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Abstract: Standoff chemical detection and identification techniques are necessary for ensuring safe
exposure to dangerous substances. Molecular fingerprints of unknown chemicals can be measured us-
ing wavelength-tunable quantum cascade lasers operating in long-wavelength infrared. In this work,
we present a method that can identify liquid chemicals on a reflective substrate via diffuse reflection
spectra measurement from 50 cm away and multiple nonlinear regression analysis. Experimental
measurements and numerical analyses were conducted for different chemical surface densities and
angles of light incidence using diethyl phthalate (DEP) and dimethyl methylphosphonate (DMMP).
Candidate substances can be classified using a deep learning model to reduce analysis time.

Keywords: chemical detection; quantum cascade laser; mid-IR laser absorption spectroscopy;
standoff detection; diffuse reflectance spectroscopy

1. Introduction

Spectroscopic methods capable of detection and identification in standoff are essential
for ensuring safety in situations where dangerous chemical analytes such as chemical
warfare agents (CWAs) or explosive residues may be present [1,2]. Laser absorption spec-
troscopy (LAS) is a promising method for standoff chemical detection and identification
with the advantages of high sensitivity, spectral selectivity and resolution, and fast scan
speed compared to other conventional methods using non-laser sources such as differential
optical absorption spectroscopy or Fourier transform infrared spectroscopy [3]. Various
methodologies such as differential absorption LiDAR, wavelength tunable laser absorption
spectroscopy, laser photo-acoustic spectroscopy, dual-comb spectroscopy, laser heterodyne
radiometry, and active coherent laser absorption spectroscopy have been proposed for LAS
and their technical details are summarized in [3]. Wavelength tunable quantum cascade
lasers (QCLs) have been developed as coherent light sources that operate in the long-
wavelength infrared (LWIR) region typically defined as the 8–14 µm wavelength range,
where molecular fingerprints are concentrated due to the intrinsic vibrational absorption
of molecules. QCL-based LAS using such molecular fingerprints in the LWIR region pro-
vides a useful spectroscopic technique for detecting and identifying chemical substances in
gaseous or condensed phases with low atmospheric absorption. Recently, attempts have
been made to detect and identify various types of chemicals, such as CWAs [4], volatile
organic compounds [5], proteins [6], trace particles [7], and microorganisms [8], using an
external cavity QCL (EC-QCL) capable of broadband wavelength tuning. Recently, hyper-
spectral imaging techniques using EC-QCLs equipped with electromechanical scanners
have been reported [7,9]. For gas detection based on QCL, relatively accurate absorption
spectrum analysis is possible using an external retroreflector or multipass gas cell. However,
liquid-phase chemicals on substrates can hinder accurate detection and identification due
to diffusion onto the substrate, evaporation, and spreading across the surface [10].
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In this work, we experimentally demonstrate a standoff detection and identification
spectroscopic method for two different liquid chemicals on reflective substrates with dif-
ferent surface roughness using a detector system with an integrated wavelength-tunable
EC-QCL and HgCdTe (MCT) photodetector. For analysis of the chemicals on the metallic
plates, we measured only diffuse reflection spectra using a slight off-normal incidence of
light and a wavelength scan of the EC-QCL. Diffuse reflection has a relatively low signal
intensity compared to specular reflection but hardly contains any Fresnel reflection com-
ponents that appear by refractive index contrast on the surface of a liquid chemical and
which can greatly relax alignment conditions during measurement. More importantly, dif-
fuse reflection contains mostly absorption spectra information of liquid chemicals because
incident light propagates inside the liquid chemical and is scattered by the surface [11]. In
general, diffuse reflection spectra need to be normalized to the reflection spectra of a bare
substrate containing the analyte. This normalization requires additional measurements
for the extraction of absorption spectra only. However, the standoff detection of liquid
chemicals on substrates involves varying background reflection spectra depending on the
substrate type, making extracting the exact absorption spectra every time very challenging.
Therefore, we developed an algorithm that matches the measured diffuse reflection spectra
with the calculated spectra by fitting the values of a theoretical model using the least square
method, enabling detection and identification without background reflection measure-
ments. Then, we experimentally validated our theoretical model and built a deep learning
classification model to identify analyte chemicals using a data set calculated from the model.
Our method can be used for the detection and identification of unknown substances on a
rough reflective substrate.

