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Abstract

When speech intelligibility is reduced, listeners exploit constraints posed by semantic

context to facilitate comprehension. The left angular gyrus (AG) has been argued to

drive this semantic predictability gain. Taking a network perspective, we ask how the

connectivity within language-specific and domain-general networks flexibly adapts to

the predictability and intelligibility of speech. During continuous functional magnetic

resonance imaging (fMRI), participants repeated sentences, which varied in semantic

predictability of the final word and in acoustic intelligibility. At the neural level, highly

predictable sentences led to stronger activation of left-hemispheric semantic regions

including subregions of the AG (PGa, PGp) and posterior middle temporal gyrus when

speech became more intelligible. The behavioural predictability gain of single partici-

pants mapped onto the same regions but was complemented by increased activity in

frontal and medial regions. Effective connectivity from PGa to PGp increased for

more intelligible sentences. In contrast, inhibitory influence from pre-supplementary

motor area to left insula was strongest when predictability and intelligibility of sen-

tences were either lowest or highest. This interactive effect was negatively corre-

lated with the behavioural predictability gain. Together, these results suggest that

successful comprehension in noisy listening conditions relies on an interplay of

semantic regions and concurrent inhibition of cognitive control regions when seman-

tic cues are available.
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1 | INTRODUCTION

In everyday life, we are remarkably successful in following a conversa-

tion even when background noise degrades the speech signal. One

important strategy facilitating comprehension in demanding listening

scenarios is the prediction of upcoming speech. For example, the sen-

tence fragment “She made the bed with new” provides rich semantic

context to inform an accurate prediction of the sentence continuation

“sheets”. However, poor semantic context like “We are very pleased

with the new” provides little information to build up the prediction of

the word “sheets”. This semantic predictability gain is a well-

documented behavioural phenomenon. It can be observed in healthy

young and older listeners (Obleser & Kotz, 2010; Obleser, Wise,
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Dresner, & Scott, 2007; Vaden et al., 2013; Vaden, Kuchinsky,

Ahlstrom, Dubno, & Eckert, 2015), in hearing-impaired listeners

(Holmes, Folkeard, Johnsrude, & Scollie, 2018), as well as in cochlear

implant users (Winn, 2016).

To study the interactive effects of intelligibility and semantic pre-

dictability in the listening brain, previous neuroimaging studies used

sentences with different occurrence probabilities of the final word

whilst varying the spectral resolution of speech using noise-vocoding

(Shannon, Zeng, Kamath, Wygonski, & Ekelid, 1995). In these studies,

the left angular gyrus (AG) has been identified as a key region sensi-

tive to strong semantic constraints in degraded speech (Golestani,

Hervais-Adelman, Obleser, & Scott, 2013; Obleser et al., 2007;

Obleser & Kotz, 2010). When highly predictable speech was degraded

to a moderate extent, activity in AG increased. However, when degra-

dation rendered speech either easily or, if it all, hardly comprehensible,

activity in AG dropped irrespective of semantic constraints. Finally,

Hartwigsen, Golombek, and Obleser (2015) used focal perturbations

induced by transcranial magnetic stimulation to demonstrate that the

ventral portion of left AG is functionally relevant for the behavioural

predictability gain. Together, these studies provide converging evi-

dence for a role of the left AG in the top-down use of semantic infor-

mation when comprehension is challenged by degraded speech

signals.

The AG is considered a heterogeneous region and has structural

connections to language-specific fronto-temporal regions as well as

domain-general cingulo-opercular regions (Binder, Desai, Graves, &

Conant, 2009; Seghier, 2013). Based on its cytoarchitectonics, AG can

be subdivided into an anterior part (PGa) and a posterior part (PGp;

Caspers et al., 2006, 2008). These subregions have been associated

with different functional roles: PGa has been associated with the

automatic and domain-general allocation of goal-directed attention

and episodic memory. In contrast, PGp was (inconsistently) linked to

more controlled and complex semantic-specific processes irrespective

of control demands (Bonnici, Richter, Yazar, & Simons, 2016; Bzdok

et al., 2016; Jung, Cloutman, Binney, & Lambon Ralph, 2017; Noonan,

Jefferies, Visser, & Lambon Ralph, 2013). These findings indicate that

the AG might play a central role in language-specific but also in

domain-general cognitive operations. Yet, the functional interplay of

PGa and PGp within left AG as well as their differential roles in the

processing of semantic context in degraded speech are unknown.

As comprehension of degraded speech poses a challenging task

on listeners, the brain recruits additional resources beyond the seman-

tic network (Peelle, 2018). These additional resources are thought to

be provided by domain-general regions that typically do not show a

functional specialization, such as the cingulo-opercular network. The

cingulo-opercular network has been implicated in adaptive control

processes subserving the flexible allocation of attentional resources

and typically comprises the bilateral frontal operculae and adjacent

anterior insulae, as well as the dorsal anterior cingulate cortex exten-

ding into the pre-supplementary motor area (pre-SMA; Camilleri

et al., 2018; Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008;

Duncan, 2010). Indeed, previous studies on degraded speech

processing have found not only fronto-temporo-parietal regions of

the semantic network (Adank, 2012; Alain, Du, Bernstein, Barten, &

Banai, 2018) but also regions of the cingulo-opercular network (Erb,

Henry, Eisner, & Obleser, 2013; Vaden et al., 2015; Vaden, Teubner-

Rhodes, Ahlstrom, Dubno, & Eckert, 2017). Additionally, using a word

recognition task under challenging listening conditions, Vaden

et al. (2013) demonstrated that the magnitude of activation within the

cingulo-opercular network predicted the word recognition success in

the following trial. This upregulation might reflect the activation of

additional cognitive resources when no external linguistic cues are

available (Peelle, 2018). In contrast, the recruitment of the semantic

network is thought to improve comprehension most effectively when

semantic context is available. Here, we aim to identify network-level

descriptors of the semantic predictability gain to comprehension and

investigate how changing task demands shape the adaptive interplay

of language-specific and domain-general resources in successful

speech comprehension.

Previous studies manipulating predictability and intelligibility of

speech suffered from small samples and mainly relied on few levels of

noise fixed across participants. Moreover, most of these studies used

sparse temporal sampling, precluding the investigation of effective

connectivity. Consequently, it remains unclear how the identified

regions influence each other during successful comprehension of

speech in noise. We aimed to overcome some of the previous short-

comings by performing a continuous event-related functional mag-

netic resonance imaging (fMRI) experiment with six individualized,

varying levels of intelligibility, ranging from largely unintelligible to

easily intelligible. Thereby, we accounted for individual differences in

auditory perception and assured comparable task performance across

participants.

Based on previous studies, we expected a facilitatory behavioural

effect of semantic predictability on speech comprehension, which

should be strongest at intermediate levels of intelligibility (i.e., when

the auditory signal is somewhat degraded but still intelligible) and

least pronounced for unintelligible and intelligible sentences. We

hypothesized to find increased activation in left AG and other seman-

tic regions as a neural correlate of the semantic predictability gain at

intermediate levels of intelligibility. This interaction should be driven

by increased effective connectivity between the AG and other seman-

tic regions. Moreover, we expected increasing activity and within-

network connectivity in the cingulo-opercular network to improve

comprehension in challenging listening conditions (i.e., intermediate

intelligibility and low predictability).

As a main finding of our study, highly predictable sentences at

intermediate intelligibility levels drove activity in core regions of the

semantic network and the behavioural comprehension gain was corre-

lated with higher activity in extended regions of the semantic net-

work. For low predictable sentences, the inhibitory influence between

regions within the cingulo-opercular network was less pronounced

with increasing intelligibility. In contrast, higher predictability led to

stronger inhibitory connectivity within this network when intelligibility

increased. The individual degree of the inhibitory influence of predict-

ability and intelligibility on the connection from the pre-SMA to the

left insula predicted the individual predictability gain.
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2 | MATERIALS AND METHODS

2.1 | Participants

Thirty healthy young German native speakers took part in this study.

