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Aberrant signaling through protein-tyrosine kinase (PTK)-dependent pathways is associated
with several proliferative diseases. Accordingly, PTK inhibitors are being developed as new
approaches for the treatment of certain cancers. Growth factor receptor bound protein 2

(Grb2) is an important downstream mediator of PTK signaling that serves obligatory roles in
many pathogenic processes. One of the primary functions of Grb2 is to bind to specific
phosphotyrosyl (pTyr)-containing sequences through its Src homology 2 (SH2) domain.

Agents that bind to the Grb2 SH2 domain and prevent its normal function could disrupt
associated PTK signaling and serve as alternatives to kinase-directed inhibitors. Starting from
the X-ray crystal structure of a lead peptide bound to the Grb2 SH2 domain, this review will
summarize important contributions to these efforts. The presentation will be thematically

arranged according to the region of peptide modified, proceeding from the N-terminus to the
C-terminus, with a special section devoted to aspects of conformational constraint.
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INTRODUCTION

Proliferative diseases often involve aberrations in
protein-tyrosine kinase (PTK) dependent signaling
(Blume-Jensen and Hunter, 2001), and for this reason
PTK inhibitors are beginning to emerge as a new
class of anticancer therapeutics (Shawver et al.,
2002). However, blockade of oncogenic PTK signal-
ing can be approached by means other than kinase-
directed agents. Illustrative of this, the growth factor
receptor bound protein 2 (Grb2) (Lowenstein et al.,
1992) is a 25 kDa non-catalytic Src homology 2

(SH2) domain-containing protein providing connec-
tivity downstream of PTKs that has been shown to be
associated with a number of cancers (Million and
Van Etten, 2000; Tari and Lopez-Berestein, 2001;
Saucier et al., 2002), including breast cancer (Daly
et al., 1994). Significant effort has been devoted to
developing Grb2 SH2 domain-binding antagonists
as potential therapeutics. Because the recognition
and binding to phosphotyrosyl (pTyr) containing
sequences by the Grb2 SH2 domain is critical for
its proper function, most inhibitor development
has focused on peptide and peptide mimetic-based
analogues (Fretz et al., 2000; Vu, 2000; Garcia-
Echeverria, 2001). Starting from the X-ray crystal
structure of a lead peptide bound to the Grb2 SH2
domain, this review will summarize important
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contributions to these latter efforts. The reader is
referred to an earlier review for a particularly fine
presentation of work through the year 2000 (Fretz
et al., 2000).

RELATIONSHIP OF GRB2 SH2 DOMAIN-

BINDING INTERACTIONS TO INHIBITOR

DESIGN

SH2 domains comprise a family of proteins
characterized by similar overall structures that can be
described using a common nomenclature. This allows
a systematic designation of individual protein resi-
dues based on consensus motifs (Eck et al., 1993;
Waksman et al., 1993). Shared topographical fea-
tures among SH2 domains include three principal
antiparallel b-sheets (bB-bD) lying between C-proxi-
mal (aA) and N-proximal (aB) a-helixes, with shorter
b-sheets (bE and bF) and several short loops (BC, EF
and BG) connecting these elements (Songyang, 1999).
The binding of pTyr-containing peptides to SH2
domains typically involves nestling of the critical
pTyr residue into a positively-charged pocket lying
under the aA helix next to the BC loop. Ligand res-
idues C-proximal to the pTyr residue provide for

differential affinity among various SH2 domain
family members by extending in linear fashion
through a ‘specificity’ region of the protein bounded
by the EF and BG loops. The consensus sequence for
peptides binding to the Grb2 SH2 is pTyr-(X+1)-
Asn-(X+3), (where residue numbering starts at the
pTyr residue and proceeds in the C-terminal direc-
tion) with the pTyr+2 Asn serving as the specificity
determining residue (Songyang et al., 1994; Kessels
et al., 2002). X-ray crystal structures of peptides
complexed to Grb2 SH2 domains have shown that
ligand cannot extend in the normal fashion between
the EF and BG loops, because this region is blocked
by the indole side chain of Trp EF1 (Rahuel et al.,
1996, 1998; Ettmayer et al., 1999; Furet et al., 1999;
Schiering et al., 2000; Nioche et al., 2002). This
blockade results in the preferential binding of pep-
tides to Grb2 SH2 domains in type-I b-turn confor-
mations (Rahuel et al., 1996).