2. Detector Configuration

The detector used in this study consists of a wavelength-tunable EC-QCL (Daylight
Solutions, Inc., tuning range: 930–1190 cm−1, spectral resolution: 2 cm−1, beam divergence:
<4 m rad), a laser controller, an MCT photodetector, two parabolic mirrors, a guide visible
laser, a signal amplifier, a data acquisition system (DAQ), and a miniPC, as shown in
Figure 1a. An image of the detector is shown in Figure 1b. The coaxially aligned visible
and LWIR light from the sources pass through the center hole of the parabolic mirror and
an anti-reflection coated ZnSe window, and incident with an angle θ onto a substrate. The
laser spot diameter at the substrate 50 cm away from the detector was about 3 mm. Part
of the light backscattered (diffuse reflection) toward the detector is received and focused
onto the MCT detector by the two parabolic mirrors. The analog signal from the MCT
photodetector is integrated by the signal amplifier, and then the integrated analog signal is
converted to a digital signal from the DAQ. Finally, the digital signal is transferred to the
miniPC attached to the side of the detector. Figure 1c shows the averaged power spectra of
the QCL with a 5% duty measured at the location of the substrate using a calibrated optical
power meter. Due to the low power at the two spectral edges of the QCL, a wavenumber
tuning range of 950–1174 cm−1 was used for the QCL.
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Figure 1. (a) Schematic of the detector with block diagram and measurement configuration. The 
blue and red arrow indicate incident light from the lasers and reflected light from the target sub-
strate, respectively. (b) Front (top left), side (top right), and top view (bottom) images of the detector. 
(c) Averaged QCL power spectra measured at the position of the target substrate. 
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Diffuse reflection is generally affected by surface roughness. Roughness-standard 
nickel plates with six different surface roughness values (Ra in μm: 0.05, 0.1, 0.2, 0.4, 0.8, 
and 1.6) were used for diffuse reflection spectra analysis of liquid chemicals on reflective 
substrates. A photograph of the substrate is shown in Figure 2a. The distance between the 
detector and the substrate was fixed at 50 cm. Figure 2b shows the backscattering signals 
measured by the MCT when QCL light with a wavenumber of 1090 cm−1 is irradiated onto 
the substrates with different surface roughnesses at different incidence angles. In the case 
of a smooth surface with low roughness, the backscattering signal at off-normal incidence 
is low because specular reflection is dominant. Random back scattering is severe at an Ra 
of 1.6 μm due to the high roughness, and the MCT signal becomes lower than that of Ra 
0.8 μm. Although the maximum backscattering signal intensity changes according to the 
surface roughness and angle of incidence, it has been experimentally proven that the spec-
tral shape of the backscattering signal generated from the reflective surface is almost con-
stant regardless of the roughness and incidence angle. Figure 2c shows the normalized 
reflection power spectra extracted using the average value of the reflection spectra meas-
ured in all the cases above. This single power spectrum was used for diffuse reflection 
spectral analysis without measuring the background spectra. 

Figure 1. (a) Schematic of the detector with block diagram and measurement configuration. The blue
and red arrow indicate incident light from the lasers and reflected light from the target substrate,
respectively. (b) Front (top left), side (top right), and top view (bottom) images of the detector.
(c) Averaged QCL power spectra measured at the position of the target substrate.

3. Experimental Configuration
3.1. Reflective Substrates

Diffuse reflection is generally affected by surface roughness. Roughness-standard
nickel plates with six different surface roughness values (Ra in µm: 0.05, 0.1, 0.2, 0.4, 0.8,
and 1.6) were used for diffuse reflection spectra analysis of liquid chemicals on reflective
substrates. A photograph of the substrate is shown in Figure 2a. The distance between the
detector and the substrate was fixed at 50 cm. Figure 2b shows the backscattering signals
measured by the MCT when QCL light with a wavenumber of 1090 cm−1 is irradiated
onto the substrates with different surface roughnesses at different incidence angles. In
the case of a smooth surface with low roughness, the backscattering signal at off-normal
incidence is low because specular reflection is dominant. Random back scattering is severe
at an Ra of 1.6 µm due to the high roughness, and the MCT signal becomes lower than that
of Ra 0.8 µm. Although the maximum backscattering signal intensity changes according
to the surface roughness and angle of incidence, it has been experimentally proven that
the spectral shape of the backscattering signal generated from the reflective surface is
almost constant regardless of the roughness and incidence angle. Figure 2c shows the
normalized reflection power spectra extracted using the average value of the reflection
spectra measured in all the cases above. This single power spectrum was used for diffuse
reflection spectral analysis without measuring the background spectra.
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Figure 2. (a) Photograph image of the roughness standard nickel plates. (b) Backscattering signal 
measured by the MCT when the QCL light at a wavenumber of 1090 cm−1 is irradiated onto the 
reflective substrates with different surface roughnesses at different incidence angles. (c) Normalized 
QCL power spectra averaged over all measured values using reflective substrate with different sur-
face roughness and different incidence angle. 

