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Curation, inference, 
and assessment of a globally 
reconstructed gene regulatory 
network for Streptomyces coelicolor
Andrea Zorro‑Aranda1,3, Juan Miguel Escorcia‑Rodríguez1, José Kenyi González‑Kise1,2 & 
Julio Augusto Freyre‑González1*

Streptomyces coelicolor A3(2) is a model microorganism for the study of Streptomycetes, antibiotic 
production, and secondary metabolism in general. Even though S. coelicolor has an outstanding 
variety of regulators among bacteria, little effort to globally study its transcription has been made. We 
manually curated 29 years of literature and databases to assemble a meta-curated experimentally-
validated gene regulatory network (GRN) with 5386 genes and 9707 regulatory interactions (~ 41% 
of the total expected interactions). This provides the most extensive and up-to-date reconstruction 
available for the regulatory circuitry of this organism. Only ~ 6% (534/9707) are supported by 
experiments confirming the binding of the transcription factor to the upstream region of the target 
gene, the so-called “strong” evidence. While for the remaining interactions there is no confirmation 
of direct binding. To tackle network incompleteness, we performed network inference using several 
methods (including two proposed here) for motif identification in DNA sequences and GRN inference 
from transcriptomics. Further, we contrasted the structural properties and functional architecture 
of the networks to assess the reliability of the predictions, finding the inference from DNA sequence 
data to be the most trustworthy approach. Finally, we show two applications of the inferred and 
the curated networks. The inference allowed us to propose novel transcription factors for the key 
Streptomyces antibiotic regulatory proteins (SARPs). The curated network allowed us to study the 
conservation of the system-level components between S. coelicolor and Corynebacterium glutamicum. 
There we identified the basal machinery as the common signature between the two organisms. The 
curated networks were deposited in Abasy Atlas (https://​abasy.​ccg.​unam.​mx/) while the inferences are 
available as Supplementary Material.

Streptomycetes, the largest genus within the actinomycetes, are biotechnologically relevant organisms. They pro-
duce around half of the natural antibiotics in current use1. However, according to the analysis of genome mining, 
less than 10% of antibiotics that could be produced by actinomycetes are currently used2. Their production could 
be enhanced not only by experimental technologies such as genetic manipulation but also by a deeper knowl-
edge of their secondary metabolism and transcriptional regulation. Streptomyces coelicolor A3(2) has become 
the model microorganism for the study of antibiotic production and secondary metabolism in general3. Before 
its sequencing, it was already known that S. coelicolor produces the red-pigmented antibiotic undecylprodigi-
osin (RED), the blue-pigmented actinorhodin (ACT), and the calcium-dependent antibiotic (CDA). However, 
its sequencing revealed more than 20 biosynthetic gene clusters (BGCs). Most of the metabolites produced by 
these clusters and their regulation are still unknown4.

S. coelicolor secondary metabolism regulation is very complex. It is controlled by a network of regulators at 
many levels, from global to cluster situated regulators (CSRs). Most CSRs control their own BGC, however, some 
of them can bind to multiple BGCs causing a cross-cluster regulation4. Sequencing of S. coelicolor A3(2) revealed 

OPEN

1Regulatory Systems Biology Research Group, Laboratory of Systems and Synthetic Biology, Center for Genomics 
Sciences, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, 62210  Cuernavaca, 
Morelos, México. 2Undergraduate Program in Genomic Sciences, Center for Genomics Sciences, 
Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, 62210  Cuernavaca, Morelos, 
México. 3Bioprocess Research Group, Department of Chemical Engineering, Universidad de Antioquia, Calle 70 
No. 52‑21, Medellín, Colombia. *email: jfreyre@ccg.unam.mx

https://abasy.ccg.unam.mx/
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-06658-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2840  | https://doi.org/10.1038/s41598-022-06658-x

www.nature.com/scientificreports/

7825 genes, 965 of them (~12%) code for proteins with a predicted regulatory function. From those, 65 genes 
coding for sigma factors, a remarkably high number among bacteria, of which ~70% (45/65) are ECF (extra-
cytoplasmic function) sigma factors, suggesting independent regulation of diverse stress response regulons5. 
Besides, it counts with many two-component systems (TCSs), 85 sensor kinases, and 79 response regulators, also 
related to stress response5. The difference between sensor kinases and response regulators suggests a cross-talking 
among them. Noteworthy, S. coelicolor genome codes for several putative regulators that do not belong to families 
outside S. coelicolor5. Because of the complexity of the secondary metabolism regulation, a proper understanding 
of the S. coelicolor regulation requires it to be studied systematically at both local and global scales. On a global 
scale, GRNs are used to study transcription regulation. They can be represented as a directed graph where nodes 
represent genes, and edges represent the regulatory interactions among the transcription factors (TFs) and their 
target genes (TGs). Previous comprehensive reviews have been focused on specific morphological differentiation 
and metabolic processes4,6–10. However, a GRN at a global scale is still missing.

The initial approach to reconstruct a global-scale GRN will be through text mining11. There we would be 
able to collect all the information available on the literature for the microorganism. Nevertheless, it would still 
require manual intervention for those articles where interactions are not clearly defined. Moreover, all genes have 
not been studied experimentally. Therefore, alternatively, GRN inference has been applied in diverse bacteria 
to provide a deeper understanding of their regulatory mechanisms. Besides, it has also been applied to propose 
selective experimental validation of putative interactions, analyze bacterial GRN evolution, and build biological 
models for biotechnological processes12–16. A GRN inference for S. coelicolor was performed by Castro-Melchor, 
et al. in 2010 using ARACNE and applying module validation through the identification of consensus DNA 
sequences17. However, the resulting network was not assessed with any gold standard (GS) available at the time, 
and no thorough study of its structural properties was performed. Moreover, benchmarking studies of network 
inference methods have shown the poor predictive power of using a single GRN inference tool18.

Here, we performed a collection and curation of the experimentally-validated transcriptional regulatory 
interactions of S. coelicolor A3(2) and classified them based on the confidence level of their supporting evi-
dence. Further, we integrated this curated GRN with previous curations from DBSCR (http://​dbscr.​hgc.​jp/) 
and Abasy Atlas19. Then, we applied the natural decomposition approach (NDA) to identify their system-level 
components and unveiled different biology aspects of S. coelicolor regulation. Next, we applied several tools to 
infer novel interactions, three based on DNA binding sites for the TFs, and five based on gene expression along 
with two modifications proposed by the authors. We integrated the predictions using a community approach, 
which has been reported as the best strategy to reduce the number of false positives18. Then we used the most 
reliable curated network as a GS for the validation of the inferred GRNs. We further assessed the inferred net-
works through their structural properties and found that the NDA 20 is a valuable tool for GRNs dissection and 
comparison. From the best-rated inferred network, we proposed new TF candidates for the direct regulation 
of some of the key Streptomyces antibiotic regulatory proteins (SARPs) in S. coelicolor. Finally, we applied the 
meta-curated network of S. coelicolor to study the conservation of the system-level components with those of its 
phylogenetically related C. glutamicum as an application of the curated network. The workflow of this work and 
the suggested use of the data herein reported are summarized in Fig. 1.