After excluding three participants due to excessive head movement

during scanning (i.e., range of motion >1.5 times the voxel size; see

Figure S1 for an illustration of head movements) and one participant

due to reduced task-related activity across the whole brain in the

global F-test, our final sample yielded 26 participants (age range:

19–29 years, M = 25 years; 15 females). All participants were right-

handed (mean lateralization index >90; Oldfield, 1971) and reported

no history of neurological or psychiatric disorders as well as no hear-

ing difficulties or disorders.

Participants gave written informed consent prior to participation

and received reimbursement of €10 per hour of testing. The study

was performed according to the guidelines of the Declaration of Hel-

sinki and approved by the local ethics committee at the Medical Fac-

ulty of the University of Leipzig.

2.2 | Experimental procedures

Participants took part in one fMRI session. During this session, we

first assessed the individual ability of participants to comprehend

speech in noise by tracking the speech reception threshold (SRT). Sec-

ond, participants performed a repetition task on sentences varying in

intelligibility and predictability (Figure 1). The task had a 2 × 6 full fac-

torial design (predictability: high vs. low; intelligibility: −9, −4, −1, +1,

+4, +9 dB sentence intensity relative to the individual SRT) with

12 experimental conditions and 18 trials per condition.

2.2.1 | Adaptive tracking procedure of the speech
reception threshold

To account for inter-individual differences in speech perception acuity in

the main experiment, we determined each participant's SRT beforehand,

that is, the signal-to-noise ratio (SNR) required to correctly repeat a sen-

tence with a probability of 50%. In an adaptive up-down staircase proce-

dure (Kollmeier, Gilkey, & Sieben, 1988), participants listened to

20 sentences with highly predictable final words energetically masked by

speech-shaped noise. After the presentation of each sentence, partici-

pants repeated thewhole sentence as accurately as possible and the inves-

tigator directly rated the response as either correct or incorrect. We rated

a response as incorrect if any word in the repeated sentence was missing,

incomplete or inaccurately inflected. A correct repetition was followed by

an SNR decrease (i.e., the following sentencewas less intelligible), an incor-

rect repetition was followed by an SNR increase (i.e., the following sen-

tence was more intelligible). The tracking procedure started with an initial

SNR of 5 dB and a trial-to-trial step size of 6 dB. A turning point (i.e., an

increase in SNR is followed by a decrease or vice versa) reduced the step

size by a factor of 0.85.We determined SRTs as the average of SNR levels

presented on those trials leading to the final five turn points. SRTs had an

average of +1.7 dB SNR (SD = 2.3, range: −2.1 to +6.4 dB). All sentences

were presented in theMR scanner whilst running the fMRI sequence later

used in the experiment. Individual SRTs were used as a reference for the

manipulation of intelligibility in the main experiment to account for inter-

individual differences in speech-in-noise comprehension and thereby

effectivelymodulate behavioural performance.

2.2.2 | Stimulus material

To manipulate predictability of speech in the sentence repetition task, we

used the German version of the speech in noise (SPIN) corpus (Kalikow,

Stevens, & Elliott, 1977; for a detailed description of the German version,

see Erb, Henry, Eisner, & Obleser, 2012). The German SPIN corpus con-

tains pairs of spoken sentences which have the same final word

(i.e., keyword) but differ in cloze probability of the keyword (i.e., the expec-

tancy of aword given the preceding sentence; Taylor, 1953). One sentence

of a pair provides poor semantic context for the prediction of the keyword

(“We are very pleased with the new sheets.”; low predictability), whereas

the complementary sentence provides rich context for the same keyword

(“She made the bed with new sheets.”; high predictability). More specifi-

cally, the predictability of the keyword varies with the number of pointer

words in a sentence that semantically link to the sentence-final word

(e.g., “made”, “bed”, and “new” in the above example). Keywords from sen-

tences with rich context had a mean cloze probability of 0.85 (SD = 0.14),

lowpredictable keywords had amean cloze probability of 0.1 (SD= 0.02).

In addition to the 100 original sentence pairs, we extended the

corpus by another 36 sentences, which were constructed and

recorded during the development of the original German SPIN corpus.

Initially, these sentences were not included in the corpus, as a smaller

set of sentences was sufficient for the purposes of the developers. To

obtain predictability ratings for the keywords in the new sentences,

F IGURE 1 Design of the sentence repetition task. In each trial,
participants listened to a sentence (black waveform) embedded in
distracting background noise (grey waveform) whilst viewing a
fixation cross on the screen. With the onset of the sentence's final
keyword, a green traffic light prompted participants to orally
repeat the whole sentence as accurately as possible within a
5 s recording period. The preceding sentence context was either
predictive (green) or non-predictive of the keyword (orange).
Sentences varied orthogonally in intelligibility (ratio of speech
intensity to SRT)
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10 participants who did not take part in the fMRI experiment (age

range: 24–28 years; M = 26 years; 4 females) performed a written

sentence completion test (low predictability: <5 participants reported

the correct keyword; high predictability: >5 participants). Together,

8 new sentence pairs and the original German SPIN sentence pairs

yielded 216 experimental sentences (M = 2,143 ms, SD = 256 ms).

The remaining 20 new sentences were used in the adaptive tracking

procedure prior to the experiment (see Figure S2 for a detailed illus-

tration of how sentences were assigned to the experiment and the

adaptive tracking procedure).

Intelligibility of speech was manipulated by varying the intensity

of the experimental sentences relative to a constant signal intensity of

speech-shaped noise in the background. We created spectrally

speech-shaped noise by filtering white noise with the long-term aver-

age spectrum of all experimental sentences (Nilsson, Soli, &

Sullivan, 1994). The noise stream preceded and ensued single sen-

tences by 250 ms. Our six experimental intelligibility levels were sym-

metrically spaced around individual SRTs and logarithmically increased

towards the extremes. With our intelligibility levels, we aimed to

cover the full range of behavioural performance in each participant

and sample intermediate intelligibility in smaller steps as SNR changes

in this range affect performance more strongly.

2.2.3 | Sentence repetition task

Participants performed an overt sentence repetition task during fMRI.

They listened to single sentences whilst viewing a white fixation cross

on a black screen. With the onset of the keyword, a green traffic light

appeared on the screen and indicated the start of a 5,000 ms record-

ing period. During the recording period, participants orally repeated

the sentence as accurately as possible. Whenever participants did not

comprehend the complete sentence, they repeated the sentence frag-

ments they could grasp. If participants could not repeat any word,

they said that they did not understand the sentence. The intertrial

interval was randomly set between 2,000 and 7,000 ms and served as

an implicit baseline for the fMRI analysis. Sentences were presented

in a pseudorandomized order avoiding the repetition of one intelligi-

bility level more than three times in a row to prevent adaptation to

specific intelligibility levels. The experiment was split in six blocks of

approximately 8 min, which were intermitted by pauses of 20 s each.

All sentences were presented at a comfortable volume. Sound

was played via MR-Confon headphones (Magdeburg, Germany) and

recorded via a FOMRI-III microphone (Optoacoustics, Yehuda, Israel).

Stimulus presentation was controlled by Presentation software (ver-

sion 18.0, Neurobehavioral Systems, Berkeley, www.neurobs.com).

The experiment lasted 50 min.

2.2.4 | MRI acquisition

Whole brain fMRI data were acquired in one continuous run with a

3 Tesla Siemens Prisma Scanner and 32-channel head coil, using a dual

gradient-echo planar imaging multiband sequence (Feinberg et al., 2010)

with the following scanning parameters: TR = 2,000 ms; TE = 12 ms,

33 ms; flip angle = 90�; voxel size = 2.5 × 2.5 × 2.5 mmwith an interslice

gap of 0.25 mm; FOV = 204 mm; multiband acceleration factor = 2. In

sum, 1,500 volumes were acquired per participant, each consisting of

60 slices in axial direction and interleaved order. To increase coverage of

anterior temporal lobe regions, slices were tilted by 10� off the AC-PC

line. Field maps were acquired for later distortion correction

(TR = 620 ms; TE = 4 ms, 6.46 ms). Additionally, high-resolution

T1-weighted images were either obtained from the in-house database if

available or were acquired prior to the functional scanswith anMPRAGE

sequence (whole brain coverage, TR = 1,300 ms, TE = 2.98 ms, voxel

size = 1 × 1 × 1 mm,matrix size = 256 × 240 mm, flip angle = 9�).

