
Research Article
Feature Selection on Elite Hybrid Binary Cuckoo Search in Binary
Label Classification

Maoxian Zhao and Yue Qin

College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong 266590, China

Correspondence should be addressed to Yue Qin; 201982150013@sdust.edu.cn

Received 19 February 2021; Accepted 22 April 2021; Published 12 May 2021

Academic Editor: Waqas Haider Bangyal

Copyright © 2021 Maoxian Zhao and Yue Qin. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

For the low optimization accuracy of the cuckoo search algorithm, a new search algorithm, the Elite Hybrid Binary Cuckoo Search
(EHBCS) algorithm, is improved by feature weighting and elite strategy. The EHBCS algorithm has been designed for feature
selection on a series of binary classification datasets, including low-dimensional and high-dimensional samples by SVM
classifier. The experimental results show that the EHBCS algorithm achieves better classification performances compared with
binary genetic algorithm and binary particle swarm optimization algorithm. Besides, we explain its superiority in terms of
standard deviation, sensitivity, specificity, precision, and F-measure.

1. Introduction

Feature selection attempts to find the most discriminative
subset of features to bring reasonable recognition rates for
some classifiers. Given a problem with d features, we have
2d possible solutions, making an exhaustive search impracti-
cable for high-dimensional feature spaces. In addition, the
high-dimensional data also contains a large number of irrel-
evant and noise-polluted features, and there is often informa-
tion redundancy between features. These factors will affect
the learning effect of the learning algorithm and significantly
increase the algorithm’s computational complexity. There-
fore, feature selection has become a research hot spot.

As a key technology of pattern recognition and machine
learning, feature selection is an effective method to deal with
high-dimensional data. Feature selection models can be
divided into three categories [1]: filter [2], embedding [3],
and wrapper [4]. Filter methods define the relevant features
without prior classification of the data. The embedding
method refers to the process of embedding the feature selec-
tion algorithm into the classification algorithm and conduct-
ing feature selection and training at the same time. Wrapper
methods on the other hand incorporate classification algo-
rithms to search for and select relevant features. The wrapper

methods generally outperform filter methods in terms of
classification accuracy [5]. Recent studies have shown that
feature selection can better solve many practical problems,
including classification and medical problems [6–9].

Another vital part of the feature selection process is the
search strategy: selecting the feature subset that meets the
optimal evaluation criteria, which is usually a combinatorial
optimization problem. In recent years, metaheuristic algo-
rithms based on biological behavior and physical systems in
nature are proposed to solve the optimization problems
[10]. Metaheuristic optimization algorithm, also known as
natural heuristic algorithm, studies the evolutionary behavior
of species and simulates it into computer science algorithms,
including genetic algorithm [11], particle swarm optimiza-
tion algorithm [12], bat algorithm [13, 14], and cuckoo algo-
rithm [15]. The metaheuristic optimization algorithm has
achieved good results in feature selection. For example, Liu
et al. [16] combined genetic algorithm and simulated anneal-
ing algorithm to select feature subsets. The experiment result
expresses the hybrid algorithm has high reliability and strong
convergence. On the contrary, Siedlecki and Sklansky [17]
combined genetic algorithm and feature selection to achieve
a certain effect, but it exposed the problem of premature con-
vergence of genetic algorithm. Kennedy and Eberhart [18]
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proposed the binary particle swarm optimization algorithm
called BPSO, which modified the traditional particle swarm
optimization algorithm and solves the binary optimization
problems. Besides, Firpi and Goodman [19] applied BPSO
to feature selection problems.

The success of metaheuristic methods lies in the effi-
ciency of search strategies and its ability to find solutions to
combinatorial optimization problems. Metaheuristics take
the information gathered during the search to guide the
search process, and therefore, they are considered indepen-
dent of the problems. The cuckoo search algorithm is a novel
heuristic optimization approach introduced by Yang and
Deb in 2009 [15]. The algorithm simulates cuckoo birds’ par-
asitic breeding habits and is a random algorithm with strong
global search ability. The cuckoo search algorithm has been
efficiently employed in many fields, such as intelligent opti-
mization and calculation. Cuckoo search is superior to other
algorithms in continuous optimization problems including
spring design and welding beam in engineering design appli-
cations [20]. This algorithm is especially suitable for large-
scale problems [21]. Valian et al. have applied it in training
the neural network [22] and spike neural model [23]. The
experiment proved that CS has better search capability than
other algorithms like particle swarm optimization algorithm,
genetic algorithm, and artificial bee colony algorithm [21, 24,
25]. Therefore, CS is a metaheuristic algorithm used in com-
binatorial optimization problems to obtain higher
performance.

The CS can only solve optimization problems in the con-
tinuous solution space. To solve combinatorial optimization
problems in discrete solution space, Gherboudj et al. [26]
proposed a binary version of the cuckoo search algorithm,
namely, BCS algorithm. Pereira and Rodrigues [27] applied
BCS algorithm to feature selection. Bhattacharjee and Sar-
mah [28] improved BCS by using the balance combination
of local random walk and global exploration random walk
so that BCS algorithm can better balance locality and global-
ity. Sudha and Selvarajan [29] presented a feature selection
approach based on an enhanced cuckoo algorithm and
applied it to breast X-ray images. It can supply valuable infor-
mation for clinicopathologists. Aziz and Hassanien [30]
proposed a new improved cuckoo algorithm combined with
the theoretical knowledge of rough set and finally applied it
to feature selection.