Results and discussion
Reconstruction of the most complete experimentally‑validated regulatory network for S. coe-
licolor.  We curated a total of 124 papers retrieved from PubMed and Google Scholar queries covering a span 
of 29 years (from 1990 to July of 2019) (see Fig. 2 and Supplementary Table 1). We collected a total of 9714 
regulatory interactions (out of the 23,908 expected interactions in the complete GRN as predicted by Abasy Atlas 
v2.4) among 5331 genes. We perceive a notable increment in the number of papers and interactions after the 
S. coelicolor genome was completely sequenced (2002)5. This eases the study of its genome and regulation, being 
2012 the year with most publications (see Fig. 2). We classified the interactions according to their experimental 
evidence, expanding the RegulonDB scheme21,22. First, we label the interactions as “strong” or as “weak” accord-
ing to the methodology of the experiment performed. A “strong” evidence level is assigned to experiments that 
prove a physical regulatory interaction between the TF and the TG. This means that the TF can bind to the 
upstream region of the regulated gene. Here we have experiments such as EMSA in purified proteins or in vitro 
transcription assays. On the other hand, a “weak” evidence level is assigned when there is no evidence of direct 
interaction. This means that the experiment suggests either a hypothetical DNA binding site, such as ChIP; or an 
effect of the TF over the gene that might be indirect, through another TF, such as microarray, RNA-Seq, RT-PCR, 
etc. For experiments that were not in the RegulonDB scheme, such as DNA-affinity capture assay (DACA)23, we 
analyzed their methodology to classify them either as “strong” or “weak” evidence. Supplementary File 2 has the 
evidence classification for each interaction according to their “strongest” supporting experiment (Supplemen-
tary Table 1–2 and Supplementary Figure 1).

Afterward, we gathered these interactions along with others from the databases, RegTransBase24 available 
at Abasy Atlas database (https://​abasy.​ccg.​unam.​mx) 19, and DBSCR (http://​dbscr.​hgc.​jp/). We processed these 
curated interactions to construct the corresponding GRNs, removing redundancy by mapping the gene iden-
tifiers to locus tags and merging interactions while preserving the information about the effect and evidence 
classification of the supporting experiments, as previously reported19. From our curation, we reconstructed a 
total of seven curated networks with different evidence classification and completeness. (1) Curated_FL with a 
total of 9454 unique interactions, from which ~5% (493/9454) are “strong”. (2) Curated_FL(cS) with 438 “strong” 
interactions from Curated_FL. (3) Curated_DBSCR with the 341 interactions from DBSCR and used the ~34% 
(115/341) “strong” interaction to reconstruct (4) Curated_DBSCR(S). (5) Curated_RTB is the network from the 
RegTransBase database with 330 interactions, all of them labeled as “weak” since their experimental evidence 
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was not available. Later, we merged Curated_FL, Curated_DBSCR, and Curated_RTB into 6) Curated_FL-DBSCR-
RTB a meta-curated network comprising a total of 5386 genes and 9707 non-redundant regulatory interactions, 
which is the most extensive experimental GRN of S. coelicolor up to date. From this meta-curation, we filtered 
the 480 “strong” interactions to reconstruct 7) Curated_FL(cS)- DBSCR(S). All curated networks are further 
described in Table 1.

The functional architecture of the S. coelicolor GRN.  To reveal the functional architecture and to 
elucidate the regulatory and biological function of some of the genes and interactions curated, we applied the 
Natural Decomposition Approach (NDA) on all the curated networks. The NDA is a biological-mathematical 
criterion to suggest a biological function of each gene based on the structure of the GRN20. It classifies the genes 
into one of the four structural classes: (1) global regulators (GR), coordinating genes from different metabolic 

Figure 1.   (a) Workflow of this work. The purple area covers the inference of the networks. (b) Type of 
interactions contained in the networks. The green path connects to curated regulations supported by 
experimental evidence. The “strong” network contains only the interactions that are supported by an experiment 
proving that the transcription factor binds a DNA site near a target gene to regulate its transcription. Curated 
networks without the “strong” label might contain indirect interactions, as they could be supported by non-
directed experiments (such as gene knockout and its effect on genes transcription). The purple path connects 
to inferred interactions. Predictions based solely on binding sites predictions would be inferring only TF-DNA 
interactions. Predictions involving gene expression data might contain indirect interactions.

Figure 2.   Interactions curated from literature for Streptomyces coelicolor A3(2). (a) Number of publications per 
year and (b) Number of interactions reported per year.
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pathways25; (2) modular genes, group of genes working together to carry out a biological function20,26; (3) inter-
modular genes, integrating at the promoter level the response from different modules20,27; and (4) genes consti-
tuting the basal machinery of the cell. We decided to further study the NDA analysis of Curated_RTB-FL-DBSCR 
since it is the most complete GRN.

The NDA analysis of the meta-curated network Curated_RTB-FL-DBSCR revealed 20 GRs (0.37% of the 5386 
network genes), 502 modular genes (9.32%), 18 intermodular genes (0.33%), and 4846 basal machinery genes 
(89.97%). The classification of each gene can be found at https://​abasy.​ccg.​unam.​mx/​genes?​regne​tid=​100226_​
v2019_​sA22-​DBSCR​15-​RTB13​&​class=​All. Through the NDA analysis, we found 35 gene modules. From them, 
module number 16 is a mega-module, which is divided into 12 submodules that are connected through the 
intermodular genes (Supplementary Figure 2a). To analyze the GRs identified in the meta-curated network, we 
reviewed the literature to identify the TFs that have been previously reported as global or pleiotropic regulators 
in S. coelicolor. Martín et al.28 reported a detailed description of the cross-talking between the global regulators 
in S. coelicolor and other Streptomyces. The review provides a list of genes considered as global and wide-domain 
regulators, due to the hundreds of genes they regulate and the multiple effects they produce28. Nine out of the 
20 (45%) GRs identified by the NDA were reported as such in this review. We further screened the literature 
to identify GRs or pleiotropic regulators reported in individual papers (Supplementary Table 4). We found 20 
pleiotropic TFs or GRs reported individually, from which 13 (65%) were categorized as GRs by the NDA. See the 
“Global regulators” section in Supplementary File 1 for further description of the GRs identified.