Figure 1 summarizes important Grb2 SH2
domain-binding interactions of the BCR-Abl174–180
peptide Lys-Pro-Phe-pTyr-Val-Asn-Val, including its
adaption of a b-turn conformation (Rahuel et al.,
1996). Since it had been observed that the N-terminal
Lys and Pro residues do not exhibit specific interac-
tions with the protein, these were omitted from the

Fig. 1. X-ray crystal structure of the BCR-Abl174–180 sequence KPFpYVNV complexed to the Grb2 SH2 domain as reported in (Rahuel
et al., 1996) with N-terminal Lys and Pro residues having been omitted for clarity. Important protein residues discussed in the text have been
rendered in CPK style and labeled.
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Figure. However the carbonyl oxygen and phenyl
ring of the pTyr-1 Phe residue do engage in hydrogen
bonding and van der Waals interactions, respectively,
with the Arg aA2 guanidinium group and these were
retained in the Figure. The critical pTyr phosphoryl
group forms hydrogen bonds with the Arg aA2 and
Arg bB5 side chains, while the pTyr phenyl ring
undergoes hydrophobic interactions with side chain
methylenes of Lys bD6 in addition to p-cation
interactions with the Arg aA2 guanidinium group.
The pTyr+1 Val residue exhibits hydrophobic
interactions with the Phe bD5 and Gln bD3 side
chains, while the carboxamido side chain group of the
critical pTyr+2 Asn residue forms three hydrogen
bonds with the Lys bD6 and Leu bE4 residues in the
‘specificity determining pocket.’ Finally, the pTyr+3
Val residue rests on a hydrophobic patch formed by
the side chains of the Lys bD6 and Leu bD1 and
bounded by Phe bE3. In the remainder of this review
each of the above regional interactions will be used as
the basis for summarizing studies directed toward
the development of Grb2 SH2 domain-binding
antagonists.

AMINO-TERMINAL MODIFICATIONS

Amino-terminal modifications have most often
been directed at enhancing interactions with the Arg
aA2 guanidinium group. Furet et al. found that an
approximate 7-fold increase in binding affinity
resulted relative to H-pTyr-Ile-Asn-amide (1a), by
introducing an N-terminal carboxamido moiety
provided either by an acetyl group (1b) or by a Glu
residue (1c) (Fig. 2) (Furet et al., 1997). Surprisingly,
acylation of the Glu residue with a 2-aminobenzoyl
group (Abz) increased affinity more than 300-fold
(peptide 1d). X-ray crystallographic structure deter-
mination of 1d complexed to the Grb2 SH2 domain
showed that the 2-amino group formed a salt bridge
with the pTyr phosphoryl group, thereby positioning
the Abz phenyl ring for efficient p-cation stacking
with the Arg aA2 guanidinium group (Rahuel et al.,
1998). A similar, though slightly less potent effect
could be achieved by acylating the pTyr residue
directly with a 3-aminobenzyloxycarbonyl ((3-ami-
no)Z) group (peptide 1e). The importance of amino
functionality for maintaining a salt bridge with the

O

N
H

HN O

NH2H2N

O

O
P
O

HO

OH
N

R H

O

Asn

Ile

H2N
O

H-Glu

N
H

O
Abz-Glu

O

O
H2N

(3-amino)Z

CO2HONH2

CO2H

R

H

H3C

O

Ac

O

OZ

R IC50 (µM) IC50 (µM)No No

56.9

8.64

7.9

0.022

0.065

6.35

1

1a

1b

1c

1d

1e

1f

Fig. 2. Amino-terminal modifications reported in (Furet et al., 1997).

Development of Grb2 SH2 Domain Signaling Antagonists 35



phosphoryl group was shown by the nearly 100-fold
loss of affinity following removal of the 3-amino
group (peptide 1f).