The cuckoo search algorithm uses Lévy flight random
walk to search space in the iteration. The cuckoo search can-
not effectively search around the cuckoo’s nest due to the
Lévy flight with sharp 90-degree turns. Therefore, it suffers
from low optimization accuracy [31]. In order to improve
the cuckoo search algorithm, this paper proposes an Elite
Hybrid Binary Cuckoo Search algorithm, and the novelty of
the paper is two-fold:

(1) EHBCS adopts feature weighting and elite strategy in
the binary cuckoo search algorithm. Feature weight-
ing based on Relief algorithm is to estimate the fea-
ture weight and its importance according to the
ability of each feature to distinguish different class
instances. Elite strategy and genetic algorithm with

the selection and crossover operators are embedded
into the cuckoo algorithm so that the well-
positioned nests can be inherited to the next
generation

(2) EHBCS is applied to a set of binary label datasets,
including low-dimensional and high-dimensional
samples such that only the best features are retained
in the subset. Experimental results demonstrate that
EHBCS achieves a better classification performance
to minimize the number of selected features, simulta-
neously maximizing the classification accuracy by
SVM compared with binary genetic algorithm and
binary particle swarm optimization

The main contributions of this paper are summarized as
follows: (1) It is the first time to combine the feature weight-
ing and elite strategy with BCS algorithm. (2) It specifically
improves the low optimization accuracy of the BCS algo-
rithm. (3) It may provide a useful revelation to high-
dimensional data researches such as text processing, medical
research, and gene analysis.

The structure of this paper is as follows: Section 2 pro-
vides details of the classical version of the Cuckoo Search
and Binary Cuckoo Search algorithms; Section 3 presents
the Elite Hybrid Binary Cuckoo Search (EHBCS) algorithm;
Section 4 discusses the experimental methodology and in
particular the dataset and evaluation measures; numerical
experiment is also carried out to evaluate the prediction per-
formance of our method in Section 5. The results demon-
strate that the proposed method is efficient for high-
dimensional datasets; finally, the conclusions of our work
are given in Section 6.

2. Cuckoo Search Algorithm

2.1. Cuckoo Search (CS) Algorithm. The parasite behavior of
cuckoos is extremely intriguing. These birds can lay down
their eggs in host nests and mimic external characteristics
of host eggs such as color and spots. If this strategy is unsuc-
cessful, the host can throw the cuckoo’s eggs away or simply
abandon its nest, making a new one in another place. Based
on this context, Yang and Deb [15] have developed a novel
evolutionary optimization algorithm named cuckoo search
(CS), and they have summarized CS using three rules, as
follows:

(1) Each cuckoo chooses a nest to lays eggs randomly

(2) The number of available host nests is fixed, and nests
with high-quality eggs will be passed on the next
generations

(3) If a host bird discovered the cuckoo egg, it can throw
the egg away or abandon the nest and build a
completely new nest

For optimization problems, each nest represents a possi-
ble solution to the problems, and a nest can contain one or
more eggs depending on the size of the problems. Firstly,
the algorithm randomly initializes each nest, and then, the
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algorithm carries out an iterative process. During each itera-
tion, each nest is updated by Lévy flight with random walk,
and the formula is shown in Equations (1) and (2):

xt+1i = xti + α ⊕ le′vy λð Þ: ð1Þ

The updating formula of each dimension is expressed as

xt+1ij = xtij + α × le′vy j λð Þ, ð2Þ

where xti denotes ith nest and xtij stands for the jth eggs at
nest i for the t generation. α is step size, and the product ⊕
means entrywise multiplications. In most case, we can use α
= 1. The Lévy flights Lévy (λ) employ a random step length,
and Lévy j(λ) is its jth component.

In the 1930s, Lévy proposed Lévy’s distribution, believing
that the relationship between the continuous jump path of
Lévy’s flight and time t follows Lévy’s distribution. Later,
many scholars have studied Lévy’s distribution and used it
to explain random phenomena in nature, such as Brownian
motion and random walk. Yang [15] studied and obtained
the probability density function of Lévy distribution in power
form by simplifying and Fourier transform:

le′vy ~ u = t−λ 1 < λ ≤ 3ð Þ, ð3Þ

where λ is the power coefficient. Equation (2) is a proba-
bility distribution with a heavy tail. Although it can essen-
tially describe the random walk process of cuckoo birds, it
has not been further described in a more concise and easy
to program mathematical language to achieve the CS algo-
rithm. So Yang adopted the Mantegna algorithm to simulate
Lévy jump path:

s =
u

vj j1/β
, ð4Þ

where s is the Lévy flight Lévy j(λ), the relation of param-
eters β in equation (2) is λ = 1 + β and content 0<β ≤ 2. The
parameter is β = 1:5, and μ and ν are random number and
satisfy Equations (5) and (6):

μ ~N 0, σ2μ
� �

ν ~N 0, σ2
ν

� � ,

8<
: ð5Þ

σμ =
Γ 1 + βð Þ · sin βπ/2ð Þ
Γ 1 + β/2ð Þ · β · 2 β−1ð Þ/2

� �1/β
,

σν = 1:

8><
>:

ð6Þ

Let step = α × levyðλÞj = α × s then step is the path that
cuckoo bird experiences each time in solution space when it
randomly searches for the new nest location xt+1ij from the
old nest location xtij according to Equation (2). In the finally
step of each iteration, the nest with the worst quality is

substituted with probability p a ∈ [0,1]. Algorithm 1 shows
the pseudo-code for the classical version of CS.

