, scAI, LIGER, Schema, DIABLO, Symphony) in two bi-
modal datasets with RNA and protein measurements (Buus et al.,
2021; Stuart et al., 2021), two bi-modal datasets with RNA and
ATAC-seq measurements (Ma et al., 2020) and two tri-modal data-
sets with RNA, proteins and ATAC-seq measurements (Mimitou
et al., 2021; Swanson et al., 2021) in regards to their ability to re-
cover a shared latent space. The latent spaces are then evaluated
with measures regarding the accuracy of clustering (adjusted Rand
index), distance (silhouette score) and structure preservation, i.e. re-
lation between shared space and original space of individual modal-
ities (Jain et al., 2021). Altogether, results show a superior
performance of MOJITOO in both computational requirements and
accuracy of estimated latent spaces. Moreover, we illustrate how
estimated canonical components can be used to interpret the under-
lying single-cell data.

3 Materials and methods

3.1 MOJITOO
MOJITOO takes as input a set of matrices from m modalities:

X ¼ fXð1Þ; . . . ;XðmÞg (1)

where XðiÞ 2 R
n�sðiÞ represents the data of a particular single-cell mo-

dality, n represents the number of cells and sðiÞ represents the num-
ber of features in modality i. Here, we focus on multimodal data,
where the cells are the same across matrices and there is no direct re-
lation between the features of the distinct modalities.

3.1.1 Reducing the dimension for each modality

We first obtain a dimension reduced matrix for each modality inde-
pendently using a modality-specific approach:

YðiÞ ¼ f ðiÞðXðiÞÞ (2)

where YðiÞ 2 R
n�pðiÞ represents the low-dimensional matrix for mo-

dality i, pðiÞ represents the number of dimensions and f ðiÞ represents
the specific dimension reduction method for this modality.
MOJITOO uses latent semantic indexing (LSI) for scATAC-seq and
principal component analysis (PCA) for other modalities, as is usual
in the literature (Granja et al., 2021; Hao et al., 2021; Stuart et al.,

2021). The rational behind the use of dimension reduction is two-
fold. First, low-dimensional matrices reduce the computing time of
the CCA analysis without impacting accuracy for a minimum num-
ber of dimensions. Moreover, it allows to work directly on batch-
corrected data, which is usually represented in a low-dimensional
space (Hao et al., 2021; Korsunsky et al., 2019). Of note, batch cor-
rection is recommended previous to MOJITOO, whenever the data
are affected by batch effects.

3.1.2 Learning a shared space with canonical correlation analysis

with two modalities

MOJITOO aims to learn a shared latent space Z from the set of low
dimensional matrices Y ¼ fYð1Þ; . . . ;YðmÞg

Z ¼MOJITOOðYð1Þ; . . . ;YðmÞÞ; (3)

where Z 2 R
n�k represents the cells, n is the number of cells and

k is the dimension of this latent space. When Y has two modalities,

Fig. 1. Schematic MOJITOO. (A) MOJITOO receives as input two (or more) di-

mensional reduced matrices, where each matrix represents a particular molecular

modality describing the same cells. In this example, we assume RNA and open chro-

matin (as measured by ATAC-seq) modalities are given. The main idea of

MOJITOO is to use Canonical Correlation Analysis to find a set of canonical vec-

tors WATAC and WRNA. Exploring a geometrical interpretation of CCA, MOJITOO

finds canonical vectors such that the cosine similarity between latent dimensions in

ZRNA and ZATAC is maximized. A final representation Z can be obtained by adding

the modality-specific latent spaces. In the example, we show vectorial representa-

tions of two cells (a and b) in both original and latent spaces. (B) An association be-

tween original features for each modality (URNA and UATAC) can be obtained by

multiplying original data representation per modality (XRNA and XATAC) with the

shared latent space Z
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we first use CCA (This notation is based on a geometrical interpret-

ation of CCA.) to project the matrices Yð1Þ and Yð2Þ to vectors z
ð1Þ
1

and z
ð2Þ
1 :

z
ð1Þ
1 ¼ Yð1Þw

ð1Þ
1 ;

z
ð2Þ
1 ¼ Yð2Þw

ð2Þ
1 ;