3.2. Analyte Chemicals 
Experiments were conducted using diethyl phthalate (DEP), a simulant of VX, and 

dimethyl methylphosphonate (DMMP), a simulant of G-agent [12]. Figure 3a,b show the 
normalized absorbance spectra of DEP and DMMP, respectively, obtained from the Na-
tional Institute of Standards and Technology Chemistry WebBook [13]. The absorbance 
spectra were cubic interpolated to match the actual wavenumbers of the QCL tuning 
range [5]. Ethanol was used as the solvent to control the surface density of the analyte. 
The analyte chemicals were distributed on the substrates with five different surface den-
sities (1, 2, 3, 4, and 5 g/m2) using a two-dimensional translation stage and a syringe pump 
to control the flow rate for uniform coating. However, spatial variation in the surface den-
sity was unavoidable due to the chemical viscosity and surface tension. Figure 3c shows 
photographs of DEP distributed on the substrates formed by grinding for a surface den-
sity of 4 g/m2. All measurements were conducted 2 min after coating so that the ethanol 
was sufficiently evaporated and only the analyte chemicals would be present on the sur-
face at the target surface density. 

 
Figure 3. Normalized absorbance spectra of the analyte chemicals of (a) DEP and (b) DMMP in the 
EC-QCL operational wavenumber range. (c) Photograph images of DEP with surface density of 4 
g/m2 distributed on the substrates formed by grinding. 

4. Spectral Analysis and Identification 
4.1. Multiple Nonlinear Regression 

We used the multiple nonlinear regression (MNR) method for spectral analysis of the 
measured data and identification of analyte chemicals [5,14]. Based on the Beer–Lambert 
law, we can express the experimental diffuse reflection spectra (Y(λ)) using Equation (1). 
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Figure 2. (a) Photograph image of the roughness standard nickel plates. (b) Backscattering signal
measured by the MCT when the QCL light at a wavenumber of 1090 cm−1 is irradiated onto the
reflective substrates with different surface roughnesses at different incidence angles. (c) Normalized
QCL power spectra averaged over all measured values using reflective substrate with different
surface roughness and different incidence angle.

3.2. Analyte Chemicals

Experiments were conducted using diethyl phthalate (DEP), a simulant of VX, and
dimethyl methylphosphonate (DMMP), a simulant of G-agent [12]. Figure 3a,b show
the normalized absorbance spectra of DEP and DMMP, respectively, obtained from the
National Institute of Standards and Technology Chemistry WebBook [13]. The absorbance
spectra were cubic interpolated to match the actual wavenumbers of the QCL tuning
range [5]. Ethanol was used as the solvent to control the surface density of the analyte. The
analyte chemicals were distributed on the substrates with five different surface densities
(1, 2, 3, 4, and 5 g/m2) using a two-dimensional translation stage and a syringe pump
to control the flow rate for uniform coating. However, spatial variation in the surface
density was unavoidable due to the chemical viscosity and surface tension. Figure 3c
shows photographs of DEP distributed on the substrates formed by grinding for a surface
density of 4 g/m2. All measurements were conducted 2 min after coating so that the ethanol
was sufficiently evaporated and only the analyte chemicals would be present on the surface
at the target surface density.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 9 
 

 

 
Figure 2. (a) Photograph image of the roughness standard nickel plates. (b) Backscattering signal 
measured by the MCT when the QCL light at a wavenumber of 1090 cm−1 is irradiated onto the 
reflective substrates with different surface roughnesses at different incidence angles. (c) Normalized 
QCL power spectra averaged over all measured values using reflective substrate with different sur-
face roughness and different incidence angle. 