2.2. Binary Cuckoo Search (BCS) Algorithm. In traditional CS,
the position of the solution is updated in the continuous
search space. Unlike the above CS, the BCS search space for
feature selection is modeled as a binary d-bit string, where
d is the number of features. BCS represents each nest as a
binary vector, where each 1 corresponds to a selected feature
and 0 otherwise. This means each nest represents a possible
solution, and each nest represents a feature.

xij =
1 xi selects the jth feature

0 otherwise
:

(
ð7Þ

The original cuckoo algorithm introduces mapping func-
tions to extend the cuckoo algorithm to discrete binary
regions as follows [25]:

sig stepð Þ = 1
1 + e−γstep

, γ = 1, ð8Þ

xtij =
1 rand ðÞ ≤ sig stepð Þ
0 otherwise

,
(

ð9Þ

in which rand ðÞ ~Uð0, 1Þ and xtij denotes the new egg’s
value at iteration t.

3. Elite Hybrid Binary Cuckoo Search
(EHBCS) Algorithm

3.1. Feature Weighting Based on Relief Algorithm. The core
idea of feature weighting based on Relief is to estimate the
feature weight and its importance according to the ability of
each feature to distinguish different class instances [32].
Given a two-class dataset D, C containing n cases is a class
label set, x = ðx1, x2,⋯,xdÞ is a case in D, and x is a real-
valued vector with dimension d. Relief performs the follow-
ing iterative learning: randomly select a case x, then find
the nearest case NHðxÞ of the same class and the nearest case
NMðxÞ of the different class, and then update the weight
using the following rules:

wj =wj +
1
T

xj −NM xð Þj
���

��� − 1
T

xj −NH xð Þj
���

���, ð10Þ

where wj represents the weight of the jth feature and T rep-
resents the maximum number of iterations. ∣xj − yj ∣ is used
to calculate the difference between the jth dimensional eigen-
values of two instances, that is, the absolute value vector of
the feature difference vector.

A variant that considers k neighbors has been developed
from the nearest neighbor Relief, whose weight value update
formula is

wj =wj + 〠
z∈KNN x,lð Þ,l∈c

xj − zj /T − 〠
z∈KNN x,cð Þ

�����

�����xj − zj

�����

�����/T , ð11Þ

3Computational and Mathematical Methods in Medicine



where KNNðx ; cÞ is the set of k nearest neighbors of x in Xc
by Euclidean distance. Process is shown in Algorithm 2.

3.2. Selection and Crossover Operator. The selection operator
is to inherit the individuals with high fitness in the current
population to the next generation according to selection
probability. Generally, individuals with high fitness will have
more chances to inherit to the next generation. This paper
uses the roulette model to select individuals. The calculation
formula is as follows:

p xið Þ = f xið Þ
∑n

j=1 f xj
� � , ð12Þ

qi = 〠
i

j=1
p xj
� �

, ð13Þ

where pðxiÞ is the selection probability, qi is the cumula-
tive probability, f ðxiÞ is the individual xi fitness function
value, and n is the number of the group. Select operator pro-
cess is in Algorithm 3.

Crossover is to cross the selected a pair of individuals
according to probability, such as single-point crossover or
multipoint crossover. In this paper, the single-point cross-

over is adopted, that is, the random number is generated
within the range of individual coding bits as the crossover
point, and then, the coding exchange of the two bodies from
this point to the end is carried out, so that the crossover
process can be completed.

3.3. Weight-Based Elite Hybrid Binary Cuckoo Search
(EHBCS) Algorithm. In the CS algorithm, the Lévy flight is
used to explore the search space using a straight flight path
with a sudden 90-degree turn, and Figure 1 simulates Lévy’s
flight path. In addition, the CS algorithm is highly dependent
on random walk search, which can be easily moved from one
area to another without carefully exploring each nest. There-
fore, the CS algorithm has weak local search ability and low
optimization accuracy [31]. In order to cover the mentioned
weakness of the CS, elite strategy and genetic algorithm oper-
ators are embedded into the cuckoo algorithm, such as selec-
tion and crossover operators, so that the well-positioned
nests can be inherited to the next generation. The so-called
elitist strategy is to preserve the nest in a good location so
as not to miss the optimal nest during the algorithm itera-
tions by Lévy flight. According to certain rules, the selection
operator is to inherit the individuals with high fitness in the
current population to the next generation. Generally, indi-
viduals with high fitness will have more chances to inherit

Objective function f(x) x = ðx1,⋯, xdÞT
Generate initial population of n host nest xi,(i=1,2,⋯,n)
while (t <MaxGeneration) or (stop criterion)do
Get a cuckoo randomly by Levy flights evaluate its quality/fitness Fi
Choose a nest among n (say, j);
if (Fi < Fj) then

replace j by new solution;
end
A fraction (pa) of worse nests are abandoned and new ones are built
Keep the best solution (or nests with quality solutions)
Rank the solutions and find the current best
end

Postprocess results and visualization

Algorithm 1: Classical version of CS adapted from [15].