(4)

where z
ð1Þ
1 and z

ð2Þ
1 represent canonical components (CC). The vec-

tors w
ð1Þ
1 and w

ð2Þ
1 can be obtained by solving the following opti-

mization problem:

w
ð1Þ
1 ;w

ð2Þ
1 ¼ argmax cosðzð1Þ1 ; z

ð2Þ
1 Þ; (5)

where w
ð1Þ
1 2 R

pð1Þ ;w
ð2Þ
1 2 R

pð2Þ represent the first canonical weight

vectors, and cosð�Þ is the cosine similarity between two vectors a and
b defined by:

cosða; bÞ ¼ a:b

jaj:jbj : (6)

This is repeated k̂ ¼ minðpð1Þ; pð2ÞÞ times, such that new canonic-
al vectors are orthogonal to previously estimated vectors. These pro-
vide the matrices:

Wð1Þ ¼ w
ð1Þ
1 ; . . . ;w

ð1Þ
k̂

h i
;

Wð2Þ ¼ w
ð2Þ
1 ; . . . ;w

ð2Þ
k̂

h i
:

(7)

These can be used to estimate the modality transformed space as

Zð1Þ ¼ Yð1Þ �Wð1Þ;

Zð2Þ ¼ Yð2Þ �Wð2Þ:
(8)

A unique latent space is obtained as

Z ¼ Zð1Þ þ Zð2Þ; (9)

where Z 2 R
n�k and k is the number of canonical variables

retained.
To further remove the noise from the latent space Z, we only

keep highly correlated canonical components z
ð1Þ
i and z

ð2Þ
i by meas-

uring the Pearson correlation and using a Student’s t-test for signifi-
cance. The P-values are then corrected using Benjamini Hochberg
(BH) (Benjamini and Hochberg, 1995) and only canonical compo-
nents with adjusted P-values <0.05 are retained.

MOJITOO uses an algorithm based on generalized eigenvector
decomposition (Ramsay and Silverman, 1997) to estimate the ca-
nonical components. MOJITOO has a time complexity of

Oðmaxfpð1Þ;pð2Þg2 � nÞ for computing covariance matrices and

Oðminfpð1Þ;pð2Þg � pð1Þ � pð2ÞÞ for the eigenvector decomposition.

As n (number of cells) is usually 100 times larger than pðiÞ (number

of reduced dimensions in YðiÞ) the first term dominates the
complexity.

Of note, CCA is one of the several steps in the integration algo-
rithm of an earlier version of Seurat (Butler et al., 2018). This had
the objective to integrate distinct scRNA-seq experiments and CCA
was performed in the common gene space, i.e. on transposed YðiÞ

matrices and the objective was to find matching cells.

3.1.3 Learning a shared space for multiple modalities

For the case that Y has more than two modalities, we perform the
pairwise integration of modalities starting with the pair with high-
est dimensionality. The result of this CCA is then used for integra-
tion with the next modality. See Algorithm 1 for a brief
description, which receives a set of matrices fYð1Þ; . . . ;YðmÞg with
increasing dimensions pðiÞ � pðiþ1Þ as input. This heuristic algo-
rithm was adopted to avoid the high computational costs of

multiple CCA, which grows exponentially with the number of
modalities.

3.1.4 Association of molecular features with latent space

We can use the estimated latent spaces to associate molecular fea-
tures to the latent space Z. For example, let XRNA 2 R

n�s be the
gene expression matrix and XATAC 2 R

n�t be the peak matrix, where
n is the number of cells, s is the number of genes and t is the number
of peaks. We can obtain a feature associating molecular features to
the latent space by

URNA ¼ ðXRNAÞT � Z
UATAC ¼ ðXATACÞT � Z

(10)

where URNA 2 R
s�k and UATAC 2 R

t�k. The ith column of matrix
URNA represent the scores of features in the ith canonical
component.