2.3 | Data analysis

2.3.1 | Behavioural data analysis

All spoken response recordings from the main experiment were

cleaned from scanner noise using the noise reduction function in

Audacity (version 2.2.2, https://www.audacityteam.org/). For tran-

scriptions, we split the recordings in two independent sets and

assigned each recording set to one of two raters. To validate the qual-

ity of transcripts, a third rater additionally transcribed half of the

recordings in each set. Cohen's kappa coefficient (Cohen, 1960) indi-

cated very good inter-rater reliability for keywords (rater 1 and 3:

κ = .94; rater 2 and 3: κ = .97). Finally, one rater manually determined

onset and duration of oral responses.

As only predictability of the final keyword but not its preceding

context is explicitly manipulated in the German SPIN corpus, we lim-

ited behavioural analyses to keywords. After rating keywords as incor-

rect (including missing, incomplete and inaccurately inflected

keywords) or correct, we calculated the proportion of correctly

repeated keywords for each participant and condition.

In the behavioural analysis, we quantified the effects of predict-

ability and intelligibility on speech comprehension. For each partici-

pant, we fitted psychometric curves to the proportion of correct

keywords across intelligibility levels, separately for sentences with

low and high predictability. In detail, we fitted cumulative Gaussian

sigmoid functions as beta-binomial observer models using the Psignifit

toolbox (Fründ, Haenel, & Wichmann, 2011) in MATLAB (version

R2018b, MathWorks). The beta-binomial model extends the standard

binomial model by an overdispersion parameter which allows to carry

out statistical inference on data affected by performance fluctuations

challenging the serial independence of trials (Schütt, Harmeling,

Macke, & Wichmann, 2016). To estimate all five parameters describ-

ing the function (guess and lapse rate, threshold, width and over-

dispersion), we applied Psignifit's default priors for experiments with

binary single-trial outcome (here: correctly vs. incorrectly repeated

keyword; Schütt et al., 2016).

Goodness of psychometric fits was assessed by comparing the

empirical deviance (i.e., two times the log-likelihood ratio of the
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saturated model to the fitted model) with a Monte Carlo simulated

deviance distribution (Wichmann & Hill, 2001). For each psychometric

curve, a reference distribution was created by (a) randomly drawing

from a binomial distribution with n = 18 trials and p = fitted probability

of a correct response for each intelligibility level, (b) calculating the

deviance across intelligibility levels, and (c) repeating this procedure

for 10,000 samples. All empirical deviances fell within the 97.5% con-

fidence interval of their respective reference distribution, indicating

that psychometric curves properly represented observed behavioural

data in every participant. There was no significant difference between

the deviance of fits for sentences with low vs. high predictability

(t25 = 0.21, p = .839, r = 0.21, BF10 = 0.21). Parameter estimates

including credible intervals for single participants can be found in

Figure S3. To illustrate goodness of fit, we additionally calculated R2

based on the Kullback–Leibler divergence (R2
KL ) which represents the

reduction of uncertainty by the fitted model relative to a constant

model (Cameron & Windmeijer, 1997). On average, psychometric cur-

ves of sentences with high predictability yielded an R2
KL of 0.96

(SD = 0.04, range: 0.84–0.998), sentences with low predictability an

R2
KL of 0.94 (SD = 0.05, range: 0.79–0.997).

As all 12 experimental conditions become subsumed in two psy-

chometric curves, interaction effects can be evaluated by comparing

parameter estimates between curves for sentences with low and high

predictability. The threshold represents the intelligibility level at which

participants correctly repeat half of the keywords. Keeping all other

parameters constant, a threshold decrease indicates a comprehension

gain at intermediate but not high and low intelligibility levels. We

hypothesized that the interaction effect of intelligibility and predict-

ability manifests in a smaller threshold for sentences with high pre-

dictability when compared to low predictability. Additionally, we

expected that an increase in intelligibility leads to a stronger compre-

hension gain for sentences with high relative to low predictability. The

sensitivity to changes in intelligibility is reflected by the slope, which

is inversely related to the width and here describes the steepness of a

psychometric curve at a proportion correct of 0.5. To explore whether

also other parameters of psychometric curves were modulated by the

predictability of sentences, we compared guess and lapse rate

(i.e., lower and upper asymptote) as well as width between sentences

with high and low predictability. Parameter estimates of the two psy-

chometric curves were contrasted using a paired-sample t-test (or a

Wilcoxon signed-rank test whenever the assumption of normality was

not met). Additionally, we regressed out SRTs from psychometric

parameter estimates and reran all t-tests between sentences with low

and high predictability to control for potential confounding effects of

overall inter-individual differences in auditory perception.

We quantified the strength of evidence in favour of our hypothe-

ses by calculating the Bayes Factor (BF; Jeffreys, 1961) for all t-tests

and correlations carried out in the behavioural analyses using the

default settings in JASP (i.e., comparing against a Cauchy prior with

scale = √2/2; version 0.8.6.0). Whereas BF10 = 1 supports neither the

alternative nor the null hypothesis, BF10 > 3 indicates increasingly

substantial support for the alternative hypothesis (Kass &

Raftery, 1995). For BF10 = 3, the data are three times more likely to

have occurred under the alternative hypothesis than the null hypothe-

sis. As an additional effect size measure, we report Pearson's correla-

tion coefficient r (Rosenthal & Rubin, 1994).

2.3.2 | Functional MRI data

Functional MRI data were analysed using the Statistical Parametric

Mapping software (SPM12, version 7219, Wellcome Department of

Imaging Neuroscience, London, UK) and MATLAB (version R2017b).

Preprocessing steps were applied in line with SPM's default settings

and comprised realignment, distortion correction, segmentation, co-

registration to the individual high-resolution structural T1-scan and

spatial normalization to the standard template by the Montreal Neu-

rological Institute (MNI) whilst keeping the original voxel size. Vol-

umes were smoothed using a 5 mm full width at half maximum

Gaussian kernel to allow statistical inference based on Gaussian

random-field theory (Friston, Worsley, Frackowiak, Mazziotta, &

Evans, 1994). Realignment parameters were obtained from the first

echo. Temporal signal-to-noise ratio maps were calculated for each

echo based on the first 30 volumes of each participant. Echoes were

combined using the information from the corresponding temporal

signal-to-noise ratio maps as weighting factors and realigned to the

first scan. This approach has been proposed to increase SNR in brain

regions typically suffering from signal loss (e.g., anterior temporal lobe

regions; see Halai, Welbourne, Embleton, & Parkes, 2014 for a similar

approach). Motion parameters were calculated from the parameters

obtained by realignment. Additionally, framewise displacement as

described by Power, Barnes, Snyder, Schlaggar, & Petersen, 2012 was

calculated as an index of head movement. Volumes that exceeded a

framewise displacement of 0.9 (Siegel et al., 2014) were included as

nuisance regressors.

At the single-participant level, we set up a general linear model

(GLM). For each experimental condition, onset and duration of the

sentence presentation period were modelled with a stick function and

convolved with SPM's canonical hemodynamic response function.

Additionally, we modelled onset and duration of the sentence repeti-

tion periods using individual speech onset times and speech durations.

We further included motion parameters obtained from the realign-

ment step and framewise displacement as regressors of no interest.

Data were high-pass filtered with a cut-off at 128 s and serial correla-

tions were taken into account using a first-order autoregressive

model. Each experimental regressor was contrasted against the

implicit baseline (intertrial interval), thus yielding 12 contrast images

of interest, one for each experimental condition. Additionally, an F-

contrast containing the experimental regressors was set up to capture

experimental effects of interest and exclude effects of no interest

(i.e., sentence repetition periods, motion-related activity).