Input: binary label dataset D with n cases and d dimensions, Maxiter T
Output: weight vector w
foreach jðj = 1,⋯, dÞdo

wj = 0 ;
end
whileðt < TÞdo

Randomly select an case x from the datasetD and calculate the distance between k nearest cases of the same kindNHðxÞ and k near-
est cases of the different kind NMðxÞ;

foreach jðj = 1,⋯, dÞdo
wj generated by formula (11);
t = t + 1;

end
end

Algorithm 2: Relief algorithm.
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to the next generation. The crossover operator usually inputs
two individuals as candidate solutions with a certain proba-
bility and generates neighborhood solutions by exchanging
part of the chromosomes of two individuals.

The CS algorithm is suitable for continuous domain
problems, and the feature selection is a binary discrete prob-
lem. This paper proposes an Elite Hybrid Binary Cuckoo
Search (EHBCS) algorithm considering these facts. The
EHBCS algorithm weights the features firstly according to

the Relief algorithm mentioned in part III-A, so that the fea-
tures with larger weights have greater opportunities to be
selected. Then, in each iteration of the EHBCS algorithm,
the optimal nest does not carry out Lévy flight or crossover
to avoid damaging the optimal nest position. The nest gener-
ated by Lévy flight is operated by selection and crossover
operators.

Since the existing BCS algorithm does not consider the
influence brought by the SigðstepÞ function, the coefficient
in the SigðstepÞ function is changed to the feature weight in
this paper so that features with significant feature weight
have a greater chance to be selected and the improved algo-
rithm can finish the iterative process faster. The BCS map-
ping function is modified as follows:

When step ≥ 0

sig stepð Þ = 1
1 + e−γstep

, γ =wj, ð14Þ

xtij =
1 rand ðÞ ≤ sig stepð Þ
0 otherwise

:

(
ð15Þ

When step < 0

sig stepð Þ = 1 −
1

1 + e−γstep
, γ =wj, ð16Þ

Input: population with n nests, number of dimensions (features) d, crossover rate pc, fitness function f ðxÞ
Output: New population newnest after elite selection and crossover
foreach iði = 1,⋯, nÞdo
p(xi)=f ðxiÞ/∑n

j=1‍f ðxjÞ, qi =∑i
j=1‍pðxjÞ;

foreach kðk = 1,⋯, nÞdo
Generate a random number rk from [0,1];
if (rk ≤ q1) then
Select the x1;

else
ifðqi−1 < rk ≤ qið2 ≤ i ≤ nÞÞthen
Select the xi;

end
end

end
end
Train the classifier to evaluate accuracy of xi;
Calculate the fitness function value and store it in f itnessi;
½Maxf itness, index� =max ð f itnessiÞði = 1,⋯,nÞ;
Bestnest = xindex ;
Bestf itness =Maxf itness;
Two nests in the population are paired at random for each pair except bestnest, such as xi and xjði, j ≠ indexÞ
if (randð0, 1Þ < pc) then
Generate a random integer r in (1,d) with one-point crossover between two individuals xi = xi1, xi2,⋯, xir−1, xjr ,⋯, xjd ;
xj = xj1, xj2,⋯, xjr−1, xir ,⋯, xid ;
end
The crossed nests and Bestness form a new population newnest as output

Algorithm 3: Elite selection and crossover operators.
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xtij =
1 rand ðÞ ≤ sig stepð Þ
0 otherwise

:

(
ð17Þ

The function of sigðstepÞ does not represent the probabil-
ity of change, and it represents the probability of a certain
change being 1. Let γ = −5, −3, 3, 5. The corresponding func-
tion graph is shown in Figure 2. It can be seen from the figure
that the greater the parameter of the same abscissa, the
greater the corresponding value. That is, the greater the fea-
ture weight, the greater the probability of being selected.

It should be emphasized that the weights calculated by
the Relief algorithm may have negative weights, and the neg-
ative weight indicates that the distance of the similar neigh-
bor samples is larger than that of the nonsimilar neighbor
samples. Therefore, it is considered that this feature is unfa-
vorable to classification, and the probability of selecting this
feature in the corresponding feature selection is low.

Because the purpose of nest discovery and crossover
operation is to make the population various, this paper
adopts crossover operation instead of discovery operation.
In the late iteration of the algorithm, the elite strategy pro-
posed in this paper ensures the convergence. The elite selec-
tion and crossover operators as well as the pseudo-code of the
algorithm presented in this paper are as follows: Algorithm 3
and Algorithm 4.

4. Experimental Methodology

4.1. Datasets. Eight datasets were extracted from the UCI
Machine Learning Repository [33–35]. In order to make a
more comprehensive comparison between the proposed
algorithm and other algorithms, four low-dimensional fea-
ture datasets and four high-dimensional feature datasets are
selected. Each dataset has two classes, and Table 1 provides
the datasets’ names, the total number of features, total num-
ber of cases, and classification accuracy before feature
selection.