3.2. Analyte Chemicals 
Experiments were conducted using diethyl phthalate (DEP), a simulant of VX, and 

dimethyl methylphosphonate (DMMP), a simulant of G-agent [12]. Figure 3a,b show the 
normalized absorbance spectra of DEP and DMMP, respectively, obtained from the Na-
tional Institute of Standards and Technology Chemistry WebBook [13]. The absorbance 
spectra were cubic interpolated to match the actual wavenumbers of the QCL tuning 
range [5]. Ethanol was used as the solvent to control the surface density of the analyte. 
The analyte chemicals were distributed on the substrates with five different surface den-
sities (1, 2, 3, 4, and 5 g/m2) using a two-dimensional translation stage and a syringe pump 
to control the flow rate for uniform coating. However, spatial variation in the surface den-
sity was unavoidable due to the chemical viscosity and surface tension. Figure 3c shows 
photographs of DEP distributed on the substrates formed by grinding for a surface den-
sity of 4 g/m2. All measurements were conducted 2 min after coating so that the ethanol 
was sufficiently evaporated and only the analyte chemicals would be present on the sur-
face at the target surface density. 

 
Figure 3. Normalized absorbance spectra of the analyte chemicals of (a) DEP and (b) DMMP in the 
EC-QCL operational wavenumber range. (c) Photograph images of DEP with surface density of 4 
g/m2 distributed on the substrates formed by grinding. 

4. Spectral Analysis and Identification 
4.1. Multiple Nonlinear Regression 

We used the multiple nonlinear regression (MNR) method for spectral analysis of the 
measured data and identification of analyte chemicals [5,14]. Based on the Beer–Lambert 
law, we can express the experimental diffuse reflection spectra (Y(λ)) using Equation (1). 

( )0( ) ( ) exp ( ) ( )i i
i

Y c L cλ λ α λ ε λ= +∏  (1) 

Figure 3. Normalized absorbance spectra of the analyte chemicals of (a) DEP and (b) DMMP in the
EC-QCL operational wavenumber range. (c) Photograph images of DEP with surface density of
4 g/m2 distributed on the substrates formed by grinding.
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4. Spectral Analysis and Identification
4.1. Multiple Nonlinear Regression

We used the multiple nonlinear regression (MNR) method for spectral analysis of the
measured data and identification of analyte chemicals [5,14]. Based on the Beer–Lambert
law, we can express the experimental diffuse reflection spectra (Y(λ)) using Equation (1).

Y(λ) = c0L(λ)∏
i

exp(ciαi(λ)) + ε(λ) (1)

where L(λ) is the normalized QCL power spectra shown in Figure 2c; c0 is the power scaling
factor for fitting to actual measurement spectra; ci and αi(λ) are the absorbance scaling
factor and the normalized absorbance spectra of the ith analyte chemical, respectively; and
ε(λ) is the residual caused by thermal noise, external reflection, and background mismatch.
The power scaling factor c0 is affected by the properties of the substrate and the light
incidence angle. It is used for fitting with the experimental value by adjusting the intensity
of the diffuse reflection signal. The absorbance scaling factor ci is proportional to the actual
path length of the light through the analyte at a specific incidence angle. The scaling factors
are obtained by iteration based on the least square method (LSM), and the minimum of
the mean squared residual over the wavenumber range of 950 to 1174 cm−1 is determined.
The coefficient of determination R2 represents how closely the measured spectra fit the
modeled spectra and is expressed by Equation (2) [15]:

R2 = 1 − ∑(ε(λ))2

∑
(
Y(λ)− Y

)2 (2)

where Y is a single averaged value of Y(λ) in the wavenumber range of 950–1174 cm−1.
In calculating R2, the measured spectra were preprocessed using the Savitzky–Golay
smoothing filter. R2 has a value between 0 and 1, with a higher score corresponding to a
better match between the two spectra.

4.2. Deep Learning Classification

In the detection and identification of unknown chemicals, it is time consuming and
inefficient to compare the spectral data of all chemicals stored in the library and the
measured values. If the type of candidate chemical can first be determined through the
measured spectral data, the time required for calculation can be reduced, and the accuracy
for identification can also be increased. Accordingly, the deep learning classification method
can be utilized to determine the types of candidate chemicals [16]. Building a classification
model requires a large amount of training data and collecting enough data from actual
measurements is time consuming. We generated a large amount of data for machine
learning without actual measurement by assigning random values to the fitting parameters
c0 and ci. In this work, we created s calculated data set for four data classes: “None”,
“DEP”, “DMMP”, and “Mixture of DEP and DMMP”. The dataset was used to train the
classification model using the neural networks of the MATLAB program. The minimum
value of c0 is 0.03, which filters out very low signals that cannot be detected and identified.
ci has a value between 0.1 and 10, which was determined experimentally. By applying the
classification model to the experimental results, it was verified that the candidate group
was well classified.