3.2 Datasets
We make use of public multimodal datasets with two or tri-
modalities in our evaluation. The first dataset is single-cell CITE-seq
data which measures single-cell RNA and surface proteins simultan-
eously. The human bone marrow mononuclear cells (BM-CITE)
dataset contains full transcriptomes and 25 surface proteins for over
30 672 cells annotated in 27 cell types (Stuart et al., 2021). This
data were obtained with the ‘LoadData(“bmcite”)’ command from
package SeuratData. Next, we applied the pre-processing pipeline.
Another CITE-seq data used were the human peripheral blood
mononuclear cells from lung (LUNG-CITE) (Buus et al., 2021) with
52 surface proteins. It contains 10 470 cells annotated in 22 cell
types. This data were obtained from here.

The next dataset contains human peripheral blood mononuclear
cells (PBMC-multiome) generated by the 10� multiome technology
to measure gene expression (scRNA-seq) and chromatin accessibility
(scATAC-seq) on the same cells. This data contains 11 787 cells
with 13 cell types annotated by 10� Genomics. We use the scRNA-
seq and scATAC-seq count matrices as provided by 10� genomics

Algorithm 1 Multimodal MOJITOO Algorithm

procedure MOJITOO(Yð1Þ; . . . ;YðmÞ)

i 2

Zð1Þ  Yð1Þ

while i � m do

Wð1Þ;Wð2Þ  CCAðZð1Þ;YðiÞÞ

Zð1Þ  Zð1Þ �Wð1Þ

Zð2Þ  YðiÞ �Wð2Þ

Z Zð1Þ þ Zð2Þ

Z Z½;1 : k� " only consider significantly correlated

dimension

Zð1Þ  Z
i iþ 1

end while

return Z

end procedure

end
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after processing with the cellranger pipeline obtained from the here.
We also use a dataset based on the SHARE-seq protocol measuring
gene expression and chromatin accessibility of mouse skin cells
(SKIN-SHARE) (Ma et al., 2020). This data contains 34 774 cells,
which are annotated as 23 cell types. We obtain the skin scRNA-seq
and scATAC-seq counts and fragments files from the Gene
Expression Omnibus under accession number (GSE140203).

A tri-modal dataset of human PBMCs is measured with the
DOGMA-seq protocol (Mimitou et al., 2021). This provides RNA,
ATAC and epitope sequencing of the same cells (PBMC-DOGMA).
We use data under low-loss lysis condition, which contains 13 763
cells in 27 cell types. We download count matrices as provided by
the authors here. A second tri-modal dataset is based on human
PBMCs measured with the TEA-seq protocol (Swanson et al.,
2021). It contains transcripts, epitopes and chromatin accessibility
of 25 517 PBMCs grouped into 12 cell types (PBMC-TEA). For this
dataset, we obtain original matrices and combine data from distinct
wells from GEO (GSE158013). For scATAC-seq, we obtain an inte-
grated matrix by combing peaks (allowing an extension of 250 bps).
We finally intersect all barcodes from scRNA-seq, protein and
scATAC-seq to obtain matrices in the same cell space.
Characteristics of each of the six datasets are described in Table 1.