At the group level, these contrasts were submitted to a random-

effects flexible factorial design with the experimental factors predict-

ability (high, low) and intelligibility (−9 to +9 dB) entered as interaction

term, and an additional factor modelling the subjects' constant. First,

we set up a t-contrast modelling a linear increase in intelligibility
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(−9 > −4 > −1 > +1 > +4 > +9 dB SNR) to reveal brain regions tuning

to increasing clarity of speech irrespective of predictability (i.e., main

effect of intelligibility).

Further, we were interested in those brain regions showing a lin-

ear or quadratic interaction of intelligibility and predictability. The

interaction contrasts were set up as separate t-contrasts for linearly

(high > low, −9 > −4 > −1 > +1 > +4 > +9 dB SNR relative to SRT)

and quadratically modelled intelligibility (high > low, −9 < −4 <

−1 = +1 > +4 > +9 dB). These parametric interaction contrasts were

set up in both directions (high > low/low > high).

Single-participant's parameter estimates were extracted from sig-

nificant peak voxels and transformed into percent signal change using

the rfx toolbox (Gläscher, 2009) for illustration purposes. Figures were

created using MRIcroGL (www.mricro.com, version v1.0.20180623).

All effects for the whole-brain group analysis are reported at a

voxel-level family-wise (FWE) correcting threshold of p < .05 to con-

trol for multiple comparisons. We do not report clusters with less than

10 voxels, as we consider such small clusters biologically implausible.

Local maxima are reported in MNI space. We used the SPM Anatomy

Toolbox (Eickhoff et al., 2005, version 2.2c) and the Harvard-Oxford

cortical structural atlas (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) to classify

the anatomical correspondence of significant voxels and clusters.

2.3.3 | Brain–behaviour correlation

We identified brain regions reflecting the behavioural predictability

gain across intelligibility levels by correlating neural response patterns

with individual task performance. On the behavioural level, we

extracted the proportion of correctly repeated keywords in each

experimental condition and participant as modelled by psychometric

curves.

To quantify how strongly the proportion correct in each intelligi-

bility level was affected by the predictability of sentences for single

participants, we weighted the interaction contrast by behaviour. The

interaction contrast was built from the Kronecker product of differen-

tial predictability and intelligibility effects. A differential effect is the

transposed orthonormal basis of differences between columns of an l-

by-l identity matrix (predictability: l = 2, intelligibility: l = 6; for a

detailed description see Henson, 2015). Multiplying this F-contrast

with the condition-wise task performance of each participant yielded

the proportion of variance in performance explained by the interac-

tion, that is, the predictability gain (or loss) in each intelligibility level.

On the neural level, we limited our analysis to all voxels consis-

tently implicated in task-related activity as indicated by a significant F-

contrast (puncorrected < .05) calculated across single-participant parame-

ter estimates of all experimental conditions (see mask in Figure S4). For

each voxel within the mask, we correlated single-participant behav-

ioural predictability gain and neural parameter estimates across condi-

tions, using a custom Matlab script. After applying Fisher's z-

transformation to all Pearson product–moment correlation coeffi-

cients, single-participant maps were submitted to the Local Indicators

of Spatial Association (LISA) group-level one-sample t-test (Lohmann

et al., 2018). LISA is a threshold-free framework that allows to find con-

sistent effects in small brain regions by applying a non-linear filter to

statistical maps before controlling for multiple comparisons at a false

discovery rate (FDR) < 0.05. Voxel-wise FDR scores were obtained

from a Bayesian two-component mixture model in which filtered statis-

tical values are compared to a null distribution based on 5,000 permuta-

tions (i.e., randomly switching signs of statistical maps in participants).

2.4 | Dynamic causal modelling (DCM)

To investigate condition-specific interactions between brain areas, we

conducted two separate bilinear one-state deterministic Dynamic

Causal Modelling (DCM) analyses using the DCM 12.5 implementa-

tion in SPM 12. DCM is a forward-model-based method that models

the dynamics of hidden neuronal states within a predefined set of

regions and relates them to the measured blood-oxygen-level-

dependent (BOLD) signal (Friston, Harrison, & Penny, 2003). Using

this Bayesian framework, modulations of effective connectivity by

experimental conditions can be assessed.

2.4.1 | Seed region selection

According to our main hypothesis, we were interested in the neural

network dynamics underlying the predictability gain in speech in noise

processing and the role of left angular gyrus. In the GLM analysis, we

found two distinct networks implicated in the neural interaction of

predictability and intelligibility: the semantic network and the cingulo-

opercular network (CO). Here, we test effective connectivity in a sub-

set of regions within each network. The semantic model was based on

the GLM interaction contrast (high > low, linearly modelled intelligibil-

ity) and included left posterior middle temporal gyrus (pMTG), PGa

and PGp as seed regions. This model specification allowed to investi-

gate differential contributions of subregions within AG, namely PGa

and PGp. Based on the opposite GLM interaction contrast (low > high,

linearly modelled intelligibility), we specified the CO model including

pre-SMA/paracingulate gyrus as well as left and right anterior insula

as seed regions.

For each subject, we identified the peak voxel nearest to the

group maximum of each seed region within a sphere of 10 mm radius

using the appropriate first-level contrast. Individual timeseries of each

region (summarized as the first eigenvariate) were extracted from all

voxels within a sphere of 6 mm radius centred on the individual maxi-

mum and exceeding the liberal threshold of puncorrected < .05. The

extracted timeseries were adjusted to the respective effects-of-

interest F-contrast to exclude variance of no interest. The exact ana-

tomical localization of individual seed regions was verified using

SPM's Anatomy Toolbox (Eickhoff et al., 2005). For spatially adjacent

PGa and PGp, we made sure that seed regions were not overlapping

within each subject.

The summarised timeseries together with information about the

onsets of the relevant conditions served as input for the DCM. The
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design matrix for the DCM analyses differed from the design matrix

used in the GLM analysis in the following way: seven regressors were

defined, modelling the onsets of (a) all experimental stimuli, (b) high

predictable sentences at low intelligibility levels (−9, −4 dB SNR rela-

tive to SRT), (c) high predictable sentences at medium intelligibility

levels (−1, +1 dB SNR relative to SRT), (d) high predictable sentences

at high intelligibility levels (+4, +9 dB SNR relative to SRT). The

remaining regressors modelled the onsets of low predictable sen-

tences at low, medium and high intelligibility, respectively. The first

regressor served as sensory input (i.e., driving input) of the stimuli into

the model. Regressors (2)–(7) were used as modulatory inputs and

encoded predictability and intelligibility of the stimulus. Considering

that each experimental condition comprised only 18 trials, we aimed

to increase the signal-to-noise ratio of our DCM parameter estimates

by binning neighbouring intelligibility levels into groups of low,

medium, and high intelligibility. As inputs were not mean-centred,

intrinsic parameter estimates can be interpreted as average connec-

tion strength in the absence of experimental manipulations

(Marreiros, Kiebel, & Friston, 2008).

2.4.2 | DCM model architecture

At the first level, 84 models were specified for each subject. All

models consisted of three types of parameters: (a) intrinsic connec-

tions between two nodes (unidirectional or bidirectional), (b) changes

in coupling strength between regions dependent on the experimental

manipulation (modulatory effects), and (c) direct influence of external

input on a region (driving input).

For both DCM analyses, we modelled full reciprocal intrinsic con-

nections as well as (inhibitory) self-connections. The driving input was

set to either one region at a time, or all possible combinations

between regions (resulting in 7 possible combinations). The following

potential modulatory influences were considered: either one connec-

tion (except for the self-connections) was modulated separately or

two afferent or efferent connections were modulated by all experi-

mental conditions at a time (12 possible combinations; see Figure S5

for a schematic overview of the model space). Since family-level infer-

ence has been found especially useful in case of large model spaces

(Penny et al., 2010), the resulting model space of 7 × 12 models was

partitioned into 12 families, grouping models according to the modu-

latory input (i.e., within a family, the modulating connection was kept

constant whilst the driving input was varied). We used the same

model architecture for both DCM analyses.