5. Experiments
5.1. DEP Experiment

The analytical model for DEP detection can be expressed as using the DEP absorbance
αDEP and its absorbance scaling factor, cDEP, as Y(λ) = c0L(λ) exp(cDEPαDEP(λ)) + ε(λ)
using Equation (1). The coefficient of determination R2 was derived from the measured
spectra and the analytical model to which scaling factors, extracted through iteration, were
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applied. We used a reflective substrate with an Ra of 1.6 µm. The reflective substrate coated
with DEP was scanned at incidence angles of 2, 5, 10, 15, 20, and 30◦ at 50 cm away from
the detector. Figure 4a shows an example of the measured and calculated diffuse reflection
spectra for a surface density of 2 g/m2 at an incidence angle of 5◦. The calculated diffuse
reflection spectra were obtained using Equation (1) without the residual ε(λ). In this case
the c0, cDEP, and R2 values extracted by the LSM were 0.87, 0.23, and 0.99, respectively,
indicating good agreement between the experiment and calculation. Figure 4b shows the
measured and calculated diffuse reflection spectra for a surface density of 4 g/m2 at an
incidence angle of 5◦. The corresponding c0, cDEP, and R2 values extracted by the LSM were
0.27, 1.49, and 0.90, respectively. In this case, a larger amount of DEP liquid was coated on
the surface, which caused more specular reflection on the smooth surface of the chemical,
lowering the diffuse reflection signal measured by the MCT. The power scaling factor
c0 extraction results with regard to the surface density and incidence angle are shown in
Figure 4c. The intensity of the diffuse reflection signal, which was proportional to the power
scaling factor c0, tended to decrease as the surface density and incidence angle increased.
Figure 4d shows the DEP absorbance scaling factor cDEP extracted from the measured data
for different surface densities and incidence angles. cDEP tended to increase as the surface
density increased, but decreased at a surface density of 5 g/m2, as compared to that at
4 g/m2. Presumably, a uniform film was not formed on the substrate at a high surface
density, and the diffuse reflection portion was relatively reduced, thereby reducing the
absorbance scaling factor. Further, as the incidence angle increases, the effective path length
increases, and cDEP also shows a general tendency to increase. In addition, as described
above, a slight deviation from this trend is noted at high surface densities. Figure 4e
shows the distributions of the coefficient of determination R2 obtained from the measured
data and the analytic model according to c0. When c0 is higher than 0.03, most of the R2

values exceed 0.9. Contrarily, at c0 < 0.03, most of the R2 values are distributed below 0.9.
Therefore, to identify DEPs with more than 90% accuracy, the threshold value of c0 can be
set to 0.03. As shown in Figure 4c, a c0 value of 0.03 or higher can be obtained at incidence
angles in the range of 2◦–30◦ and at surface densities in the range of 1–5 g/m2. Thus, the
chemical can be analyzed over a wide concentration range with minimal device alignment.
Next, we used data with a c0 value above the threshold and checked whether classification
was well performed using the deep learning model. In this process, the experimental
data obtained using all the substrates (flat lapping, reaming, grinding, horizontal milling,
vertical milling, and turning) in Figure 2a were used. Figure 4f shows the classification
results of the pretrained deep learning model. Out of the total 363 experimental spectral
datapoints, 290 cases were correctly classified as DEP with a classification accuracy of
80%. The number of results incorrectly classified as None, DMMP, and Mixture were 25, 8,
and 40, respectively. The results classified as Mixture can be corrected during the MNR
fitting method. For example, the measured data in Figure 4c was classified as Mixture, but
when MNR with the theoretical model of Mixture was applied, a negligibly low DMMP
absorbance scaling factor of 1.04 × 10−7 was obtained; for comparison, the obtained DEP
absorbance scaling factor was 1.8. Therefore, the final identification accuracy after the MNR
fitting was 90.9%, and the accuracy could be further improved if training was performed
using a dataset extracted under more diverse test conditions.
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Figure 4. (a,b) Measured (black) and calculated (red) diffuse reflection spectra for DEP coated
substrate with Ra of 1.6 µm, at incidence angle of 5◦ for surface density of (a) 2 g/m2 and (b) 4 g/m2.
(c,d) Extracted power scaling factor (c) c0 and extracted absorbance scaling factor (d) cDEP from
measured data for different surface densities of DEP and different incidence angles using the substrate
with Ra of 1.6 µm. (e) Distribution of the coefficient of determination R2 according to c0. (f) Result of
None, DEP, DMMP, and Mixture of DEP and DMMP.