This analysis also revealed 18 intermodular genes. Some of their promoters integrate the signals of different 
GR related to carbon, nitrogen, and phosphate metabolism. For instance, glnA (SCO2198), glnII (SCO2210), and 
the amtB-glnK-glnD (SCO5583-85) operon, which are known to be mediators between the nitrogen and phos-
phate metabolism through the binding of their GR (PhoP and GlnR) to these intermodular genes promoters29. 
Others integrate signals from primary and secondary metabolism, or morphological differentiation and anti-
biotic production. A further description of these genes can be found in Supplementary File 1 in the section 
“Intermodular genes”. Moreover, the functional annotation of the modules identified by the NDA also provides 
a new functional hypothesis for genes whose function is currently unknown using a guilt-by-association strategy, 
as previously described30. From the 46 modules and submodules in the GRN, 26% (12/46) are annotated. The 
annotation of each module can be found at https://​abasy.​ccg.​unam.​mx/​modul​es?​regne​tid=​100226_​v2019_​sA22-​
DBSCR​15-​RTB13. Most of the annotated modules are related to cellular metabolism, organic substances metabo-
lism, and biosynthetic processes, which are fundamental processes for every cell (Supplementary Figure 2b). We 
found 245 with no previous annotation in GOA31 assigned to the annotated modules (Supplementary Table 5).

GRN inference based on binding sites identification performs better than that based on tran‑
scriptomics.  Despite the exhaustive curation, the meta-curated network Curated_FL-DBSCR-RTB has reg-
ulatory information for only ~ 65% (5386/7825) of the S. coelicolor genome (network genomic coverage) and 
has ~ 41% (9707/23908) of its expected total interactions (network interaction coverage or completeness)19, con-
sidering both "strong” and “weak” interactions. We leveraged the large corpus of high-throughput data avail-
able to computationally infer missing regulatory interactions to expand our GRN reconstruction. The inference 
was performed from two different approaches. For the first approach, we performed a regulon reconstruction 
through the de novo identification of TF binding sites and linked them to downstream genes. The regulon 
reconstruction was based on the network Curated_FL(cS)-DBSCR(S) using three methods for motif discovery: 
MEME, Bioprospector, and MDScan (see “Material and methods” section). For the second approach, we per-
formed a GRN inference from transcriptomic data. We used seven methods for GRN inference based on the 

Table 1.   Description of networks used in this work.

Network Abasy ID Genes Interactions Description

Curated_RTB 100226_v2015_sRTB13 311 330 Network from RegTransBase database

Curated_DBSCR 100226_v2015_sDBSCR15 273 341 Network from Database of transcriptional regulation in Streptomyces coeli-
color and its closest relatives

Curated_DBSCR(S) 100226_v2015_sDBSCR15_eStrong 112 115 Filtration of interactions with strong evidence from the DBSCR network

Curated_FL 100226_v2019_sA22 5331 9454 Network from the collection and curation performed for this work

Curated_FL(cS) Not reported 347 438 Filtration of interactions with strong evidence from the FL network (cS = curated 
strong)

Curated_FL(S) 100226_v2019_sA22_eStrong 396 493 Filtration of interactions with strong evidence from the FL network along with 
statistically validated interactions

Curated_FL-DBSCR-RTB 100226_v2019_sA22-DBSCR15-RTB13 5386 9707 Meta-curation of RTB, DBSCR and FL networks

Curated_FL(cS)-DBSCR(S) Not Reported 387 480 Filtration of interactions with strong evidence from the meta-curated network

Curated_FL(S)-DBSCR(S) 100226_v2019_sA22-DBSCR15_eStrong 435 534 Filtration of interactions with strong evidence from meta-curated networks 
along with statistically validated interactions

Inferred_BS Available as a Supplementary File 3 6263 23,908 Inferred GRN from binding sites prediction

Inferred_Exp Available as a Supplementary File 3 4739 23,908 Inferred GRN from transcriptomic data

Inferred_BS-Exp Available as a Supplementary File 3 4763 23,908 Community network from Inferred_BS and Inferred_Exp

Inferred_All Available as a Supplementary File 3 3804 23,908 Community network from all the inference methods

https://abasy.ccg.unam.mx/genes?regnetid=100226_v2019_sA22-DBSCR15-RTB13&class=All
https://abasy.ccg.unam.mx/genes?regnetid=100226_v2019_sA22-DBSCR15-RTB13&class=All
https://abasy.ccg.unam.mx/modules?regnetid=100226_v2019_sA22-DBSCR15-RTB13
https://abasy.ccg.unam.mx/modules?regnetid=100226_v2019_sA22-DBSCR15-RTB13
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gene expression data: CLR, Friedman, GENIE3, Inferelator, MRNET, Statmodel, and TIGRESS (see “Material 
and methods” section and Supplementary Table 6a). These methods were selected based on their performance 
in a previous benchmarking of GRN inference methods18, their availability, complete documentation, and main-
tenance. For the inference, we selected an Affymetrix dataset (Platform GPL9417) from NCBI GEO33. See the 
“Transcriptomic Data” section in Supplementary File 1 for further description of the data selection. Since most 
of the experiments in the curation were performed on the S. coelicolor A3(2) strain M145, which is plasmid-free, 
we restricted the inference to interactions among genes of the chromosome. Next, we evaluated the inferred 
GRNs computing the AUROC and the AUPR of the predictions (see Fig. 3a and Supplementary Figure 4). From 
the AUPR, it is evident that in general GRN inference from binding sites performed better than the inference 
from expression data. For the inference from binding sites, MEME performed better than the other methods. 
For the inference from gene expression data, TIGRESS performed better, followed closely by GENIE3 and Infer-
elator. We assessed the inferred GRNs based mostly on the AUPR since it is more informative for imbalanced 
datasets36 as it is the case of GRNs inference37. Binding sites for each one of the interactions identified using 
MEME are reported in Supplementary File 3.

For the assessment, all the inferred networks were pruned to the 23,908 best scoring interactions among 
genes part of the GS, since it is the number of interactions expected in the final network for S. coelicolor38. 
Nevertheless, the GS has only 387 interactions, which is ~1.6% of the 23,908 regulatory interactions expected 
in the complete regulatory network of S. coelicolor19. For this reason, the assessment only reflects the capacity 
of the methods to infer the interactions in the GS, while novel interactions (actual interactions not part of the 
incomplete GS) are labeled as false positives. Moreover, as the GS was used as prior for the regulon extension, it 
might provide an advantage for the network predicted by motif discovery. Because of its approach, inference by 
motif discovery predicts direct regulatory interactions, while inference from transcriptomic data predicts both 
direct and indirect ones without distinction. Thus, as the GS is only built by direct interactions, it is expected 
that inferred networks with the same type of interactions get a higher score. However, using the “non-strong” 
GRN as GS could drive to a bigger problem because indirect regulatory interactions might be spurious and are 
not adequate to assess causal interactions.