All 84 models per participant were inverted using a Variational

Bayes approach to estimate parameters that provide the best trade-

off between accuracy and complexity quantified by free energy

(Friston, Kilner, & Harrison, 2006; Friston, Mattout, Trujillo-Barreto,

Ashburner, & Penny, 2007). At the second level, a random-effects

Bayesian Model Selection procedure was applied to identify the most

probable family of models given the fMRI data quantified by the

respective exceedance probability (Penny et al., 2010; Stephan,

Penny, Daunizeau, Moran, & Friston, 2009). Single-subject parameter

estimates were averaged across all models within the winning family

using Bayesian Model Averaging. Intrinsic parameter estimates were

passed to a one-sample t-test. Modulatory parameter estimates were

submitted to a two-way repeated measures analysis of variance

(ANOVA) with the within-subject factors predictability (high, low) and

intelligibility (low, medium, high) to investigate the interaction effect

on modulated connections between regions. ANOVAs were calcu-

lated in JASP (version 0.9.1); Greenhouse–Geisser correction was

applied if Mauchly's test indicated that the assumption of sphericity

was not met. The strength of ANOVA effects was quantified with par-

tial eta squared η2p

� �
.

Finally, we investigated the within-subject relationship of behav-

ioural comprehension and functional connectivity in the brain. For sin-

gle participants, we resorted to the condition-wise proportion of

behavioural performance explained by the interaction of predictability

and intelligibility already used to relate BOLD activity to behavioural

performance. To match the number of DCM parameter estimates, we

averaged behavioural data according to the binning scheme described

above, thus yielding six behavioural values (predictability: high, low;

intelligibility: high, medium, low). Those connections with a significant

intelligibility-by-predictability interaction of modulatory parameters

were correlated with behavioural performance across binned condi-

tions at the single-participant level. Fisher's z-transformed Pearson

product–moment correlation coefficients were tested against zero

with a one-sample t-test. This analysis was run in Matlab using a cus-

tom script.

3 | RESULTS

3.1 | Semantic predictability benefits speech
comprehension at intermediate levels of intelligibility

On average, participants repeated 52.33% of keywords correctly

(SD = 8.09). The threshold of psychometric curves fitted to the pro-

portion of correctly repeated keywords across intelligibility levels

decreased for sentences with high predictability when compared to

low predictability (t25 = −9.87, p < .001, r = 0.57, BF10 > 1,000;

Figure 2a). This threshold reflected the facilitatory effect that high

semantic predictability had on speech comprehension at intermediate

intelligibility levels. Moreover, the lapse rate was smaller for sentences

with high compared to low predictability (Z = −2.78, p = .005,

r = 0.55), indicating a predictability gain that persisted (to a smaller

degree) beyond intermediate intelligibility in the highest intelligibility

level.

There was no significant difference between sentences with low

and high predictability for slope (t25 = 1.6, p = .122, r = −0.11,

BF10 = 0.64), width (t25 = 1.84, p = .077, r = 0.11, BF10 = 0.896) and

guess rate (Z = 0.27, p = .79, r = 0.05) of psychometric curves. Impor-

tantly, even though SRTs from the adaptive tracking procedure were

strongly correlated with the overall proportion of correctly repeated
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keywords (r = 0.89, p < .001, BF10 > 1,000; see Figure S6), effects of

predictability on psychometric curves were unaffected by these inter-

individual differences in auditory perception. When controlling for the

potentially confounding influence of individual SRTs on parameter

estimates, effects of threshold (t25 = −9.31, p < .001, r = 0.13,

BF10 > 1,000) and lapse rate (t25 = −2.09, p = .047, r = 0.06,

BF10 = 1.33) remained significant and all other effects remained non-

significant.

3.2 | A fronto-temporo-parietal network is tuned
towards intelligible speech

First, we were interested in brain regions showing stronger activity

for increasing intelligibility of speech stimuli, irrespective of sentence

predictability. The parametric variation of intelligibility showed

increased activation in a set of regions comprising anterior-to-

posterior bilateral superior temporal gyri (STG), left precentral, and

postcentral gyrus and left inferior frontal gyrus (IFG) as well as a large

left-hemispheric temporo-parietal cluster and left precuneus

(Figure 3). These regions have previously been reported to support

auditory speech comprehension and suggested to be tuned to percep-

tual clarity (Rauschecker & Scott, 2009).

F IGURE 2 Behavioural results of the sentence repetition task.
(a) Psychometric functions (coloured lines) were fitted to the
proportion of correctly repeated keywords (coloured dots) across
intelligibility levels for sentences with low (orange) and high
predictability (green); grand average is displayed for illustration
purposes. (b) The threshold of sentences with low predictability
shifted towards more intelligible levels when compared to
sentences with high predictability (p < .001; top). There was no
evidence for a slope difference between sentences with low and
high predictability (p = .122; bottom). Density plots illustrate the
difference between the proportions correct of sentences with high
vs. low predictability

F IGURE 3 Main effect of increasing speech intelligibility across the whole cortex. Top: Activation map thresholded at p < .05
(FWE-corrected). Bottom: Average parameter estimates (percent signal change) for each experimental condition at peak voxels of left AG
(MNI: x = −47, y = −67, z = 25), left IFG (MNI: x = −54, y = 33, z = 8) and right STG (MNI: x = 53, y = −12, z = 2). Error bars represent the
standard error of the mean (SEM). AG, angular gyrus; IFG, inferior frontal gyrus; prec, precuneus; SFG, superior frontal gyrus; STG, superior
temporal gyrus
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3.3 | Increasing intelligibility of high predictable
sentences enhances recruitment of left-hemispheric
temporo-parietal regions

Further, we were interested in brain regions that were differentially

affected by predictability at different levels of intelligibility. Higher

activation for sentences with high compared to low predictability

under linearly increasing intelligibility was found in left-hemispheric

regions encompassing pMTG, middle to posterior cingulate cortex,

two separate clusters in left AG (PGa and PGp), inferior temporal

gyrus, precuneus and supramarginal gyrus (SMG; Figure 4, Table 1).

Similar but weaker activation patterns were found for the quadrati-

cally modulated interaction contrast. Interestingly, the two separate

left-hemispheric AG clusters fell into different cytoarchitectonic sub-

regions: the larger cluster was mainly located in the anterior dorsal

portion of AG (PGa & PFm) at the boundary to SMG and the smaller

cluster was mainly located in the posterior portion of AG (PGp) in

close proximity to the middle occipital gyrus (MOG). The AG clusters

and the pMTG cluster showed a pattern of deactivation relative to

the fixation baseline with relatively less deactivation for high predict-

able as compared to low predictable sentences (Figure 4b). As both,

the AG and pMTG are considered key regions of semantic processing,

their time series were submitted to later connectivity analyses.

3.4 | Increasing intelligibility of low predictable
sentences enhances recruitment of domain-general
regions

The opposite interaction contrast revealed greater activity for low

compared to high predictable sentences under linearly increasing

intelligibility and encompassed pre-SMA/paracingulate gyrus, left-

F IGURE 4 Group-level fMRI results illustrating brain regions that are sensitive to the interaction of intelligibility and predictability.
(a) Parameter estimates illustrate the average interaction effect, extracted from peak voxels of DCM seed regions for the semantic network.
(b) Brain regions showing a significant interaction; green = high > low predictable sentences; orange = low > high predictable sentences. The
activation map is thresholded at pFWE-corrected < 0.05. (c) Parameter estimates illustrate the interaction effect, extracted from peak voxels of DCM
seed regions for the cingulo-opercular (CO) network. Error bars represent ±1 SEM. aIns, anterior insula; IFG, inferior frontal gyrus; MCC/PCC,
middle and posterior cingulate cortex; PGa, anterior angular gyrus; PGp, posterior angular gyrus; pMTG, posterior middle temporal gyrus; pre-
SMA, pre-supplementary motor area; SMG, supramarginal gyrus
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hemispheric IFG (pars triangularis; BA 45) and the bilateral anterior

insula (see Figure 4). These regions overlap with the cingulo-opercular

network (Dosenbach et al., 2008), which is frequently reported in con-

ditions associated with high task demands. To investigate context-

dependent changes within this network, the connectivity between

pre-SMA/paracingulate gyrus and bilateral insulae was analysed in a

later DCM analysis. Note that the interaction contrasts modelling

intelligibility quadratically (i.e., inverted u-shape with the highest acti-

vation at intermediate levels of intelligibility) resulted in a similar pat-

tern of brain regions and therefore are not shown here.