4.2. Performance Evaluation Measures. Generalization ability
is the ability of a model to predict new data accurately after
training on the training datasets. Cross-validation is a
method to evaluate model generalization ability, which is
widely used in data mining and machine learning [36]. In
cross-validation, the dataset is usually divided into two parts:

the training set, which is used to build a prediction model,
and the other is test set, which is used to test the model’s gen-
eralization ability. Cross-validation was performed, and the
value of k was set to k = 5 for datasets with cases below 100
and to k = 10 for datasets with cases above 100. The evalua-
tion indicators used include Accuracy, Sensitivity, Precision,
and F-measure [37].

accuracy = TP + TN
TP + TN + FP + FN

, ð18Þ

sensitivity = recall =
TP

TP + FN
, ð19Þ

specificity =
TN

FP + TN
, ð20Þ

precision =
TP

TP + FP
, ð21Þ

F −measure = 2 ∗ precision ∗ recallð Þ
precision + recall

, ð22Þ

whereTPis the total number of positive cases and cor-
rectly identified as positive,TNis the total number of negative
cases and correctly identified as negative,FPis the total num-
ber of negative cases and wrongly identified positive cases,
andFNis the total number of positive cases and wrongly iden-
tified negative cases.

For the overall classification performance of each algo-
rithm, we calculate the average value of all tests as follows:

acc =
1
k
〠
k

i=1
accuracyi, ð23Þ

SE =
1
k
〠
k

i=1
sensitivityi, ð24Þ

SP =
1
k
〠
k

i=1
specificityi, ð25Þ

Pre =
1
k
〠
k

i=1
precisioni, ð26Þ

F1 =
1
k
〠
k

i=1
F −measurei, ð27Þ

where k is the total number folds.

4.3. Evaluating Classification Performance. The support vec-
tor machine (SVM) classifier was adopted to evaluate the
accuracy of feature subset classification. SVM is a supervised
machine learning algorithm introduced by Boser et al. [38],
in which data is mapped as the points in an n-dimensional
feature space (n = number of features). The final output of
SVM is an optimal hyperplane that classifies new cases.

SVM highly depends on kernel functions, so the experi-
ments with different kernel functions are fundamental. The
kernel function is a similarity function, which determines
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Figure 2: Parameter comparison.
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the similarity between any two inputs by calculating the dis-
tance between them. It is not difficult to determine the kernel
function. Any function that satisfies the Mercer theorem can
be used as a kernel function. There are various types of kernel
functions such as linear kernel function, polynomial kernel
function, radial basis kernel function, Sigmoid kernel func-
tion, and composite kernel function. Selecting the appropri-
ate kernel function is relevant to the datasets and the
problems. Therefore, it is often selected experimentally.
Based on experiments, suitable kernel functions are selected

Input: labelled dataset D, Maxiter T , CS parameters value, number of nests n, number of dimensions (features) d
Output: Bestf itness, Bestnest
foreach iði = 1,⋯, nÞdo

xi randomly generate a binary 0-1 string;
Train the classifier to evaluate accuracy of xi;
Calculate the fitness function value and store it in f itnessi;
end
½Maxf itness, index� =max ð f itnessiÞði = 1,⋯,nÞ;
Bestness = xindex ;
Bestf itness =Maxf itness;
whileðt < TÞ or (stop criterion)do

foreach iði = 1,⋯, n − 1Þdo
foreach jði = 1,⋯, dÞdo

newnest generated by formula (14)–(17) and store it in newiði = 1,⋯,n − 1Þ;
end

end
A new population nest with n members of newiði = 1,⋯,n − 1Þ and Bestnest;
Train the classifier to evaluate accuracy of nestiði = 1,⋯,nÞ;
Calculate the fitness function value and store it in f iti;
foreach iði = 1,⋯, nÞdo
if (f iti > f itnessi) then

f itnessi = f iti;
xi = nesti;
end

end
Generate new population newnest after elite selection and crossover;
Train the classifier to evaluate accuracy of xi;
Calculate the fitness function value and store it in f itnessi;
½Maxf itness, index� =maxð f itnessiÞði = 1,⋯,nÞ;
Bestness = xindex ;
Bestf itness =Maxf itness;
end

Algorithm 4: EHBCS algorithm.

Table 1: Datasets.

Datasets Features Cases Accuracy

Cervical Cancer Behavior Risk 19 72 0.865

Breast Cancer Wisconsin (diagnostic) 30 569 0.627

Breast Cancer Wisconsin (prognosis) 33 198 0.763

Sonar 60 208 0.702

Colon Tumor 2000 62 0.853

Medulloblastomas 5893 34 0.648

Central Nervous System 7129 60 0.600

Relation Leukemia 7129 72 0.919

Table 2: Selected kernel functions.

Dataset Kernel function

Cervical Cancer Behavior Risk Radial basis function

Breast Cancer Wisconsin (diagnostic) Radial basis function

Breast Cancer Wisconsin (prognosis) Radial basis function

Sonar Radial basis function

Colon Tumor Linear function

Medulloblastomas Linear function

Central Nervous System Linear function

Relation Leukemia Linear function

Table 3: Parameter setting.