Given that the current GS is still quite incomplete, and we cannot do proper discrimination among the dif-
ferent inferred networks, instead only using the single best method, we decided to build a community network 
for each one of the approaches. (1) Inferred_BS for the prediction from binding sites; (2) Inferred_Exp for the 
prediction from expression data; (3) Inferred_BS-Exp, a community network from both previous community 
networks; and (4) Inferred_All, a community network built mixing individual networks from both approaches 
(see Table 1). For the latter, we used the three methods for binding site inference, along with Statmodel, GENIE3, 
and TIGRESS from expression-based GRNs (due to their superior performance) to balance both approaches. 
Inferred_BS outperformed the rest of the community networks at both AUPR and AUROC (see Fig. 3a). However, 
it was outperformed by MEME at both metrics. Given MEME’s outstanding performance (see Fig. 3a), we used 
it to perform a statistical validation of “weak” interactions supported by ChIP-data, similarly as proposed in22 
(see “Material and methods” section). A total of 55 “weak” interactions were reclassified as “strong” (see Fig. 3b 
and Supplementary Table 6b). We found one of these interactions (SCO4230-SCO4878) already reported as 
“strong” in the DBSCR database (Curated_DBSCR(S)). These statistically validated interactions were merged 
with the “strong” interactions from Curated_FL and from the meta-curated network Curated_FL-DBSCR-RTB 
into two networks: Curated_FL(S) and Curated_FL(S)-DBSCR(S). We reassessed the network predictions with 
Curated_FL(S)-DBSCR(S) as GS and the results remained virtually the same (Supplementary Figure 5). For 
completeness, we also performed the assessment using Curated_FL-DBSCR15-RTB13 as the GS (Supplementary 
Figure 6). However, the 72 regulators in Curated_FL(S)-DBSCR(S) are the only TFs that were used for the pre-
dictions based on binding sites. On the other hand, Curated_FL-DBSCR15-RTB13 has 137 TF. This resulted in 
a poor recall by the predictions based on binding sites (Supplementary Figure  6), as interactions for 65 TFs are 
not predictable because their regulations might be carried out indirectly, with no need for a DNA binding site.

Inferred networks have a similar structure to the largest curated networks.  Even though the 
AUPR and AUROC metrics allow the assessment of the predictions, both metrics heavily rely on the ranking of 
the predicted interactions. Moreover, the GS is not complete and missing interactions would be still classified 

a b

Figure 3.   (a) AUROC and AUPR for each of the methods and the community networks. (b) Number of 
interactions statistically validated by TF.
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as false positives, decreasing the score more the higher their ranking is. Therefore, we assessed the inferences in 
terms of their structural properties and compared them against the curated networks to compensate for such 
drawbacks. Note that this approach has its caveats. The global structural properties of the network might be dif-
ferent once the GS is complete, this can be approached by comparing the predictions to all the curated networks, 
each of them with different completeness. Also, two networks could have the same topology with different node 
entities. For this reason, we use the topological assessment in complement to the AUPR and AUROC metrics to 
identify the best prediction.

One of the main structural properties of biological networks is that they are scale-free and hierarchically 
modular. Same properties that our curated networks have been proved to possess (Supplementary File 1). There-
fore, as an initial approach, we asked whether the inferred networks are scale-free too. The degree (nodes’ con-
nectivity) distribution P(k) of scale-free networks follows a power law, P(k) ∼ k−α , with 2 < α < 3 20,38,39. If 
α = 2 , there is a unique global regulator (hub-and-spoke network) and if α > 3 , scale-free networks lose most of 
their characteristic properties39. First, to compute this α for the inferred networks, we performed a robust linear 
regression over a log–log plot of the complementary cumulative degree distribution and corrected the exponent 
accordingly (see Table 2 and Supplementary Figures  7–11). All inferred networks’ degree distribution seems 
to follow a power law according to the adjusted coefficient of determination. Nevertheless, the data points in 
Inferred_All appear to be divided into three regions with different tendencies, instead of the two that are present 
in the other networks (Supplementary Figures 7–11). Usually, this type of network is divided into two regions, 
the region of the nodes (genes) with a low degree, and the one with nodes with a high degree40. The appearance 
of a third region might be a consequence of merging networks from methods with different approaches. This 
could affect the structural properties of the merged networks, while communities from the same approach appear 
to have more similar structural properties. In the case of Inferred_BS-Exp, the construction of communities 
ahead by each approach create more compatible networks in terms of structure that can be conveniently mixed.

To confirm that their degree distributions follow a power law, we contrasted each distribution of the inferred 
networks against alternative fat-tailed probability distributions (Power-law, exponential, stretched exponential, 
lognormal, and truncated power-law) using Kolmogorov–Smirnov tests38,41 (Supplementary Table 6a). We found 
that the degree distribution of the inferred networks adjusted better to a power-law than to an alternative distri-
bution. Then, we computed a maximum likelihood estimation for the exponent (α) of the power laws and found 
that most of them are between two and three, except for Inferred_All. This shows it as an anomalous scale-free 
network (Supplementary Table 7). Perhaps caused by the mixing of networks with diverse structural properties. 
Nevertheless, we could consider all inferred networks to be scale-free.

Furthermore, we checked other properties of scale-free networks (see Table 2)39,42. The four community 
networks have small average shortest path lengths and a high clustering coefficient. Inferred_BS has the smallest 
average short path length, while Inferred_All has the highest average clustering coefficient (see Table 2). Scale-free 
networks also present an ultra-small world effect, which implies that the average path length is proportional to 
ln(ln(N)) (N is the number of nodes in the network). This is the case for all the inferred networks. Another char-
acteristic of GRNs is their hierarchical modularity, which implies a diamond-shaped hierarchical organization 
as has been revealed by the NDA20. In a scale-free network, this implies that the clustering coefficient depending 
on the degree (C) follows a power law as C(k) ∼ k−1 39. Inferred_BS has the exponent closest to − 1 (− 0.92), with 
the best R2 . Even though Inferred_BS seems to be the network that behaves closest to a GRN, all networks have 
similar values, which makes it difficult to discern the most reliable inferred network by this approach.

We included several other structural properties of the networks to perform a more thorough comparison 
(Supplementary Table 8). We clustered the vectors of structural properties for the curated and community-
inferred networks (see Fig. 4a). The clustering partitions the networks into two major groups. The first one con-
tains the curated networks and Inferred_BS, while the second group contains the other inferred networks. The first 
group is in turn also divided into two groups: one with the two largest curated networks and Inferred_BS, and the 
other one with the remaining curated networks. The reason for this may be due to the size of the networks (see 
Table 1). When standardizing the property values by max–min feature scaling, the two largest curated networks 
were clustered with the predictions (Supplementary Figure 12), which could be also due to the size of the network. 
To reduce the network size influence we used the network dissimilarity measure proposed by Schieber et al.43. 
We considered the third term which makes the distance measure robust to graph size in terms of the number 
of nodes (genes)43 (see Fig. 4b). Even with this metric, the two largest curated networks were clustered with the 

Table 2.   Network properties for inferred networks.