3.5 | The extended semantic system scales to the
behavioural predictability gain dependent on speech
intelligibility

The proportion of individual task performance explained by the inter-

action of predictability and intelligibility in each experimental condi-

tion correlated positively with BOLD activity in a broad semantic

network (Figure 5; Binder et al., 2009). At intermediate levels of intel-

ligibility, neural activity increased for sentences with high

predictability in those participants exploiting a stronger behavioural

predictability gain.

In line with the linear interaction effect (see Table 1, high > low

predictability), modelling the behavioural interaction effect revealed

significant clusters in parietal and lateral temporal cortex. A broad

left-hemispheric and a smaller right-hemispheric cluster were

observed in PGp (Table 2). Additional clusters were found in

bilateral pMTG.

More importantly, the behavioural interaction effect mapped

onto frontal and ventromedial brain regions not implicated in the lin-

ear interaction effect. The frontal pole encompassed one broad medial

cluster spanning from the left to the right hemisphere as well as a

right-hemispheric cluster at the border with IFG and a left-

hemispheric cluster extending into the superior frontal gyrus (Table 2).

Near the inferior-posterior frontal pole, we observed bilateral clusters

in IFG. The limbic lobes contained a bilateral cluster in the posterior

subcallosal cortex that was complemented by a bilateral cluster in

inferior paracingulate gyrus extending into anterior subcallosal cortex

as well as cingulate gyrus and frontal medial cortex. Additional clus-

ters comprised the anterior division of bilateral superior para-

hippocampal gyrus and left medial-posterior insular cortex. In the

TABLE 1 Results from the context-dependent interaction

MNI

Location Hemisphere x y z t Cluster size

High > low predictable sentences

Middle cingulate cortex R 3 –34 38 7.49 159

Middle cingulate cortex L –4 –30 42 7.17 Subcluster

Middle temporal gyrus L −60 −52 −5 6.85 150

Middle temporal gyrus L −54 −62 2 6.6 Subcluster

Angular gyrus (PFm/PGa) L −42 −62 50 6.47 135

Angular gyrus (PGa) L −42 −70 42 6.31 Subcluster

Angular gyrus (PGp) L −34 −77 42 6.02 Subcluster

Angular Gyrus (PGp)/middle occipital gyrus L −34 −77 30 6.34 51

Angular gyrus (PGp) L −42 −77 28 5.63 Subcluster

Supramarginal gyrus L −60 −30 30 5.91 26

Inferior temporal gyrus L −47 −52 −25 5.82 21

Precuneus L −10 −47 55 5.62 15

Low > high predictable sentences

Presupplementary motor area/paracingulate gyrus R/L 0 16 50 7.72 138

Inferior frontal gyrus (p. orbitalis, area 45) L −42 26 −10 6.47 106

Insular cortex L −30 26 −2 6.43 Subcluster

Inferior frontal gyrus (p. triangularis, area 45) L −50 23 5 5.9 Subcluster

Inferior frontal gyrus (p. triangularis, area 45) L −44 20 0 5.88 Subcluster

Insular cortex R 30 26 −2 6.13 24

Inferior frontal gyrus (p. triangularis, BA 45) L −57 20 15 5.71 16

Inferior frontal gyrus (p. triangularis, BA 45) L −50 20 18 5.07 Subcluster

Note: High > low predictable sentences: Regions showing greater activity for high as compared to low predictable sentences under increasing intelligibility;

Low > high predictable sentences: Regions showing greater activity for low as compared to high predictable sentences under increasing intelligibility.

Regions are reported at a peak-level FWE-correcting threshold at an alpha of .05. Seed regions for DCM analyses are highlighted in bold.
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medial temporal lobe, we found a left-hemispheric cluster in the pos-

terior division of the temporal fusiform gyrus. No significant cluster in

the brain showed a negative correlation with the interaction effect on

task performance.

3.6 | Connectivity between subregions of the
angular gyrus increases with higher intelligibility

Next, to investigate context-dependent changes in effective connec-

tivity between regions identified in the mass univariate GLM analysis,

we performed two separate DCM analyses, one within the semantic

system and one within the cingulo-opercular network.

The family of models with a modulatory influence on the connection

from PGp to pMTG and PGa was identified as the winning family by

means of Bayesian model selection (exceedance probability: 0.65; see

Figure S7a for an overview of all exceedance probabilities). All intrinsic

connections, except for self-connections, were positive (see Table S1),

although only the outgoing connections from pMTG and the self-

connections reached statistical significance. Within the winning family,

there was a significant main effect of intelligibility on the connection from

PGp to PGa (F1.56, 39.07 = 3.57, p = .048, η2p = .13, Greenhouse–Geisser

corrected, Mauchly's sphericity test: p = .02). The modulatory influ-

ence of intelligibility increased connectivity from PGp to PGa when

speech became more intelligible. The main effect of predictability (F1,

25 = 1.86, p = .185, η2p = .07) and the interaction effect (F2, 50 = 0.71,

p = .496, η2p = .03) were not significant. There was no significant effect

on the connection from PGp to pMTG (main effect predictability: F1,

25 = 0.02, p = .899, η2p = .001; main effect intelligibility: F2, 50 = 0.35,

p = .705, η2p = .01; interaction effect: F2, 50 = 1.55, p = .222, η2p = .06).

3.7 | Inhibitory connectivity within the cingulo-
opercular network increases with the individual
predictability gain at intermediate intelligibility

For the cingulo-opercular network model, the family of models with a

modulatory effect on the connections from pre-SMA and right insula

F IGURE 5 Projection of activity onto the behavioural predictability gain across levels of intelligibility. (a) The condition-specific proportion of
behavioural performance explained by the interaction of intelligibility and predictability in each participant (middle line plot) was correlated with
individual parameter estimates of single-voxel BOLD activity (left and right bar plots; exemplary grand average parameter estimates for two peak
voxels). Thin lines in the line plot represent single participants; fat lines represent grand average. Error bars represent ±1 SEM. (b) Group statistics
revealed brain areas modulated by the single-participant interaction effect of intelligibility and predictability on speech comprehension. p-Values
were FDR-corrected within a mask of voxels responsive to the listening task (for an exhaustive list of clusters see Table 2). FP, frontal pole; PCG,
paracingulate gyrus; PGp, posterior angular gyrus; pMTG, posterior middle temporal gyrus; PHG, parahippocampal gyrus; SCC, subcallosal cortex;
SFG, superior frontal gyrus
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to left insula was identified as the winning family, with an exceedance

probability of 0.73 (see Figure S7b).

In the winning model, there was a significant interaction in the

connection from pre-SMA to left insula (F2,50 = 4.74, p = .013, η2p
= .016): inhibitory influence was less pronounced for low predictable

sentences with increasing intelligibility but stronger for high predict-

able sentences with increasing intelligibility. The respective main

effects of intelligibility (F2, 50 = 0.55, p = .583, η2p = .02) and predict-

ability (F1, 25 = 0.11, p = .747, η2p = .004) were not significant (see

Figure 6a and Table S2). There was no significant effect on the con-

nection from right insula to left insula (main effect intelligibility: F2,

50 = 0.36, p = .702, η2p = .01; main effect predictability: F1, 25 = 1.64,

p = .212, η2p = .06; interaction effect: F2, 50 = 2.07, p = .137, η2p = .08).