Using as a display platform, a tripeptide disclosed
by Furet et al. (2, Fig. 3) (Furet et al., 1998), Burke
et al. examined a series of N-terminal amides con-
taining carboxyl and tetrazolyl groups intended to
undergo ionic interactions with the Arg aA2 guan-
idinium group (peptides 2a–2e, Fig. 3) (Burke et al.,
2001a). The N-oxalyl moiety (2b) provided the best
affinity enhancement. Although affinity was only
approximately 3-fold greater than the N-Acetyl con-
taining analogue (2a) in extracellular binding
assays, potency in whole cells was increased in spite
of the fact that the N-oxalyl group would have been
expected to adversely affect cellular bioavailability
(Yao et al., 1999).

pTyr MIMETICS

Interactions within the SH2 domain pTyr-binding
pocket are central to overall ligand affinity, with ionic
bonding between the phosphoryl group and the Arg
bB5 residue being particularly important (Bradshaw
et al., 1999).However, the pTyr phosphoryl group (3a,

Fig. 4) presents physiochemical properties that are
unsuitable for therapeutically-relevant SH2 domain-
binding antagonists. These properties include poor
bioavailability due to the di-anionic nature of the
phosphoryl group at pH7 and hydrolytic lability of the
phosphoryl ester to phosphatases. Accordingly, sig-
nificant effort has been devoted to developing pTyr
mimetics that address these drawbacks while retaining
recognition within the pTyr-binding pocket (Burke
et al., 2001b; Burke and Lee, 2003). Among the
di-acidic pTyr mimetics that have been successfully
used in high affinity Grb2 SH2 domain-binding
antagonists are phosphorus-containing (phospho-
nomethyl)phenylalanine (Pmp, 3b) and (difluoroph-
osphonomethyl)phenylalanine (F2Pmp, 3c) (Yao
et al., 1999). Non-phosphorus-containing analogues
include the malonyl-containing O-malonyltyrosine
(OMT, 3d) (Ye et al., 1995), O-fluoromalonyltyrosine
(FOMT, 3e) and p-malonylphenylalanine (3f) (Gao
et al., 2000).Modification of OMT by translocation of
one carboxyl from the malonyl group to the 3-position
of the tyrosyl ring provided analogue 3g (Yao et al.,
1999).

The pTyr mimetics shown in Fig. 4 retain the
di-acidic character of the parent phosphoryl-contain-
ing species and therefore potentially presentmembrane
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transport problems. Several mono-acidic pTyr
mimetics have also been examined in Grb2 SH2
domain-directed ligands. These include O-carbo-
xymethyltyrosine (Cmt, 4a, Fig. 5) (Burke et al.,
1999), O-difluorocarboxymethyltyrosine (F2Cmt, 4b)
(Fretz et al., 2000), carboxymethylphenylalanine
(Cmf, 4c) (Burke et al., 1999) and difluorocarboxym-
ethylphenylalanine (4d) (Burke et al., 1999). Mono-
acidic phosphinate-based pTyr mimetics 4e–4g have
been reported by Furet et al. some of which include
benzylic moieties designed to undergo p-stacking with
the Arg bB5 residue (Furet et al., 2000).

MODIFICATIONS TO THE pTyr+1 POSITION

Exploiting X-ray crystallographic data of Grb2
SH2 domain complexed with a peptide ligand show-
ing that the pTyr+1 residue adapts a 310 helical
structure (Rahuel et al., 1996), Garcia-Echeverria
et al. substituted the pTyr+1 residue of the peptide
Ac-pTyr-Val-Asn-amide (5b, Fig. 6) with a series of
bend-inducing cycloalkyl amino acids (Garcia-Ech-
everria et al., 1999). The intent was to promote a
local 310 helical structure and to afford van der Waals
interactions with the side chains of Phe bD5 and Gln
bD3. Starting with a 3-membered ring (Ac3c, 5c),
binding affinity increased progressively with ring size,

reaching a maximum with 1-aminocyclohexane car-
boxylic acid (Ac6c, 5f) (Fig. 6). Binding affinity fell
off with the larger, 7-membered ring (Ac7c, 5g).

Garbay and co-workers showed that replacement
of the Ac6c residue in (3-amino)Z-pTyr-Ac6c-Asn-
amide with an a-methyl pTyr residue (6a, Fig. 7)
resulted in approximately 10-fold enhancement of
Grb2 SH2 domain-binding affinity (Liu et al., 1999,
2004). An X-ray crystal structure of 6a complexed to
the Grb2 SH2 domain showed that key ionic inter-
actions of the a-methyl pTyr phosphoryl group with
the Arg BG4 guanidinium side chain (identified in
Fig. 1) contributed to this effect (Nioche et al., 2002).
The a-methyl pTyr phosphoryl group was replaced
with several hydrolytically-stable mimetics. Although
the phosphonomethyl (6b), and difluorophospho-
nomethyl (6c) containing analogues exhibited mark-
edly less affinity than the parent a-methyl pTyr, the
a-methyl phosphonophenylalanyl residue (6d) was
nearly equipotent. Mono-acidic carboxy-based ana-
logues 6e and 6f were less potent.