Algorithms Parameters

EHBCS α = 1, pc = 0:5, pr = 0:3, k = 3

BGA pc = 0:8, pm = 0:1

BPSO c1 = 1, c2 = 2, ω = 0:9
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to evaluate the datasets. The selected kernel functions are
presented in Table 2.

4.4. Fitness Function. The main objective of the feature selec-
tion task is to find a subset of features from the dataset so that

the learning algorithm can use these selected features to
achieve as high accuracy as possible.

In the classification problems, two feature subsets with
different numbers likely have the same classification accuracy
for the same dataset. Therefore, in the case of the same

Cervical Cancer
Behavior Risk

Breast Cancer
Wisconsin

(diagnostic)

Breast Cancer
Wisconsin
(prognosis)

Relation LeukemiaCentral Nervous
SystemMedulloblastomasColon TumorSonar

Accuracy

0.865 0.627 0.692 0.9190.6000.6480.8530.702
0.925 0.962 0.814 0.9520.6400.7580.8770.638
0.954 0.968 0.831 0.9690.6720.8070.8930.817
0.937

0.
86
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7
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classification accuracy, if the metaheuristic algorithm finds
the subset with more features earlier, the subset with fewer
features will be ignored. In this paper, a new evaluation
method is proposed as the fitness function to overcome this
constraint, which considers the classification accuracy and
takes the rate of feature reduction as an adjusting term.

Let d be the total number of features contained in the
datasets, s be the number of features selected by metaheuris-

tic optimization algorithms, β be the weight of rate of feature
reduction, and 1-β be the weight of average accuracy. The
value of the adaptation fitness function can be calculated as
shown in (28). We set β=0.2.

f = β ·
d − s
d

+ 1 − βð Þ · acc: ð28Þ
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4.5. Parameter Setting. The performance of the proposed
EHBCS is compared against the Binary Genetic Algorithm
(BGA) and Binary Particle Swarm Optimization (BPSO)
algorithms. Table 3 lists the parameter values for each algo-
rithm. The population size of all optimization algorithms is
set to 30, and each algorithm was run 5 times to perform
the feature selection task. All runs are executed in Matlab
2017, running on a Windows 10 operating system on a Hua-
wei MagicBook with Intel(R) Core(TM) i5-8250U 1.6GHz
with 8Gb of RAM.

4.6. Analysis of Computational Complexity. The EHBCS algo-
rithm uses the Relief algorithm and the binary conversion of
Lévy flight as well as the selection and crossover process. For
the Relief algorithm, assuming that the number of runs isM,
the number of iterations is m, the number of cases is N , and
the individual dimension is d; the complexity of the algo-
rithm is Oðm ×N × d ×MÞ. For Lévy flight and binary con-

version, assuming that the number of individuals is n, the
individual dimension is d, and the number of iterations is t;
the computational complexity is Oðn2 × d × tÞ. For selection
and crossover, assuming the number of individuals is n, the
computational complexity is Oðn2 × t × dÞ. Therefore, the
computational complexity is Oðm ×N × d ×M + n2 × t × dÞ
for EHBCS algorithm.

5. Experimental Results

Figures 3 and 4 provide the performance of all optimization
algorithms for feature selection using the medical datasets
described in Section 4.1. They contain the following
information:

Accuracy: classification accuracy for each datasets
All: classification accuracy before feature selection for

each dataset

Table 4: Experimental results.

Fitness Algorithm Avgacc Max Min Std AvgN SE SP Pre F1 Dataset

f

EHBCS 0.937 0.920 0.948 0.011 6.000 0.840 0.966 0.895 0.854

Cervical Cancer Behavior Risk

BGA 0.954 0.975 0.934 0.015 5.000 0.917 0.952 0.906 0.893

BPSO 0.925 0.946 0.896 0.014 4.400 0.700 0.978 0.967 0.775

Avg 0.937 0.947 0.926 0.013 5.133 0.819 0.965 0.908 0.841

acc

EHBCS 0.924 0.932 0.906 0.011 6.600 0.785 0.960 0.821 0.793

BGA 0.960 0.973 0.945 0.009 5.600 0.883 0.981 0.943 0.896

BPSO 0.920 0.948 0.896 0.017 5.300 0.753 0.917 0.800 0.754

Avg 0.935 0.951 0.916 0.012 5.833 0.807 0.953 0.854 0.814

f

EHBCS 0.957 0.961 0.953 0.003 6.000 0.947 0.960 0.936 0.940

Breast Cancer Wisconsin (diagnostic)

BGA 0.968 0.975 0.960 0.005 3.100 0.970 0.955 0.926 0.947

BPSO 0.962 0.972 0.954 0.006 5.600 0.954 0.941 0.907 0.930

Avg 0.962 0.969 0.956 0.005 4.900 0.953 0.952 0.923 0.939

acc

EHBCS 0.966 0.968 0.963 0.001 8.200 0.957 0.969 0.950 0.952

BGA 0.973 0.977 0.968 0.003 7.900 0.954 0.959 0.940 0.952

BPSO 0.911 0.935 0.879 0.020 16.400 0.957 0.961 0.937 0.946

Avg 0.950 0.960 0.937 0.008 10.833 0.956 0.963 0.942 0.948

f

EHBCS 0.787 0.793 0.778 0.007 10.200 0.294 0.926 0.604 0.371

Breast Cancer Wisconsin (prognosis)