Property Inferred_BS Inferred_Exp Inferred_BS-Exp Inferred_All Curated_FL-DBSCR-RTB

Number of nodes (N) 6263 4739 4763 3804 5386

ln(ln(N)) 2.17 2.14 2.14 2.11 2.15

Average shortest path length 2.86 3.38 3.38 3.11 2.84

Average clustering coefficient 0.213 0.385 0.385 0.470 0.182

α(P(k)) 1.861 1.952 1.955 1.968 1.742

R2
adj 0.87 0.92 0.92 0.91 0.84

α(C(k)) 0.924 0.767 0.742 0.729 1.142

R2
adj 0.79 0.58 0.54 0.68 0.89
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inferred networks. This might be a consequence of the high value of maximum out-connectivity and structural 
genes in the largest curated networks, like those found in the inferred networks. This shows that the inferred 
networks are similar that the most complete curated networks in terms of structure, suggesting their reliability.

The natural decomposition approach identifies regulatory networks similarity despite their 
different completeness level.  We compared all the curated and community inferred networks based on 
the Simpson similarity index of the four components proposed by the NDA: global regulators, modular genes, 
intermodular genes, and the basal machinery (see Fig. 5). The Simpson similarity index measures the size of the 
core of two sets with reference to the smallest one44. Note that two identical sets, being one a subset of the other 
will have a score of 1. On the other hand, two completely different sets will have a score of 0.

When comparing the global regulators (see Fig. 5a), there is not a distinct division among the networks. 
Infered_BS-Exp and Infered_Exp have a similar correlation with all the curated networks, slightly higher with 
Curated_DBSCR(S), Curated_FL, and Curated_FL-DBSCR-RTB. These two inferred networks have the highest 
amount of GR, 116, and 114 respectively; thus, the other GRs predicted could be easily a subset of them. For the 
case of Infered_BS, it has the highest correlation with the “strong” networks. This is expected since these networks 
have only direct regulatory interactions, as the interactions predicted in Inferred_BS, while there is no evidence 
of direct regulation for transcriptomic-based inferred interactions. This can result in an underestimation of the 
effect of GRs over the rest of the genes since GRs which regulate several targets from different processes might 
not be predicted as such in the “strong” networks. However, when their indirect influence is represented in the 
network, their ranking as GRs is noticeable.

When analyzing the modular genes, there are two major groups (see Fig. 5b): the major group with the 
curated networks is divided into two subgroups, one contains Curated_RTB, Curated_DBSCR, and its “strong” 
version Curated_DBSCR(S), and the second subgroup contains the integrations and curations proposed in this 
work. Interestingly, the meta-curated network Curated_FL-DBSCR-RTB correlates very well with all the smaller 
networks it contains, from which we could deduce that modular genes are conserved despite the addition of 
new regulatory interactions. In the second group, composed of the inferred networks, we can see there is not 
a high correlation among them. Inferred_BS is the closest to the curated networks, while Inferred_Exp and 
Inferred_BS-Exp have a high correlation. This tells us that the interactions in Inferred_Exp have a larger influ-
ence on the module configuration of Inferred_BS-Exp than Inferred_BS. The difference between the curated and 
inferred networks might come from the fact that inferred networks have a greater number of GRs and a much 
lower number of modular genes when compared with the curated networks (Supplementary Table 9).

Intermodular genes are the less conserved NDA class (see Fig. 5c). There is overlap only among the small-
est curated networks, all share the intermodular gene SCO5877, which appears as a TF in the other curated 
networks. Moreover, there is an overlap between Curated_FL and Curated_FL-DBSCR-RTB, which share most 
of the interactions. Thus, is expected that they also share most of the intermodular genes. Note that the net-
works Curated_DBSCR(S) and Inferred_BS-Exp are not included in the clustering since they did not present any 
intermodular genes. Finally, when analyzing the basal machinery (see Fig. 5d), the larger curated networks are 

a b

Figure 4.   Network comparative by structural properties. (a) Pearson correlation of the profile of structural 
properties listed in Supplementary Figure 12. (b) D-value from Schieber et al.43 to measure network similarity.

a b

c d

Figure 5.   Simpson similarity index for NDA analysis for all curated and inferred networks. (a) Global 
regulators. (b) Modular genes. (c) Intermodular genes. (d) Basal machinery genes.
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grouped on one side, next to the inferred networks, and finally the smallest curated networks with Curated_RTB 
as an outgroup. Even though Inferred_BS is grouped with the other inferred networks, it has a higher correla-
tion with Curated_FL(S) and Curated_FL(S)-DBSCR(S), which again evidence the similarity among these three 
networks.

Assessment of the global regulators’ inference.  In the NDA, the identification of global regulators is 
a key step in the classification of every node in the GRN. Previously, it has been reported a high overlap between 
the predictions of global regulators by the NDA and those reported in the literature for E. coli20, B. subtilis45, 
and C. glutamicum27. We used the set of GRs reported by Martín et al.28, besides those reported in independent 
articles, and the union of both sets (Supplementary Table 4). Then we assessed the predictions of the GR using 
the Matthews correlation coefficient (MCC) (see Fig. 6) We used the MCC score as it is more informative and 
reliable than F1 for binary classification assessment46, however when applying the F1 score we obtained consist-
ent results (Supplementary Figure 13).

Curated_FL and Curated_RTB-FL-DBSCR have the best performance in GR prediction. However, the “strong” 
networks have a slightly smaller score even having much less genomic coverage. This shows that the GRs are 
very robust to perturbations in the network as previously shown20. On the other hand, despite the high coverage 
of the inferred networks, the performance of the predictions with such networks was poor. This could be, as it 
was mentioned before, due to the great amount of GR predicted by these networks, which would cause a high 
proportion of false positives affecting the score. Inferred_BS produced the most conservative prediction (lowest 
false-positives rate) among the inferred network (Supplementary Figure 14 and Supplementary Table 9).

GRN inference from transcription factor binding sites proves to be the most reliable approach 
and allows the prediction of new TFs for the most studied SARPs.  Inferred_BS performed the best 
on AUPR and AUROC among the community inferences and is the most similar to the curated networks accord-
ing to its structural properties and system-level components. Moreover, it has the largest genomic coverage 
among all the networks, which would be advantageous for a deeper study of transcriptional regulation in S. coe-
licolor. Therefore, we considered Inferred_BS as the most reliable inferred network, despite that similar studies 
suggest the integration of inference approaches as the most suitable methodology for GRN reconstruction18,47,48.