pTyr+2 Asn REPLACEMENTS

Studies have shown that Grb2 SH2 domain-
binding peptides have a strong preference for an Asn
residue at the pTyr+2 position (Songyang et al.,
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1994; Kessels et al., 2002). The structural basis for
this preference became evident from X-ray studies
that showed the Asn residue to be lying at the i+2
position of a type-I b-turn with its side chain
carboxamide moiety held in place by three hydro-
gen bonds arising from the Lys bD6 and Leu bE4
residues (Rahuel et al., 1996). Using the high affin-
ity peptide (3-amino)Z-pTyr-Ac6c-Asn-amide (7a,
Fig. 8), Furet et al. examined Asn replacements
consisting of cyclic b-amino acids of differing ring
size that were intended to maintain the network of
hydrogen bonds found with the parent Asn side chain
carboxamide (Furet et al., 1999). Replacement with a
(1S, 2R)-2-amino-cyclohex-3-ene carboxylic acid
(Achec) residue (7c) maintained binding affinity
nearly equal to the parent Asn residue. Replacement
with the enantiomeric (1R,2S)-Achec residue (7b)
resulted in greater than 1000-fold less affinity, pre-
sumably through steric interactions with the Trp EF1
residue.

pTyr+3 REPLACEMENTS

X-ray crystal structures of ligand-complexed
Grb2 SH2 domain reveal the presence of a lipophilic
region formed by the side chains of the Lys bD6 and
Leu bD1 and bounded by Phe bE3, which is situated
proximal to the binding region of the pTyr+3 residue
(Rahuel et al., 1996; Furet et al., 1998). Through a
systematic study, Furet et al. showed that replace-
ment of the pTyr+3 residue with a 3-naph-
thalen-propyl amide significantly enhanced binding
affinity, particularly when used in combination with a
pTyr+1 Ac6c residue (8a, Fig. 9) (Furet et al., 1998).
Subsequently using a convergent synthetic approach,
Schoepfer et al. prepared a series of hydroxy and
methoxy-substituted congeners, including 8b and 8c,
that exhibited higher binding affinity (Schoepfer
et al., 2001). In further work, Schoepfer replaced the
naphthyl ring with a variety of substituted indolyl
rings (Schoepfer et al., 1999). Depending on the site
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of propyl amide attachment (for example, 8d as
compared to 8e) and substituents appended to the
indolyl ring, highly potent binding inhibitors could be
obtained. These included compounds such as 8f that
were the first analogues reported to exhibit sub-
nanomolar Grb2 SH2 domain-binding affinities.
Higher affinity of indolyl vs. naphthyl-containing
compounds was attributed to enhanced CH/p inter-
actions of the former with segments of the Lys bD6
and Leu bD1 side chains that formed the lipophilic
binding surface.

USE OF CONFORMATIONAL CONSTRAINT

The net Grb2 SH2 domain-binding affinity of
flexible analogues is adversely affected by free energy
terms derived from the ordering of ligands in solution

to conformations needed for binding. Theoretically,
affinity enhancement can be achieved through
reduction of these entropy penalties by induction of
conformational constraint. This has already been
shown above by the beneficial binding effects of
pTyr+1 bend-inducing residues such as Ac6c (5f). In
the following, further examples will be provided
where induction of conformational constraint has
been applied to the design of Grb2 SH2 domain-
binding ligands. The approaches presented can be
categorized generally into local conformational con-
straint and global conformational constraint.

Monomeric Constrained pTyr Mimetics

Introduction of ring structures into amino acid
analogues can be used to achieve conformational
constraint. The bicyclic indanyl-containing analogue
10 and the tricyclic methanobenzazocino compound
11 were designed to contain within their frameworks,
pTyr residues having v2 (for 10) and /, v1 and v2 (for
11) angles constrained to values approximating those
needed for binding as determined by X-ray crystal
structures of SH2 domain-bound pTyr residues (9)
(Fig. 10) (Burke et al., 1995). Although this approach
is conceptually appealing, little if any affinity
enhancement is achieved, and the binding constants
of pTyr itself and the constrained analogues 10 and
11 are in the millimolar range (Burke et al., 1995;
Wang et al., 2003).