BGA 0.831 0.848 0.808 0.010 9.500 0.200 0.958 0.593 0.277

BPSO 0.814 0.825 0.793 0.014 10.800 0.216 0.936 0.583 0.286

Avg 0.811 0.822 0.793 0.010 10.167 0.236 0.940 0.593 0.311

acc

EHBCS 0.797 0.803 0.793 0.005 13.800 0.220 0.974 0.750 0.322

BGA 0.822 0.863 0.788 0.020 13.500 0.210 0.981 0.735 0.302

BPSO 0.806 0.829 0.793 0.010 15.200 0.191 0.968 0.733 0.289

Avg 0.808 0.832 0.791 0.012 14.167 0.207 0.974 0.739 0.304

f

EHBCS 0.755 0.778 0.735 0.017 15.200 0.947 0.960 0.936 0.940

Sonar

BGA 0.816 0.880 0.778 0.036 11.000 0.970 0.955 0.926 0.947

BPSO 0.637 0.663 0.610 0.018 25.200 0.954 0.941 0.907 0.930

Avg 0.736 0.774 0.708 0.024 17.133 0.952 0.502 0.704 0.789

acc

EHBCS 0.752 0.773 0.730 0.014 16.600 0.957 0.969 0.950 0.952

BGA 0.800 0.865 0.760 0.035 13.400 0.954 0.959 0.940 0.945

BPSO 0.631 0.644 0.620 0.009 27.600 0.967 0.961 0.937 0.946

Avg 0.728 0.761 0.703 0.019 19.200 0.974 0.451 0.684 0.788
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SR: size reduction percentage is used to evaluate the per-
centage of removed features compared to all available
features

Tables 4 and 5 provide the performance of all optimiza-
tion algorithms for feature selection using binary label data-
sets described in Section 4.1. Each table column contains
the following information:

Fitness: acc is accuracy as defined in Section 4.2 Function
(23), and f is the proposed Function (28) as defined in Sec-
tion 4.4

Algorithm: it provides the abbreviations of the algo-
rithms, Elite Hybrid Binary Cuckoo Search (EHBCS), Binary
Genetic Algorithm (BGA), and Binary Particle Swarm Opti-
mization (BPSO)

Avgacc, Max, Min: average accuracy, maximum accuracy,
minimum accuracy of an algorithm during the 5 runs

Std: standard deviation of classification accuracy

AvgN: average number of features returned by the algo-
rithm during the 5 runs

SE, SP, Pre, F1: average sensitivity, specificity, precision,
F-measure of an algorithm during the 5 runs

Dataset: the dataset used for experimentation as
described in Table 1

Avg: average of all corresponding data obtained by the
three algorithms

The experimental results show that the average feature
subsets are smaller for all datasets, and the average classi-
fication accuracy is improved to different degrees. Com-
pared with the original datasets, the number of the
average feature subsets after feature selection by the opti-
mization algorithms was reduced by about 18.395%-
89.667%, and the average classification accuracy was
improved by about 3.3%-34.6%. For the Breast Cancer
Wisconsin (diagnostic) dataset, the maximum average

Table 5: Experimental results.