Thus, we decided to use Inferred_BS to further study the regulation of the SARPs of the most studied antibiot-
ics in S. coelicolor: ActII–orf4, RedD/RedZ, CpkO (also known as KasO), and CdaR, which regulate the produc-
tion of ACT, RED, yCPK, and CAD, respectively3 (Supplementary Table 10). A total of 13 new putative regulators 
for the SARPs were predicted, providing a great opportunity to find new targets to manipulate the S. coelicolor 
antibiotic production. As it is not possible to computationally confirm a direct binding of this regulator, it is 
necessary to corroborate them with wet-lab experiments.

Following, we describe some of the TFs predicted for the SARPs using the workflow suggested in Fig. 1b: For 
actII-orf4 (SCO5085) only one novel regulator was inferred, MacR (SCO2120) which is the response regulator 
of the TCS MacRS, while the rest was already part of Curated_FS(S)-DBSCR(S) (Supplementary Figure 15). This 
TCS has been proved to activate ACT production. Nevertheless, a ChIP-qPCR analysis was not able to prove 
an in vivo interaction between MacR and actII-orf4, although a direct interaction was not tested49. For redD 
(SCO5877) two new regulators were predicted, LipR (SCO0712) and ActII-orf4 (SCO5085). LipR is related to 
AfsR (SCO4426)50, homolog to the SARPs, and activator of the ACT and RED production51. Moreover, its mutant 
affects ACT production50, which makes it plausible to affect RED production as well. It has been suggested that 
ActII-orf4 might regulate the production of other antibiotics4, which could be by binding directly to their CSR. 
For redZ (SCO5881) five new regulators were predicted, among them is GluR (SCO5778) which has been shown 
to affect RED production. Nevertheless, it has been shown that GluR does not bind directly to redZ, thus it could 
an indirect regulation52. Another one, StgR (SCO2964) has been shown by an RT-qPCR experiment to be a 
repressor of redD53. This repression could be through the direct binding to redZ. HpdA (SCO2928) and HpdR 
(SCO2935) are related to tyrosine catabolism, which produces important precursors for antibiotic biosynthesis54. 
Moreover, HpdA has been shown to activate actII-ORF4, therefore might have a more direct role in RED produc-
tion. In the case of cdaR (SCO3217), we have four predicted regulators, among them, OsdR (SCO0204) and RamR 
(SCO6685). Both are related to the response to stress and the development of S. coelicolor55,56. SsgR (SCO3925) 
regulates sporulation and morphological differentiation57. These all processes are highly related to antibiotic 
production. Finally, for cpkO/kasO (SCO6280) six new regulators were inferred, among them OsdR (SCO0204), 
LipR (SCO0712), and StgR (SCO2964) were described before. Another one is NnaR (SCO2958), which regulates 

Figure 6.   MCC for global regulators predicted by NDA for each of the curated and inferred networks. 
Scores ≥ 0.5 are represented in white numbers and meta-curations are marked with an asterisk. aGold standard 
curated from reference28. bGold standard curated from independent publications (Supplementary Table 4).
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spore formation and antibiotic production58. We refer the reader to the Supplementary material for the complete 
list of the predicted regulators in every predicted network (Supplementary Table 10).

We further compared the six regulators of actII-orf4 identified by Inferred_BS with the 11 TFs found in 
Inferred_All. From the latter, only two are part of Curated_FS(S)-DBSCR(S), and three more are included in 
Curated_FS-DBSCR-RTB (Supplementary Figures 15, 16). We found that the interactions included in Inferred_All 
tend to be carried out indirectly (i.e., not through a TF-DNA interaction), suggested by a poor overlap between 
Inferred_BS and Inferred_All, and biological insights such as the putative regulation of actII-orf4 by OsdR.

Comparative analysis with Corynebacterium glutamicum shows coherent system‑level com‑
ponents conservation.  The diamond-shaped structure identified by the NDA is conserved between E. coli 
and B.  subtilis45. As an application of the meta-curated network, we studied the conservation of its system-
level components, comparing it against the C. glutamicum network. C. glutamicum is phylogenetically related to 
S. coelicolor, and a model organism for the study of GRNs27. We applied the regulogs analysis59 with one-to-one 
orthology relationships to alleviate network incompleteness and make them comparable. As prior networks, we 
used Curated_FL(S)-DBSCR(S) (534 interactions) for S. coelicolor and 196627_v2020_s21_eStrong from Abasy 
Atlas19 (2941 interactions) for C. glutamicum16. After the regulogs analysis, we ended up with 2966 interactions 
in C. glutamicum and 692 interactions in S. coelicolor.

We used the complemented networks to identify GRN-wide orthologous relationships defined as the ortholo-
gous present in the GRN of the respective organism. We obtained a total of 188 GRN-wide orthologous rela-
tionships from a total of 995 1:1 orthologs identified by OrthoFinder60. We applied the NDA analysis to both 
GRNs to identify the system-level components and computed the fraction of the GRN-wide orthologous in 
each combinatory relationship between the NDA classes (see Fig. 7a). We found that most of the GRN-wide 
orthologous (54%) are classified as basal machinery in both organisms. This is expected since 73% and 74% of 
the genes correspond to the basal machinery in the complemented networks of C. glutamicum and S. coelicolor, 
respectively. Besides, the distribution of the genes in the chromosome of S. coelicolor shows a central core, where 
are genes likely related to primary functions such as DNA replication, transcription, translation, and amino-acid 
biosynthesis; and likely non-essential genes such as secondary metabolism are in the chromosome arms5. More 
than 59% (111/188) of the GRN-wide orthologs conserved the same class in both organisms (Fig. 7a) showing 
high conservation of the NDA classification.

We studied the pairwise Simpson similarity index between the four classes between the two organisms to 
remove the problem of the imbalanced classes (see Fig. 7b). GR is the class with the highest conservation rate, the 
orthologs of seven of the eight GRs in C. glutamicum are also GRs in S. coelicolor (see Fig. 7b and c). The conserva-
tion between the same class in the two organisms is also high for the basal machinery, while poor for the modular 
genes. For the case of intermodular genes, even though the networks were complemented with information from 
the other network, they are not conserved at all (see Fig. 7b). Previous work reported intermodular genes as the 
least conserved of the system-level components27. Intermodular genes are the most likely responsible for giving 
the GRN flexibility and increasing evolvability by scouting different combinations of regulatory interactions 
between physiological functions so the organism could adapt better to environmental changes45. These results 
agree with a previous analysis of the robustness of the NDA to a random node and edge remotion showing GR 
and intermodular genes as the most and least conserved classes, respectively27.