3.2.1 Processing of single-cell sequencing data

We perform a uniform pre-processing of all previously datasets
starting from their count matrices. For scRNA-seq matrices, we
adopt the standard Seurat 4 pipeline. First, we log normalize the
data by calling the function NormalizeData with default parameters.
Next we use FindVariableFeatures to find top 3000 variable features
and run ScaleData. Finally, we use RunPCA to perform dimension
reduction (Hao et al., 2021) by keeping the first 50 PCs. For
scATAC-seq, we adopt the standard pipeline from Signac (Stuart
et al., 2021). We first run TF-IDF (term frequency—inverse docu-
ment frequency) on the peaks. Next, we use RunSVD on the top fea-
tures calculated by function FindTopFeatures with parameter
min.cutoff ¼ ‘q0’, which provides an LSI dimension reduced matrix.
We keep the first 50 dimensions, but we discard the first dimension
as this is highly correlated to the number of fragments. For protein/
epitopes, we adopt the standard Seurat 4 pipeline (Hao et al., 2021).
In short, we call NormalizeData with parameters normalization.me-
thod ¼ ‘CLR’ and margin¼2 followed by ScaleData and RunPCA
with 30 PCs using default parameters.

PBMC-DOGMA is the only dataset evaluated here with two bio-
logical conditions (stimulated and unstimulated). To address the
presence of batch, we apply the harmony integration (Korsunsky
et al., 2019) for RNA-seq and epitope data independently to inte-
grate control and stimulated samples. For scATAC-seq, integration
is performed by ignoring the first LSI dimension, which has a high
correlation with the stimulation. MOJITOO results with and with-
out batch correction are shown in Supplementary Figure S1. We
provide these input matrices to MOJITOO, WNN, MOFA,
DIABLO and Symphony. Other competing methods provide their
own functionalities for normalization and dimension reduction,
which are used accordingly (see below). Time and memory require-
ments of pre-processing data are considered for the benchmarking
of the respective method.

3.3 Benchmarking of integration methods
We use three distinct metrics to measure the accuracy of the meth-
ods. The structure score measures the similarity between two latent
space structures (Jain et al., 2021). It is based on the Pearson correl-
ation of the pairwise Euclidean distance estimated on the shared (Z)
and latent spaces (YðiÞ) for each individual modality. This score indi-
cates how well the shared space is related to the modality and the
average values indicate how well integration worked. This metric is
also employed by Schema (Singh et al., 2021). We also evaluate the
metrics concerning their distance representation using the silhouette
score (Rousseeuw, 1987). For this, we use the labels as provided by
the cluster of the respective dataset. We evaluate the use of
Euclidean distance as ‘distance’ for the silhouette score. Finally, we
evaluate the performance of methods regarding clustering. We per-
form Louvain clustering with varying resolution (parameter from
0.1 to 2.0) and estimate the adjusted Rand index (ARI) using cell
labels (Hubert and Arabie, 1985).

3.4 Execution of competing methods
3.4.1 MOFA

MOFAþ (Argelaguet et al., 2020) uses Bayesian group factor ana-
lysis and variational inference to decompose individual modalities
simultaneously by estimating a common latent factor matrix Z, as
well as the weights for the transformation of the modalities to the la-
tent space. MOFAþ includes a procedure to determine the optimal
number of factors (dimension of the latent space) and has several
hyper parameters for model regularization, detection of number of
factors and learning rates. We execute MOFA with default parame-
ters and followed their recommendations tutorial for the analysis of
all data. However, we provide now PCA/LSI reductions as input for
MOFA, as this improved its computational time (Supplementary
Table S1), as well the clustering performance on MOFA’s latent
space (Supplementary Fig. S2).

3.4.2 Schema

Schema (Singh et al., 2021) explores metrics learning to re-weigh
modality features through maximizing the agreement with other
modalities. Specifically, it utilizes quadratic programming (QP) to
learn a scaling transformation u for the primary matrix X such that
pairwise distances of the transformation u � xi (where � is
coordinate-wise multiplication, for each xi 2 X) are highly corre-
lated in other modalities. Schema has two main parameters: min-
imum desired correlation and number of random pairs. We run
Schema using default parameters as in schema tutorial.