5.2. DEP and DMMP Mixture Experiment

To verify whether multiple chemicals can be detected and identified through diffuse
reflection measurements and the MNR method, additional tests were conducted using
a mixture of DEP and DMMP with a 1:1 ratio coated on the reflective substrate and an
Ra of 1.6 µm. The surface density used in this experiment was 5 g/m2. The diffuse
reflection spectra of the mixture of DEP and DMMP can be modeled using Equation (1)
as Y(λ) = c0L(λ) exp(cDEPαDEP(λ) + cDMMPαDMMP(λ)) + ε(λ) where αDMMP and cDMMP
are the normalized DMMP absorbance (cf. Figure 3b) and its absorbance scaling factor,
respectively. Figure 5a shows the measured and calculated diffuse reflection spectra of the
DEP and DMMP mixtures at an incidence angle of 5◦. The calculated diffuse reflection
spectra were obtained using Equation (1) without the residual ε(λ). The c0, cDEP, cDMMP,
and R2 extracted by LSM were 0.22, 0.60, 0.66, and 0.94, respectively. Figure 5b shows
the absorbance spectra of DEP, DMMP, and the mixture calculated using the extracted
absorbance scaling factors. The calculated reflection spectra in Figure 5a, where reflection
valleys occur at the main absorption peaks of the mixture, can be obtained by considering
the laser power spectra. Figure 5c shows the absorbance scaling factors of DEP (y-axis)
and DMMP (x-axis) extracted from measured data using the substrate with different Ra
values at an incidence angle of 5◦. The two absorbance scaling factors varied according to
the surface roughness of the substrate, but the ratio of the two values remained constant.
For the substrate with fixed surface roughness of Ra = 1.6 µm, it was confirmed that the
absorbance scaling factors increased as the incidence angle increased due to the increased
effective path length as shown in Figure 5d, which showed the same trend as the single
DEP measurement (cf. Figure 4d). Finally, we used the mixture measurement data with a
c0 value higher than 0.03 and checked whether classification was well performed through
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the deep learning model. As shown in Figure 5e, all 20 of the measured data were correctly
classified to Mixture.
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Figure 5. (a) Measured (black) and calculated (red) diffuse reflection spectra of DEP and DMMP
1:1 ratio mixture coated on substrate with Ra of 1.6 µm at incidence angle of 5◦ for surface density
of 5 g/m2. (b) Calculated absorbance spectra of DEP (red), DMMP (blue), and 1:1 ratio mixture
(black) using the extracted absorbance scaling factors in (a). (c) Absorbance scaling factors of DEP
(y-axis) and DMMP (x-axis) for a surface density of 5 g/m2 and different surface roughness of the
substrate. (d) Absorbance scaling factors of DEP and DMMP for substrate roughness Ra of 1.6 µm,
surface density of 5 g/m2 according to incidence angle. (e) Result of classification of the mixture
measurement data using the deep learning model trained for four classes of None, DEP, DMMP, and
Mixture of DEP and DMMP.

6. Conclusions

In this work, we demonstrate an identification method for liquid chemicals on a
reflective substrate based on diffuse reflection measurement and MNR. The measured
spectra and the analytical model were fitted using a power scaling factor, absorbance
scaling factors, and a normalized background power spectrum. An R2 of 0.9 or higher
was obtained from data with a power scaling factor of 0.03 or higher, which could be
measured in the surface density range of 1–5 g/m2 and an incidence angle range of 2◦–30◦.
These results indicate that liquid chemicals can be identified with very high accuracy under
very relaxed detector alignment conditions without background spectrum measurement
in environments where analysis through diffuse reflection is possible, such as analyte
chemicals on a rough reflective substrate. In addition, through the deep learning model,
candidate groups can be extracted with high accuracy without having to directly compare
all libraries stored inside the detector, which can drastically reduce the computation time
for the identification of unknown chemicals.
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