Following up the interaction effect in connectivity between pre-

SMA and left insula with a post-hoc analysis, we investigated how

individual connectivity patterns match the individual pattern of the

behavioural predictability gain across intelligibility levels. We found a

significant negative correlation (t25 = −3.919, p = .004, BF10 = 53.17),

indicating that the individual predictability gain at medium intelligibil-

ity was associated with stronger inhibitory influence from pre-SMA to

the left insula for highly predictable speech (see Figure 6b).

4 | DISCUSSION

In the present fMRI study, we investigated the neural underpinnings

of the semantic predictability gain during speech processing in noisy

listening situations at the network level. First, we showed that highly

predictable but acoustically degraded speech engages left-

hemispheric semantic regions and modulates the individual compre-

hension gain in behaviour via additional frontal and medial semantic

regions. Second, we found that highly intelligible speech strengthens

effective connectivity between two subregions of a key semantic net-

work node in the left angular gyrus. Third, we showed for the cingulo-

opercular network that inhibitory influence from pre-SMA to left

insula was stronger for increasing intelligibility of highly predictable

speech but was less pronounced for low predictability. Notably, indi-

vidual behavioural response patterns were negatively correlated with

individual connectivity patterns. Specifically, the higher the behav-

ioural comprehension gain at intermediate intelligibility was, the

stronger the inhibitory connectivity strength within individual sub-

jects. These findings suggest that semantic predictability facilitates

speech comprehension in challenging listening conditions via

upregulation of the semantic network and active inhibition between

domain-general regions.

Our sentence repetition task was designed to overcome the

experimental shortcomings of previous studies and investigate speech

comprehension in noise on the basis of rich neural and behavioural

data. Hitherto, fMRI studies on the neural underpinnings of degraded

speech processing had mainly used sparse temporal sampling to avoid

interference of scanner noise with experimentally manipulated signal-

to-noise ratio of speech stimuli (Erb et al., 2013; Golestani

et al., 2013; Obleser & Kotz, 2010). As we aimed to investigate speech

processing directly during (compared to after) listening and to improve

sampling density for our connectivity analyses, BOLD activity in the

present study was continuously recorded throughout the whole

TABLE 2 Brain areas sensitive to the interaction effect of intelligibility and predictability on task performance

MNI

Location Hemisphere x y z t Cluster size

Brain behaviour correlation

Frontal pole L −5 56 5 3.53 161

R 48 38 3 3.96 103

L −12 56 35 3.71 26

Angular gyrus (PGp) L −50 −70 33 3.85 100

R 46 −67 25 3.45 55

Subcallosal cortex L −2 6 −13 4.22 78

Middle temporal gyrus (temporo-occipital) L −60 −55 −5 3.65 80

R 58 −45 −5 4.04 25

L −57 −65 10 2.76 2

Parahippocampal gyrus (anterior) R 21 1 −18 3.74 55

L −25 −2 −20 4.31 51

Paracingulate gyrus R 1 41 −8 3.96 54

Insular cortex L −33 −17 5 3.74 17

Temporal fusiform gyrus (posterior) L −42 −30 −23 3.53 5

Inferior frontal gyrus (p. orbitalis) R 28 31 −15 3.94 13

L −37 36 −10 3.71 3

Note: Each cluster (pFDR < .05) is described by hemisphere, MNI coordinates and t-value of its peak voxel as well as the number of voxels it contains.
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experiment. In line with studies using temporal sparse sampling

(Abrams et al., 2013; Davis & Johnsrude, 2003; Rauschecker &

Scott, 2009), we found activity in regions associated with auditory

comprehensibility (e.g., bilateral STG as well as left IFG) to be stronger

with increasing intelligibility of speech. This replication of the intelligi-

bility effect speaks for continuous scanning as a feasible technique to

investigate online speech processing.

Crucially, in contrast to previous studies with only few and fixed

experimental levels of speech degradation, we covered the full range of

intelligibility from hardly to easily comprehensible speech in the individ-

ual participant. Note that our experimental design contained neither a

“noise only” nor a clear speech condition. At the behavioural level, we

were nevertheless able to fit full psychometric curves (i.e., speech

comprehension as a function of intelligibility, see Figure 2). We found

the psychometric curve to shift towards less intelligible levels for sen-

tences with high compared to low semantic predictability. This thresh-

old shift is an established effect in more challenging comprehension

tasks (Shannon, Fu, & Galvin, 2004) and reflects a comprehension bene-

fit for predictable speech at intermediate intelligibility.

As left AG has been found to show a strong differentiation

between sentences with high and low predictability at intermediate

intelligibility (Obleser et al., 2007; Obleser & Kotz, 2010) and to

exhibit functional relevance in mediating the comprehension gain

(Hartwigsen et al., 2015), this region has been proposed to serve top-

down activation of semantic concepts that facilitate speech compre-

hension (Obleser & Kotz, 2010). However, as an unexpected finding,

F IGURE 6 DCM results. (a) Network architecture of
the semantic (top) and cingulo-opercular network
(bottom); grey arrows with parameter estimates indicate
significant intrinsic connections; black arrows indicate
modulatory connections. Bar graphs show the modulation
of connections by intelligibility (low, medium, high;
binned) and predictability (low, high). The connection
from PGp to PGa was significantly modulated by the main
effect of intelligibility, the connection from pre-SMA to

left insula was sensitive to the interaction of predictability
and intelligibility. Bar height represents grand average,
error bars represent ±1 SEM. (b) Scatterplots (left) show
the negative correlation of the condition-wise
predictability gain with the condition-wise modulatory
parameter estimates from pre-SMA to left insula in two
exemplary participants. Complementary, line plots
(middle) illustrate patterns of behavioural performance
(solid line) and modulation strength (dashed line) resolved
for intelligibility (low, medium, high) and predictability
(low = orange; high = green). Raincloud plot (right) shows
the distribution of individual z-transformed correlations
across all participants; dots representing participants from
scatter and line plots are highlighted in colour. n.s., not
significant, *p < .05. l INS, left anterior insula; PGa,
anterior angular gyrus; PGp, posterior angular gyrus;
pMTG, posterior middle temporal gyrus; pre-SMA, pre-
supplementary motor area; r INS, right anterior insula
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two separate AG clusters showed stronger activation for sentences

with high compared to low predictability under linearly increasing

intelligibility: a larger cluster mainly falling into PGa at the boundary

to the supramarginal gyrus, and a smaller cluster at the boundary

between PGp and middle occipital gyrus. Importantly, these AG subre-

gions have been discussed to subserve different functions (Bonnici

et al., 2016; Noonan et al., 2013; Seghier, Fagan, & Price, 2010). PGa

is implicated in domain-general attention and converges with coordi-

nates commonly reported as AG activation during speech in noise

processing (Clos et al., 2014; Guediche, Blumstein, Fiez, & Holt, 2014;

Obleser et al., 2007; Obleser & Kotz, 2010). In contrast, PGp activa-

tion has often been labelled as MOG (Guediche, Reilly, Santiago,

Laurent, & Blumstein, 2016; McGettigan et al., 2012). In these studies,

MOG was interpreted to provide free resources otherwise recruited

by visual processing to the auditory domain during resource-

demanding speech in noise comprehension. Other studies have asso-

ciated PGp activation with “pure” semantic processing (Bonnici

et al., 2016; Seghier et al., 2010). Our findings implicate that both AG

subregions contribute to successful speech comprehension under

challenging listening conditions when semantic cues are available.