Fitness Algorithm Avgacc Max Min Std AvgN SE SP Pre F1 Dataset

f

EHBCS 0.899 0.901 0.886 0.006 931.833 0.927 0.860 0.938 0.922

Colon Tumor

BGA 0.893 0.901 0.885 0.008 905.000 0.927 0.860 0.925 0.922

BPSO 0.877 0.886 0.868 0.008 984.300 0.927 0.753 0.888 0.901

Avg 0.889 0.896 0.879 0.007 933.744 0.927 0.824 0.917 0.915

acc

EHBCS 0.898 0.903 0.886 0.006 1103.800 0.927 0.860 0.925 0.922

BGA 0.893 0.903 0.886 0.011 1033.000 0.927 0.860 0.905 0.901

BPSO 0.884 0.901 0.869 0.009 1632.100 0.927 0.793 0.910 0.913

Avg 0.892 0.902 0.881 0.007 1256.300 0.927 0.838 0.913 0.912

f

EHBCS 0.876 0.876 0.876 0 2776.200 0.920 0.600 0.931 0.916

Medulloblastomas

BGA 0.807 0.842 0.783 0.022 2798.600 0.920 0.600 0.931 0.917

BPSO 0.758 0.795 0.733 0.019 2927.800 0.910 0.600 0.921 0.912

Avg 0.814 0.838 0.797 0.014 2834.200 0.917 0.600 0.928 0.915

acc

EHBCS 0.862 0.876 0.848 0.014 2899.800 0.910 0.550 0.915 0.907

BGA 0.798 0.817 0.783 0.015 2960.100 0.900 0.600 0.931 0.941

BPSO 0.764 0.767 0.762 0.002 3323.750 0.900 0.600 0.898 0.894

Avg 0.808 0.820 0.798 0.010 3061.217 0.903 0.583 0.915 0.914

f

EHBCS 0.740 0.750 0.733 0.008 3315.100 0.436 0.894 0.767 0.525

Central Nervous System

BGA 0.672 0.700 0.650 0.017 3425.300 0.360 0.794 0.430 0.380

BPSO 0.640 0.683 0.617 0.024 3569.100 0.360 0.737 0.396 0.360

Avg 0.684 0.711 0.667 0.016 3436.500 0.385 0.808 0.532 0.422

acc

EHBCS 0.740 0.767 0.717 0.017 3693.600 0.500 0.894 0.787 0.572

BGA 0.670 0.717 0.633 0.023 3561.400 0.360 0.786 0.706 0.369

BPSO 0.643 0.650 0.633 0.008 4844.200 0.320 0.737 0.377 0.332

Avg 0.684 0.711 0.661 0.016 4033.067 0.393 0.806 0.623 0.425

f

EHBCS 0.971 0.973 0.960 0.005 3482.000 1 0.930 0.953 0.975

Relation Leukemia

BGA 0.970 0.973 0.960 0.006 3401.400 1 0.885 0.922 0.955

BPSO 0.952 0.960 0.947 0.007 3563.100 1 0.910 0.937 0.965

Avg 0.962 0.969 0.956 0.006 3482.167 1 0.908 0.937 0.965

acc

EHBCS 0.973 0.987 0.960 0.006 4008.500 1 0.926 0.951 0.973

BGA 0.971 0.973 0.960 0.005 3573.100 1 0.910 0.937 0.965

BPSO 0.955 0.960 0.947 0.007 5661.200 1 0.910 0.937 0.965

Avg 0.967 0.973 0.956 0.006 4414.267 1 0.915 0.942 0.968
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classification accuracy improvement was achieved at
34.6%. All these imply that the feature selection methods
based on metaheuristic optimization algorithms can effec-
tively eliminate redundant features and significantly
improve the classification accuracy especially for some
datasets.

For low-dimensional datasets, such as Cervical Cancer
Behavior Risk, Breast Cancer Wisconsin (diagnostic),
Breast Cancer Wisconsin (prognosis), and Sonar, the
EHBCS algorithm can effectively reduce features to obtain
a smaller subset of target features. It can get minimum
standard deviation in three algorithms, which shows the
EHBCS algorithm is the most stable of three. But it is
the second of the three optimization algorithms in terms
of classification accuracy, SE, SP, Pre, and F1. Compared
with the data corresponding to Avg, the EHBCS algorithm
has minimum standard deviation, higher classification
accuracy, SE, SP, Pre, and F1 in entirety. Compared with
the original dataset classification, the number of subset
features after feature selection by the EHBCS algorithm
is reduced by 58.182%-80%, and the classification accuracy
is improved by 5%-33.9%. The results show that the
EHBCS algorithm can efficiently diminish the number of
features to ensure accuracy, but it did not perform well
in low-dimensional datasets.

For high-dimensional datasets, such as Colon Tumor,
Medulloblastomas, Central Nervous System and Relation
Leukemia, the average classification accuracy, standard
deviation, SE, SP, Pre, and F1 obtained by the EHBCS
algorithm were superior to BGA and BPSO on the whole.
Compared with the data corresponding to Avg, the aver-
age classification accuracy of the EHBCS algorithm is
improved by 1%-10.6%, and the EHBCS gets lower stan-
dard deviation. But it needs to be explained that the stan-
dard deviation of the EHBCS algorithm is greater than the
data corresponding to Avg when adopting fitness acc
(Function (23)) for dataset Medulloblastomas and Central
Nervous System. In addition to these, SE, SP, Pre, and
F1 are optimal overall. Compared with the original dataset
classification, the number of subset features after feature
selection by the EHBCS algorithm is reduced by
43.772%-53.498%, and the classification accuracy is
improved by 4.5%-22.8%. The results show that the feature
selection method based on EHBCS has higher classifica-
tion accuracy, SE, SP, Pre, F1, and smaller standard devi-
ation. EHBCS algorithm is more suitable for the feature
selection of high-dimensional datasets.

It should be emphasized that the purpose of feature selec-
tion is to reduce irrelevant or weakly correlated features as
much as possible on the premise of ensuring classification
accuracy. However, the number of feature subsets cannot
be reduced indefinitely. Too few feature subsets may lead to
the loss of important features, thus affecting the classification
accuracy of the datasets. Therefore, it is necessary to balance
the relationship between classification accuracy and the
number of feature subsets. In practical applications, evalua-
tion function models should be set scientifically and reason-
ably to ensure the classification performance of feature
subsets.

6. Conclusion

This paper proposes an Elite Hybrid Binary Cuckoo Search
Algorithm that adopts feature weighting and elite strategy.
The proposed EHBCS algorithm aims to optimize the feature
selection task on binary label datasets. The experimental
results show that EHBCS achieves a better classification per-
formance. Besides, all statistical metrics (standard deviation
(Std), sensitivity (SE), specificity (SP), precision (Pre), and
F-measure (F1)) reveal markedly the EHBCS is superior to
BGA and BPSO. However, the algorithm still has shortcom-
ings, such as increased computational complexity.

Future work requires further modification of the pro-
posed algorithm to make it suitable for feature selection of
multiclass datasets and to evaluate the results using different
datasets and classification models.
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.edu/mlhttp://portals.broadinstitute.org/cgi-bin/cancer/
datasets.cgihttp://csse.szu.edu.cn/staff/zhuzx/Datasets.html.
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