Constrained pTyr Mimetics Within Peptide Platforms

Conformationally constrained pTyr mimetics
have also been examined within peptide platforms.
Analogues 12 (Plake et al., 2003) and 13 (Liu et al.,
2002) (Fig. 11) utilized cyclopropyl and cyclohexyl
rings, respectively, to lock both / and v angles.
While peptide 12 maintained a binding on-rate sim-
ilar to the parent pTyr-containing congener, ana-
logue 13 exhibited a greater than two orders of
magnitude loss of binding affinity relative to the
un-constrained parent. A similarly large loss of
binding affinity was observed for compound 14,
which made an alternate use of a cyclohexyl moiety
to constrain v1 and v2 angles (Oishi et al., 2004). To
date, local conformational constraint of the pTyr
mimicking residue has not proven to be a useful
approach toward affinity enhancement of Grb2 SH2
domain-binding ligands.
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Global Conformational Constraint Through

Head-to-Tail Cyclization pTyr-Containing Peptides

While local conformational constraint of pTyr
mimetics has not proven beneficial to date, the pref-
erential binding of Grb2 SH2 domain peptides in
b-bend conformations has made induction of global
conformational constraint through macrocyclization
an important field of investigation. Ettmeyer et al.
examined a series of cyclic peptides (15) based on the
sequence pTyr-Val-Asn-Val-Pro) (Fig. 12) (Ettmayer
et al., 1999). These included analogues 15a (IC50=
0.06 lM) and 15b (IC50=0.07 lM), which exhibited
approximately 10-fold higher affinity than the open
chain congeners such as 15c (IC50=1.63 lM). This is
in contrast to the findings of Dekker et al. that
ring closing metathesis (RCM) of open-chain 16

(Kd=0.44 lM) to unsaturated 17 (Kd=0.60 lM) and
saturated 18 (Kd=0.48 lM) failed to enhance binding
affinity (Fig. 13) (Dekker et al., 2003).

Cyclic Peptides Based a Non-pTyr-Containing Phage

Library Lead

High affinity binding to the SH2 domains nor-
mally requires a pTyr or pTyr-mimicking residue that

can form ionic interactions with positively-charged
residues within the pTyr binding pocket, particularly
with the Arg bB5 residue (Bradshaw et al., 1999). In
this light, a noteworthy body of work has appeared on
several Grb2 SH2 domain-binding peptides whose
designs are predicated on a non-pTyr-containing
disulfide-cyclized phage library-derived lead termed
‘G1’ (19a, IC50=10–25 lM) and its thioether homo-
logue ‘G1TE’ (19b, IC50=20 lM) (Fig. 14) (Oligino
et al., 1997). Through the preparation of an extensive
series of analogues, binding affinity was enhanced to
low nanomolar values (Li et al., 2003a). The use of a
Tyr instead of a pTyr in the original G1TE (19b) with
maintenance of binding affinity, was shown to be due
to the compensatory action of a Glu residue in the
Tyr-2 position that supplied anionic interactions with
the critical protein Arg bB5 residue (Li et al., 2003c).
Further modifications including addition of a second
carboxyl group to the Glu residue, replacement of the
Tyr residue with a 3-amino-Tyr residue and conver-
sion of the ring-closing thioether to an (R)-sulfoxide,
lead to cyclic peptide 20, which exhibited an IC50

value of 50 nM (Song et al., 2004). High affinity
variants of these peptides have been prepared that
utilize pTyr mimetics, such as 21, IC50=2.4 nM.

IC50 = 0.06 µM IC50 = 0.07 µM IC50 = 1.63 µM
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However, these require that the compensatory acidic
residue at the Tyr-2 position also be replaced by a
non-acidic residue, such as Ala (Li et al., 2003b).

Macrocycles Derived From Ring Closure at the pTyr

Mimetic b-Methylene

Molecularmodeling studies of open-chain peptides
such as 8a (Fig. 9) bound to the Grb2 SH2 domain
indicated that the b-methylene of the N-terminal pTyr
mimicking residue was in close proximity to C2 of the
C-terminal naphthylpropylamido group (Gao et al.,
2001a). Ring closure from these two positions using
RCM chemistries yielded the new family of macrocy-
cles shown in Fig. 15 (Gao et al., 2001b; Wei et al.,
2003). Macrocycle 24, which lacked any functionality
at the pTyrmimetic a-position, exhibited an IC50 value
of 20 nM in extracellular ELISA binding assays, yet
was unable to block the intracellular association of
Grb2 with cytoplasmic erbB-2 PTK in whole cells
following extracellular administration (Gao et al.,
2001a). However, introduction of an a-carboxymethyl
group onto 24 to yield 25 not only resulted in an order