3.4.3 Seurat4 WNN

Weighted nearest neighbor (WNN) (Hao et al., 2021) constructs sin-
gle unified representation across multiple modalities. It first creates
k-nearest neighbor (KNN) graphs for each modality based on the la-
tent representation of each feature matrix. Next, it calculates affin-
ities using the exponential kernel between a cell and the average NN
for each modality. The latter is used to weigh cells. WNN has two
major free parameters: the number of neighbors and scaling factor
of the neighborhood kernel. We execute WNN, which is part of
Seurat4, using default parameters. WNN does not provide a shared

Table 1. Major characteristics of multiomics datasets

Dataset Protocol Species Organ Modalities No. of cells No. of

cell types

No. of features

(gene/peak/protein)

BM-CITE CITE-seq Human Bone Marrow RNA/protein 30 672 27 17 009/—/25

LUNG-CITE CITE-seq Human PBMC&Lung RNA/protein 10 470 22 33 514/—/52

PBMC-Multiome Multiome Human PBMC RNA/ATAC 11 787 13 36 610/108 377/—

Skin-SHARE SHARE-seq Mouse Skin RNA/ATAC 34 774 23 23 296/344 592/—

PBMC-TEA TEA-seq Human PBMC RNA/ATAC/epitope 25 517 12 36 601/128 853/47

PBMC-DOGMA DOGMA-seq Human PBMC RNA/ATAC/protein 13 763 27 36 495/68 963/210
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latent space, but we can use the weighted nearest neighbors graph to
build a distance matrix that can be used in all benchmarking
evaluations.

3.4.4 scAI

scAI simultaneously decomposes transcriptomic and epigenomic
data into multiple biologically relevant factors (Clark et al., 2018).

Its framework is similar to MOFA, but it can only cope with two
modalities at a time. scAI uses a stability method to define the rank

(size of the latent space) and has three main free parameters used for
model regularization. We execute scAI in only bi-modal with RNA
and ATAC-seq datasets with default parameters.

3.4.5 LIGER

LIGER (Welch et al., 2019), which is based on non-negative matrix
factorization, was originally proposed for data integration whenever

modalities are in the same feature space. A newer variant of LIGER
(Kriebel and Welch, 2022) is able to perform integration, whenever
there is some overlap between the features across modalities (shared

features), i.e. protein and RNA expression of the same gene or gene
accessibility scores for ATAC-seq. LIGER estimates a gene accessi-
bility (ATAC-seq) matrix by counting the total number of ATAC-

seq reads within the gene body and promoter regions(3 kb upstream)
for each gene per cell. An additional unshared feature matrix is fur-

ther produced by binning the genome into bins of 100 000 bps and
counting the overlap of these bins with peaks from the respective
dataset. LIGER has two major parameters: a regularization term

and the number of factors (dimensions of the latent space). Regions
associated to ENCODE Blacklist regions (Amemiya et al., 2019) are

removed. Moreover, LIGER can be only executed for bi-modal
datasets.

3.4.6 Symphony integration

Symphony (Kang et al., 2021) is a method to create single-cell refer-

ence atlas for subsequent annotation of new single-cell datasets. For
a single case study with a multi-ome CITE-seq data, Symphony used

canonical correlation analysis to find shared reference. This simple
procedure differs from MOJITOO in several ways: it does not use
dimension reduction as input; it is not able to cope with more than

two modalities and it uses the latent space of only one modality
(RNA) as shared space. Moreover, Symphony included the execu-

tion of batch correction with Harmony after the execution of CCA.
The CCA analysis is not part of Symphony source code, but we
implemented it based on a script provided by authors (https://

github.com/immunogenomics/TB_Tcell_CITEseq/blob/main/R/cca_
analysis.R). Also, due to high computational requirements, we were

only able to run this on the dimension reduced space (PCA/LSI)
described above. We call this method Symph-Int to reflect the fact
that this is not Symphony, but an integration method used in one of

the analysis of Symphony manuscript.