On the other hand, 24% of the GRN-wide orthologs that are modular genes in C. glutamicum were classified 
as basal machinery in S. coelicolor. This could be due to three possible reasons45: (1) the basal machinery genes 
in S. coelicolor are misclassified and further research is needed to find the missing regulatory interactions (see 
Fig. 7c) that will integrate some of these genes into a module. (2) The GRs controlling C. glutamicum genes are 
not yet identified as GRs. (3) Genes in S. coelicolor need a more direct regulation because of their physiological 
function (high plasticity of transcriptional regulation). A previous genomic comparison between S. coelicolor, 

Figure 7.   Conservation of the systems-level components between S. coelicolor and C. glutamicum. (a) NDA 
classification for the GRN-wide orthologs in their corresponding organism. Total matrix sum to 1. Most of the 
GRN-wide orthologs are classified as basal machinery in both organisms (b) Overlapping of the NDA classes 
between the two networks with reference to the smallest set. Each cell can range between 0 and 1, where 1 
means one class is a subset of another, and 0 means there is no overlap at all. (c) Similarities between the two 
organisms highlight the size difference between the datasets. The color of the inner circle sections represents the 
NDA classes and ribbons colors represent the S. coelicolor NDA classes. Numbers represent the genes for each 
class and organism. Gray ribbons are the widest ones, representing that all the basal machinery of S. coelicolor 
with 1:1 orthology relationship with C. glutamicum is classified either as basal machinery or modular genes in C. 
glutamicum. This suggests that multiple basal machinery genes could be reclassified as modular components in 
more complete reconstructions of the S. coelicolor network.
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Mycobacterium tuberculosis, and Corynebacterium diphtheriae showed a synteny among the whole chromosome 
of these last two microorganisms and the core of the one of S. coelicolor5. C. glutamicum is phylogenetically closely 
related to M. tuberculosis and C. diphtheriae, with roughly similar genome size. Therefore, a similar result would 
be expected. Furthermore, as more classical experiment data become available, new regulations for the currently 
basal machinery would turn those genes into the modular class. However, a deeper analysis of diverse factors 
such as genome size, the niche of the organisms, and a wider range of organisms are required to further study 
the robustness of the NDA analysis.

Conclusions
A meta-curated regulatory network for S. coelicolor (Curated_RTB-FL-DBSCR) was reconstructed from a col-
lection and curation of regulatory interactions experiments in literature and databases. From the NDA analysis 
of the meta-curated network, we could identify 20 global regulators, of which 95% (19/20) have already been 
reported as global or pleiotropic regulators. 46 functional modules were identified along with 18 intermodular 
genes, some of them found to be involved in more than one biological process. Functional modules annotated 
by GO enrichment allowed via a ‘guilt by association’ strategy to propose a function for 245 genes without any 
previous functional annotation or annotated as ‘hypothetical protein’. This network is, however ~ 42% of the 
estimated complete regulatory network, which evidences a lack of information related to S. coelicolor transcrip-
tional regulation. Especially for interactions experimentally supported by “strong” evidence, which accounts 
for only ~ 2% of the estimated complete network. We indeed found a low level of direct experimental valida-
tion for the regulatory interactions reported in the literature and curated in this work as only ~ 6% (533/9687) 
are supported by experiments confirming the binding of the TF to the upstream region of the target gene, the 
so-called “strong” evidence. The low level of “strong” evidence is due to the high fraction of high-throughput 
experiments aimed to unveil the regulatory network. This highlights the importance of carrying on classical 
experiments aimed to confirm the weakly supported interactions (e.g., EMSA, in vitro transcription assay, and 
DNA footprinting) to increase our knowledge of the transcriptional regulation in S. coelicolor. Notwithstanding, 
the meta-curated network Curated_RTB-FL-DBSCR provides the most extensive and up-to-date reconstruction 
available for the regulatory circuitry in this organism and already portrays accurately the functional organization 
of S. coelicolor regulation. GRN inference from transcriptomic and DNA sequence data was performed and the 
inference from TF binding sites identification showed to be the best approach according to interactions inference 
assessment, topological assessment, and systems-level comparison. This final inferred network is a valuable guide 
for wet-lab experiments, since narrows down the search space of the possible TF for each gene. Besides, it can 
be used in computational models of S. coelicolor. From this network 13 new TFs were predicted to bind in the 
upstream region of five of the principal SARPs, most of which previously proved to affect indirectly antibiotic 
production or to be related to stress response or morphological differentiation. Finally, we compared S. coelicolor 
network to C. glutamicum GRN, showing one of the many potential applications of the curated network. There 
we found high conservation only for the basal machinery, which might be a result of the high plasticity of the 
transcriptional regulation. To visually explore the interactions validated by experiments and identify the role of 
the genes in the global regulatory network (e.g., global/local regulators) and functional annotation, we strongly 
suggest using Abasy Atlas.

Material and methods
Transcriptional regulatory interactions curation.  We performed a comprehensive review of the lit-
erature to identify experimentally-supported transcriptional regulatory interactions in Streptomyces coelicolor 
A3(2). We searched peer-reviewed articles in Google Scholar and PubMed using the keywords “Streptomyces coe-
licolor” AND “transcriptional” and its variations AND “regulation” and its variations. In the case where reviews 
were found, their references were followed to the original research papers. Then, we performed the curation and 
organized the interactions (Supplementary File 1). Experiments were classified according to their methodology 
and their names were standardized for the sake of clarity and easier evidence classification. We merged these 
interactions with two previously curated networks, one was reconstructed from an XML provided by the DBSCR 
team and the other one from RegTransBase24 available at the Abasy Atlas website. These datasets are available 
from http://​dbscr.​hgc.​jp/ and https://​abasy.​ccg.​unam.​mx. Abasy Atlas is a database of meta-curated bacterial 
GRNs for nine species including S. coelicolor19. It also provides historical snapshots for other model organisms 
such as Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum, and Mycobacterium tuberculosis19.

GRN inference from transcription factor binding sites.  To extend the regulons for the TFs identified 
in the literature, we used the set of “strong” interactions as prior (Curated_FL(cS)-DBSCR(S)). We reconstructed 
a position weight matrix (PWM) for every TF in the “strong” network using the non-overlapping up to − 300 
to + 50 bp (with reference to the translation start codon) upstream regions of their TGs as input for three motif 
discovery algorithms. Namely, (1) MEME, an extension of the expectation–maximization algorithm for fitting 
finite mixture models61; (2) BioProspector, based on multiple Gibbs sampling62; and (3) MDscan, that employs 
a heuristic word-enumeration approach combined with statistical modeling63. Then, we used FIMO64 (p-value 
threshold = 1 × 10–4) to identify TF-TG interactions. As most of the interactions curated are from S. coelicolor 
A3(2) strain M145 (plasmid-free), we excluded genes that are not part of the chromosome.