of magnitude enhancement of binding affinity in
extracellular assays, but also imparted the ability to
block the association of Grb2 with cytoplasmic erbB-2
PTK in whole cells following extracellular adminis-
tration (Wei et al., 2003). By analogy to SAR studies
conducted on open-chain peptides (Fig. 9), the naph-
thyl ring of 25 was replaced with a 5-hydroxynaphthyl
group (compound 26) (Shi et al., 2005b) or a 5-
methylindolyl group (compound 27) (Shi et al., 2003,
2004); Kang et al., 2005). This resulted in potency
enhancement, such that 27 was able to block the
association of Grb2 with cytoplasmic erbB-2 PTK in
whole cells at low nanomolar concentrations when
given in extracellular medium. Interestingly, the
absolute configuration at the C2 ring juncture has little
effect onbinding affinity (Shi et al., 2005a).Avariety of
phosphoryl-mimicking moities were also examined
(compounds 28–34), including several mono-acidic
groups that provided low nanomolar binding affinities
(Kang et al., 2005).

A modification of this approach has recently been
reported, whereby allylglycine residues were used to
form the C-terminal ring-closing segments (Oishi
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et al., 2005). Significant enhancements in Grb2 SH2
domain-binding affinity were observed for ring-closed
products (36 and 37) as compared to the open-chain
parent (35) (Fig. 16). Similar to above, the absolute
configuration at the C-terminal ring junction had
little effect on binding affinity.

NON-PEPTIDIC COMPOUNDS

Starting from the minimal peptide Ac-pTyr-Val-
Asn-amide (38, IC50=4.32 lM), Schoepfer et al.
replaced the Val-Asn portion with a (3-aminomethyl-
phenyl) urea to form tripeptide-mimicking com-
pound 39 (IC50=6.19 lM), which exhibited simi-
lar Grb2 SH2 domain-binding affinity (Fig. 17)
(Schoepfer et al., 1998). Caravatti et al. went further
and replaced all amino acid components to yield the
tri-aromatic analogue 40 (IC50=25.9 lM), which still
retained low micromolar binding affinity (Caravatti
et al., 1999).

CELLULAR STUDIES

The highly polar nature of pTyr and pTyr mim-
icking residues limits cell membrane transport of
many Grb2 SH2 domain-binding antagonists. How-
ever, whole cell studies conducted following prodrug
derivatization of the inhibitor phosphoryl or phos-
phonic acid moieties have been reported. Work done
by Gay et al. using CGP78850 (compound 41,
Fig. 18), a selective Grb2 SH2 domain-binding
inhibitor having a mixed phosphoramidite/phenyl
ester – protected phosphonic acid group, showed that
this compound could block the association of Grb2
with activated epidermal growth factor receptor
(EGFR) in living cells and inhibit the growth of cells
driven by PTK signaling through Ras (Gay et al.,
1999a). Further studies showed that CGP78850
could inhibit hepatocyte growth factor (HGF)-in-
duced cell motility (Gay et al., 1999b). Using a
monobenzyl phosphoryl protection protocol Garbay
and co-workers showed that compound 42 could
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block soft agar colony formation of HER2 trans-
fected cells with a sub-micromolar IC50 value (Liu
et al., 2004). In work that did not rely on prodrug
protection, Bottaro and co-workers showed that
compound 43, which employs a malonyl-based
phosphoryl mimetic, was able to block HGF-induced
cell motility, matrix invasion and morphogenesis with
IC50 values of 300 nM or less (Atabey et al., 2001;
Soriano et al., 2004).

CONCLUSIONS

This review has presented an overview of Grb2
SH2 domain-directed inhibitor development.
Although several high affinity inhibitors have been
reported, including agents that exhibit potent effects
in cellular systems, studies in whole animal cancer
models have yet to appear. This may be due in part to
the success of PTK inhibitors that has muted enthu-
siasm within the pharmaceutical industry for SH2
domain-directed inhibitors. It may also reflect scale
up and bioavailability issues presented by some of the
most promising inhibitors. Only time will tell whether
these latter issues will be overcome to a sufficient
extent to allow clinical trials of this class of agents.
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