3.4.7 DIABLO

DIABLO (Singh et al., 2019) is based on a generalized canonical

analysis to integrate multiple datasets in a supervised way. It was
originally designed for bulk multi-omics data, where sample labels
are available and explored for feature selection. Since labels are not

available for single-cell multi-modal data evaluated here, we provide
a distinct label for each cell. DIABLO is executed as indicated in

their tutorial. Due to a prohibitive computational costs if raw matri-
ces are used, we provide dimension reduced matrices as input.
Another major parameter is the number of CC components, which

is usually set to the number of classes—1. Here, we used 30 compo-
nents. Also, DIABLO does not provide a common latent space. We
therefore combined the CCs to obtain a final latent space.

4 Results

4.1 Benchmarking of multimodal integration methods
We evaluate MOJITTO and competing methods using six publicly
available multimodal datasets with two or three modalities. These
datasets have between 10 000 and 35 000 cells, 12 and 27 cell types
and 25 to 344 492 features per modality (Table 1). We compare
MOJITOO with MOFA (Argelaguet et al., 2020), WNN (Hao
et al., 2021), Schema (Singh et al., 2021), scAI (Jin et al., 2020),
LIGER (Kriebel and Welch, 2022), DIABLO (Singh et al., 2019) and
Symph-Int (Kang et al., 2021). Of note, some methods (scAI, LIGER
and Symph-Int) failed to be executed in some conditions, due to
their inability to cope with more than 2 modalities or the lack of
raw sequences for some of the evaluated datasets.

First, we evaluate algorithms regarding their structure preserva-
tion, i.e. the average similarity between the euclidean distances in
the shared space and distances in the space of each modality (Jain et
al., 2021). Results indicate highest structure scores for MOJITOO
(4 out of 6) followed by DIABLO (1 out of 6) and MOFA (1 out of
6). A ranking of the structure scores indicates MOJITOO as the best
algorithm followed by DIABLO, MOFA and Symph-Int (Fig. 2A).
Interestingly, we observe that MOFA and Symph-Int tend to obtain
higher structure scores for RNA and that MOJITOO and DIABLO
have lower variance of structure scores across modalities. This sug-
gests that the MOJITOO and DIABLO shared space captures infor-
mation of all individual modalities more uniformly than competing
methods. The lower performance of Symphony integration com-
pared to other CCA methods (MOJITOO and DIABLO) is
explained by the fact it only considers CCs from the RNA space as
integrated embedding.

Next, we make use of the cell types reported in the original
manuscripts introducing the single-cell datasets as true labels for
benchmarking. First, we use these labels to evaluate the silhouette
scores by contrasting class labels with Euclidean distance matrices
estimates on the shared space. Regarding silhouette, MOFA is best
in four out of six dataset, while MOJITTO is best in the other two
datasets. MOJITOO obtains second rank in four out of six datasets
and is ranked second in the overall ranking (Fig. 2B). Finally, we
perform Louvain clustering at distinct resolutions (0.1–2.0) on the
shared latent space. We then measure the agreement of clustering
results with labels using the Adjusted Rand Index (ARI). WNN and
Symphony have the highest ARI in two datasets each, while
DIABLO and MOJITOO have highest values in one dataset each
(Fig. 2C). MOJITOO has a higher rank than two in all dataset and
has the highest overall rank followed by WNN and DIABLO.
Moreover, we also perform a sensitivity analysis on MOJITOO to
inspect if the dimension of the original PCA/LSI space has impact on
its performance (Supplementary Fig. S3). We observe that if 50 or
more components are used, MOJITOO obtain similar clustering
and structure preservation scores. Examples of low dimensional
embeddings obtained by distinct integration methods with the
PBMC-Multiome dataset are provided in Supplementary Figure S4.

A crucial aspect of single-cell analysis is the computational
resources needed for computation on an increasing number of cells.
For this, we inspect the time and memory used in the largest datasets
in our benchmark (SKIN-SHARE). To obtain curves, we down-
sample the number of cells from 30 000 to 3000 (Fig. 3A and B and
Supplementary Table S1–S2). We observe that MOJITOO has the
overall lowest computational requirement (2.4 min and 6.3 GBs) fol-
lowed closely by MOFA (3.21 minuts and 13.09 GBs) and WNN
(3.74 min and 6.8 GBs). DIABLO, on the other hand, required up to
103 min and 78.3 GBs for 30 000 cells, while scAI required 637 min
and 75 GB of memory. Altogether, results indicate MOJITOO has
the best recovery of data structure and clustering results, while being
the fastest and having the lowest memory footprint among all com-
peting methods.