GRN inference from transcriptomic data.  We downloaded first the transcriptomic dataset for S. coe-
licolor available at the COLOMBOS database 32. Then, we also download data from the NCBI Gene Expression 
Omnibus (GEO)33. From there we download an Affymetrix dataset (Platform GPL9417) and an RNA-Seq data-
set (GPL26763. Afterward, we normalize the Affymetrix data using Robust Multi-chip Averaging (RMA) with 

http://dbscr.hgc.jp/
https://abasy.ccg.unam.mx
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the affy package65 and used the gPCA package66 to identify a batch effect in the data, which was corrected with 
Combat from the sva package67, all of them are packages for R. The data counts on 137 transcriptomes for 7738 
genes. As in the case of GRN inference from transcription factor binding sites, we only considered genes from 
the chromosome. We selected the best inference methods according to their outstanding performance in the 
DREAM challenge18. Moreover, we selected methods that have an implementation in R or Matlab and were well 
documented. The inference methods selected were: (1) CLR68, a method that applies mutual information; (2) 
GENIE369, which applies tree-based regression and feature selection; (3) Inferelator70, which applies regression 
and variable selection; (4) MRNET71, which applies the maximum relevance/minimum redundancy algorithm; 
and (5) TIGRESS72 which applies LARS combined with stability selection. Along with these methods, we used 
two modifications we propose in this work, Friedman, and Statmodel (Supplementary File 1). We provided all 
methods with a list of 137 TFs from the meta-curated network Curated_FL-DBSCR-RTB to infer causality18,72.

Integration of individual inferences into a community GRN.  To increase the precision of the predic-
tions we used a community approach18 integrating individual predictions from different algorithms. First, the 
individual predictions are sorted by their confidence score, keeping the most reliable ones at the beginning of 
the prediction list. Then, the average of the rank positions in the predictions is given as the community score for 
each interaction. For missing interactions in a prediction list, the position is equal to the size of the prediction 
list + 1. All community networks were pruned to the 23,908 first interactions with the highest score, which is the 
predicted size of the complete GRN of S. coelicolor reported by Abasy Atlas v2.419 according to the model devel-
oped in38. The model is constantly being updated on the Abasy Atlas website by the addition of new networks 
and interactions, which will cause a slight variation in the number of interactions19.

Assessment of the inferred GRN.  We computed the area under the precision-recall curve (AUPR) and 
the area under the receiver operating characteristics curve (AUROC) to assess our predictions using in-house 
scripts. The AUPR depicts the precision (1) as a function of the recall (2) obtained by the predictor. The AUROC 
depicts the relation between the recall, also called the true positive rate (TPR) (2), and the false positive rate 
(FPR) (3). Note that unknown actual interactions between genes in the GS will still be considered as FP37. For 
this reason, interactions involving genes that are not part of the GS were not considered.

Statistical validation for interactions supported by ChIP experiments.  We performed a statisti-
cal validation approach for ChIP-data22 for those interactions supported by ChIP experiments and no “strong” 
experiment. Because of the lack of data in some articles, instead of performing the statistical validation finding 
the motifs from the ChIP data directly as in22, we used the “strong” interactions as seed to construct the matrix 
models for the TFs. We used MEME61 to build a position weight matrix (PWM) for each TF with at least 3 
“strong” interactions. Then, we used FIMO with the matrix for each TF to scan the non-overlapping up to − 300 
to + 50 bp upstream regions with reference to the translation start sites of S. coelicolor. We kept those TF binding 
sites with p-value < 1 × 10−4 and used these interactions to compare them with those supported by ChIP technol-
ogies, keeping the intersection of both sets (interactions supported by both ChIP and motif finding approaches).

Network similarity.  We computed the characteristic structural properties for GRNs reported as global 
properties on the Abasy Atlas database19. Namely, regulators ( kout > 0 ) (%), direct regulatory interactions, self-
regulation (%), maximum out-connectivity (%), network density, weakly connected components, genes in the 
giant component (%), feedforward circuits, complex feedforward circuits, 3-Feedback loops, average shortest 
path length, network diameter, average clustering coefficient, adjusted coefficient of determination ( R2

adj ) of 
P(k) , and R2

adj of C(k) . Then we used pairwise Pearson correlation among the profiles of the structural proper-
ties of the networks and cluster them according to the Euclidean distance among the correlations using Ward’s 
method. To compute the pairwise network dissimilarity we used a Python implementation adapted from that 
proposed by Schieber et al.43. We use it with the parameters proposed by the authors (0.45, 0.45, 0.1), being the 
last one required to discriminate network size in terms of nodes (genes)43. Then, we clustered the networks by 
using Euclidean distances among its dissimilarity values using Ward’s variance minimization algorithm as the 
linkage method.

System‑level components.  We applied the Natural Decomposition Approach (NDA), a biological-math-
ematical criterion to identify the components of the diamond-shaped structure of the GRNs20, on every curated 
and inferred network. See the Supplementary methods (Supplementary File 1) for a brief description of the 
NDA, and20 for further details. The assessment of the prediction of GRs was performed using in-house scripts 
for MCC, precision, and F1-score. Scores were computed for each GRs prediction obtained by the NDA with 

(1)Precision =
TP

TP + FP

(2)Recall = TPR =
TP

TP + FN

(3)FPR =
FP

FP + TN
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the different networks analyzed in this work. As GS we used the GRs previously reported in the literature from 
a review28, from individual publications, and both (Supplementary Table 4).

Comparative analysis against C. glutamicum.  For the regulogs analysis, we used as prior the strong 
regulatory networks Curated_FL(S)-DBSCR(S) for S. coelicolor, and 196627_v2020_s21_eStrong from the Abasy 
Atlas database for C. glutamicum19, considering only the interactions between two genes both mapping to a locus 
tag. We used MEME to construct a PWM for every TF with at least three TGs using their upstream sequences. 
These sequences were defined as the non-overlapping regions of up to − 300 to + 50 bp with reference to the 
translation start codon and were obtained with retrieve-seq from RSAT73. Then, we used FIMO with the PWM 
of the TFs from S. coelicolor to find individual occurrences with a p-value < 1 × 10–4 in the upstream sequences 
of C. glutamicum. The same was done in the opposite direction. With this, we seek to alleviate network incom-
pleteness by extrapolating known interactions from an organism to the other59. Predicted interactions were 
sorted by p-value and only the best scoring result was conserved for redundant interactions. Afterward, we 
used Orthofinder to find one-to-one ortholog relationships between both organisms. We used it due to its high 
accuracy60. The orthologs were used to further filter FIMO predictions to conserve interactions in which both TF 
and TG have a one-to-one orthologous relationship in the other organism. We considered the original “strong” 
network interactions at the beginning of the interactions list. The NDA was applied to both expanded GRNs to 
identify ortholog systems and only the genes with one-to-one orthologs in the other organism’s network (GRN-
wide orthologs) were considered in the analysis.

Data availability
The data set(s) supporting the results of this article are included within the article, its additional Files, or in Abasy 
Atlas at https://​abasy.​ccg.​unam.​mx/.
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