4.2 Canonical vectors support the interpretation of

multiome data
Additionally, we explore the use of the dimensions of the latent
space (Z) as factors for interpreting the PBMC multiome data. We
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denote the latent features as canonical components (CC). As shown
in Figure 4, positive or negative values for the top CCs discern well
all major cell types (Fig. 4). High values of CC1 are associated to
myeloid cells (CD14þ and CD16þ monocytes and dendritic cells),
while negative values are associated to T and NK cells (Fig. 4A).
CC2 values discern B cell and plasmacytoid dendritic cells (pDC)
from other cells, while CC3 differentiates B cells from pDCs (Fig. 4B
and C). Further CCs capture subtle changes between major cell sub-

types (Fig. 4D and E). CC4 and CC5 capture changes between naive
T cells and active T CD8 and active T CD4 cells respectively, while
CC5 captures differences between naive monocytes (CD14þ) and
activated monocytes (CD16þ). Other smaller cell types (dendritic
cells, platelets, double negative T cells and pre-B and progenitor B
cells) can be characterized with further CCs (Supplementary Fig.
S5). We also evaluated CCs with low correlation, which were con-
sidered as noise by MOJITOO (Supplementary Fig. S6). We observe
that these CC have high scores for a few cells and low concordance
across modalities. This supports their low biological relevance.

Next, we explore the U matrices, which provide values associat-
ing molecular features with the latent dimensions (CCs). Indeed, the
expression of genes with high CC1 values include monocyte genes as
LYN and FCN1, while negative CC1 values are associated to T cell
genes BCL11B and IL7R (Fig. 5A). Similarly, we observe that top
ranked peaks with high or low CC1 scores have monocyte or T-cell-
specific open chromatin. These include regions close to the T cell
gene BCL11B (Fig. 5B). High CC2 value are associated with B cell
genes IGHM and BCL11A, while low CC1 genes (BCBL11B and
IL32) are associated with T cells (Fig. 5C). As before, we observe
cell-specific open chromatin patterns on top ranked ATAC-seq
peaks associated with high and low CC2 values. Altogether, these
results indicates that MOJITOO CCs can be used to capture major
cell types of peripheral blood cells as well as to detect modality-spe-
cific molecular features associated to these.

5 Conclusion

We present here MOJITOO, which is a fast and parameter free
method based on canonical correlation analysis for integration of
multimodal single-cell data of any protocol. A comprehensive ana-
lysis with six bi-modal and tri-modal multimodal datasets indicates
that MOJITOO has the best performance regarding the preservation
of the structures across modalities and the recovery of clusters, while

Fig. 2. Benchmarking on data integration methods. (A) We show the average (trace) and modality-specific structure scores (dots) (y-axis) versus methods (x-axis) for the six

datasets. The last graph shows the combined ranking of the method over all datasets, where the highest rank indicates the best performer. (B) Barplots showing silhouette score

(y-axis) versus methods (x-axis) for six benchmark datasets. The last plot shows the combined ranked per method. (C) Boxplots showing ARI scores (y-axis) versus methods

(x-axis) for distinct clustering solutions for all six data-sets. Asterisks indicate P-values of <0.05(*), <0.01(**), <0.001(***), <0.0001(****) obtained via t-test comparing

the ARI values of MOJITOO versus other methods. The last boxplot shows the combined ranking for competing methods

Fig. 3. Time and memory consumption on the Skin-SHARE. (A) Line plots showing

elapsed time (log of seconds) for each method (y-axis). (B) Line plots showing peak

memory (Gigabytes) required by each method (y-axis). In both A–B, the x-axis

shows the number of cells used (randomly sampled) from the Skin-SHARE data
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it is ranked second regarding distance representation. Moreover,

MOJITOO has the lowest time and memory requirements requiring
2.5 min and 6.4 GB in the largest dataset with 30.000 cells. WNN,
which is the standard method for integration in Seurat, performed
well on the clustering problem (2nd after MOJITOO) and had a low

computational time, but had a poor performance in the structure
preservation and silhouette scores. Moreover, WNN, which outputs
a distance matrix on the shared space, does not provide latent fea-

tures as MOJITOO, DIABLO or MOFA. MOFA performed well on
distance representation, but was ranked fourth in the clustering
problem and third at structure preservation score. DIABLO, which

is also based in CCA, had an good predictive performance (2nd for
structure preservation and 3rd in clustering and distance preserva-
tion), but had an a poor computational performance being the 2nd
slowest method.

An interesting result is the fact the structure preservation scores

are more uniform across modalities for CCA-based methods
MOJITOO and DIABLO, while runner-up methods (MOFA)
obtained highest scores for the RNA modality. This is possibly
rooted on the analytical frameworks of these methods. CCA analysis

explicitly finds canonical vectors with high correlation across
modalities, while matrix factorization methods (MOFA) do not ex-
plicitly guarantee factors are uniformly well represented across

modalities. Of note, the CCA approach explored in Symphony was
also biased toward structure preservation in RNA, due to the fact it
only use RNA canonical vectors as a final latent representation.

Another finding of this study is that matrix factorization methods
(MOJITOO, MOFA, DIABLO), benefit from working with low di-
mensional matrices as input by having lower computational require-
ments. For MOFA, a comparison of the results with or without

Fig. 4. (A–F) UMAP with the scores of CC1 to CC6. We highlight major cell types (or sub-types) associated to positive or negative CC scores and arrows indicate directions

associated to the activation of particular immune cells

Fig. 5. (A) Heatmap with scores for the top 10 positive and negative genes for CC1 (y-axis) versus cells (x-axis). Cells are ordered by CC1 scores (high to low). (B) Genome

browser tracks with top 2 positive and negative peaks for CC1. Tracks correspond to normalized cell-specific pseudo bulk ATAC-seq profiles generated by deeptools (Ram�ırez

et al., 2016). Cell-specific tracks are ordered by CC1 score (high to low). (C and D) show respectively the heatmap of top genes and the genome browser of top peaks for CC2
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dimension reduction even indicates positive effects of low dimen-
sional inputs in the clustering problem.

It is important to point out that measures used in our bench-
marking have their own limitations. The distance and clustering
evaluation requires labels, which might be biased toward the meth-
ods used to derive the labels. Indeed, WNN does well on the clus-
tering problem of the two CITE-seq data, which are originally
evaluated with WNN. The Silhouete score has underlying distribu-
tion assumptions, which might not be met by the latent space gen-
erated by integration methods. Finally, the structure score requires
a low-dimensional representation of the spaces. In this study, how-
ever, we consider methods performing well in all metrics, which
mitigates biases of individual metrics.

Finally, we highlight how a simple inspection of CCA derived la-
tent spaces supports the biological interpretation and detection of
relevant molecular features, as exemplified in the multiome PBMC
dataset. Future work includes further exploring the interpretability
of MOJITOO, for example, by finding associations between mo-
lecular features across modalities as gene to peak links (Granja
et al., 2021). Here, it would be interesting to explore potential non-
linearities of features, as commonly explored in scRNA-seq data
(Van Dijk et al., 2018). Finally, an interesting topic is to investigate
if differences in the modality-specific canonical vectors detected by
MOJITOO can indicates biological properties of those. For ex-
ample, in the Skin SHARE-seq data (Ma et al., 2020), authors show
that cells with changes in chromatin preceding changes in gene ex-
pression indicates cell differentiation.
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