To further characterize the functional contributions of anterior

and posterior AG, we analysed the connectivity between these subre-

gions and observed that coupling from posterior to anterior AG was

strengthened when speech became more intelligible. Surprisingly, this

connection was not modulated by the predictability of speech. This

finding suggests that the interplay of AG subregions might support

the integration of lexical information in general, but does not specifi-

cally facilitate integration of semantic information. Further, this find-

ing speaks against the view that the anterior portion (PGa) is

associated with goal-directed attention processes as one would

expect attentional demands to be highest at intermediate levels of

intelligibility and not at the most intelligible levels. However, it is

important to bear in mind that the effective connectivity results are

restricted to the limited set of regions included in the network models.

Aside from AG, we largely found the same regions (e.g., left pMTG,

left SMG, left inferior temporal gyrus, posterior cingulate gyrus and

precuneus) that were previously implicated in processing of sentences

with high predictability under increasing intelligibility (Golestani

et al., 2013; Obleser et al., 2007; Obleser & Kotz, 2010). These

regions overlap with the previously described core semantic (control)

regions (Binder et al., 2009; Jefferies, 2013) and form a functional net-

work during degraded speech processing (Obleser et al., 2007).

To complement the linear interaction contrast, we also modelled

task performance in the brain and expected to find the left-

hemispheric semantic network strengthened by this contrast fine-

tuned to inter-subject variation. Indeed, the semantic core regions

extended to their homologous regions in the right hemisphere. Strik-

ingly, additional semantic regions scaled in activation with the behav-

ioural predictability gain at intermediate intelligibility. These regions

largely pertained to two subsets of the semantic network: lateral and

ventral temporal cortex includes left temporal fusiform gyrus and para-

hippocampal gyrus, whereas left ventromedial prefrontal cortex includes

subcallosal cortex and frontal pole (Binder et al., 2009). The temporal

cortex has been shown to communicate with the hippocampus via a

connection from temporal fusiform gyrus to parahippocampal gyrus

evident in structural (Powell et al., 2004) and functional imaging

(Teipel et al., 2010). It has been suggested that this pathway is used to

encode semantic information (Levy, Bayley, & Squire, 2004;

Martin, 2007). Critically, ventral temporal activation has been impli-

cated in the processing of semantically unambiguous speech in a

memory-demanding word recognition task (Rodd, Davis, &

Johnsrude, 2005) and processing of visually presented words that

were correctly repeated during later recall (Strange, Otten, Josephs,

Rugg, & Dolan, 2002). In the sentence repetition task employed here,

memory formation is crucial to correctly repeat the sentence after lis-

tening. The association of more accurate recall with stronger ventral

temporal activation for predictable but degraded sentences suggests

that memory engagement is most crucial for successful speech com-

prehension when semantic information is available for integration and

must be protected against competing but irrelevant information

(i.e., background noise). In line with this notion, prefrontal cortex

regions implicated in executive control functioning (Duncan &

Owen, 2000) show increased activation when efficient management

of cognitive resources promises the strongest gain in performance.

Whilst we will refrain from overinterpreting these exploratory results,

it is worth highlighting that the role of executive control and memory

formation might have been often overlooked in previous studies on

speech comprehension despite their face validity when it comes to

understanding individual hearing difficulties.

As a last key finding of our study, challenging speech comprehension

in the absence of semantic constraints is accompanied by an increase of

activity in the pre-SMA and bilateral anterior insulae, which are regions

associated with the cingulo-opercular network. This finding is broadly in

line with previous reports on activation of cingulo-opercular regions dur-

ing effortful speech processing (Adank, 2012; Clos et al., 2014; Eckert

et al., 2009; Erb & Obleser, 2013; Hervais-Adelman, Carlyon,

Johnsrude, & Davis, 2012; Vaden et al., 2013). The cingulo-opercular

network has been associated with domain-general control or executive

processes such as task monitoring (Dosenbach et al., 2008;

Duncan, 2010; Vaden et al., 2013, 2015), executive control (Erb &

Obleser, 2013) and attentional control (Fitzhugh, Hemesath, Schaefer, &

Baxter, 2019). Specifically, in the speech in noise literature, the increased

reliance on this network in difficult listening conditions has been inter-

preted as an adaptive control mechanism to enable speech comprehen-

sionwhen little or no semantic information is available.

Within these cingulo-opercular regions, we found an inverted u-

shaped response, with highest activation at intermediate levels of

intelligibility and less activation for the conditions that were either

hardly or easily comprehensible. This activation pattern suggests that

domain-general regions contribute to effortful speech processing as

long as any information can be extracted. Analogously, recruitment of

these regions is less important when the auditory signal is too bad or

when speech is clear. On the other hand, the insula has been shown

to mirror the inverse quadratic response time effect across intelligibil-

ity levels, thereby reflecting the involvement of the insula in response

selection (Binder, Liebenthal, Possing, Medler, & Ward, 2004). Even
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though we did not use a discrimination task but a sentence repetition

paradigm, the number of lexical candidates for the response might be

highest when speech is hardly comprehensible and not guided by

semantic information, thereby explaining an increase in insula activity.

However, this does not explain the consistent response pattern across

different regions implicated in the cingulo-opercular network that are

typically not involved in response selection. Moreover, in a recent

meta-analysis, bilateral insulae were linked to higher-order cognitive

aspects of speech comprehension and production, highlighting that

insula function goes beyond mere involvement in motor aspects of

speech production (Oh, Duerden, & Pang, 2014).

Further, we observed that connectivity between these regions

was differentially modulated by high and low predictability. These

findings suggest that active inhibition is increased between domain-

general cognitive control regions when predictability and intelligibility

were highest or lowest. Interestingly, effective connectivity from pre-

SMA to the left insula was associated with individual task perfor-

mance, that is, the inhibitory modulation of this connection increased

with the individual degree of the predictability gain at intermediate

intelligibility (and decreased with the relative behavioural loss from

low predictability). This result converges with and extends previous

task-based fMRI studies that found increased activity in the bilateral

insulae when auditory input was degraded (Erb et al., 2013; Hervais-

Adelman et al., 2012). Whilst older adults with well-preserved hearing

abilities and younger participants recruited the anterior insula under

challenging listening conditions, recruitment of this region was already

observed in clear speech conditions for older adults with hearing loss

(Erb & Obleser, 2013). Together, the previous and present findings

suggest that recruitment of the left anterior insula is beneficial in chal-

lenging conditions (e.g., when auditory input is deteriorated) but

becomes unnecessary as soon as the task is easily or not at all solv-

able. Moreover, the present findings suggest that better behavioural

performance may require an active inhibition of this region to ensure

efficient processing.

Recently, the pre-SMA has been suggested to be relevant during

high task demands (Hertrich, Dietrich, & Ackermann, 2016) and to

play a role in the wider semantic control network (Hallam, Whitney,

Hymers, Gouws, & Jefferies, 2016). Specifically, Hallam et al. (2016)

found increased activity in pre-SMA and pMTG after inhibitory TMS

to left IFG, which was interpreted as upregulation of the relative con-

tribution to semantic control in the presence of a TMS-induced dis-

ruption. Further, Dietrich et al. (2018) reported decreased

performance in a sentence repetition task after inhibitory TMS over

the pre-SMA, which was selectively evident for the most challenging

task condition. Note that pre-SMA activation has also been reported

in sentence comprehension tasks in the degraded speech literature

before (Clos et al., 2014: sentence matching task). Therefore, it is

unlikely that our pre-SMA finding mainly reflects the choice of the

task alone. Taken together, our results replicate the previously

reported involvement of domain-general regions during effortful

speech processing and extend these findings by demonstrating

predictability-dependent modulation of functional connectivity within

this network.

5 | CONCLUSION

Our results demonstrate that predictability in challenging listening

conditions not only modulates the semantic network but critically

extends to modulations in the domain-general network in a

behaviourally relevant fashion. We demonstrated that intelligibility

modulated connectivity between two subregions of left AG, unde-

rscoring the functional heterogeneity of this region. Further, the

degree of inhibitory modulation of connectivity within the domain-

general cingulo-opercular network was associated with the individual

speech comprehension gain in behaviour. This highlights the impor-

tance to further investigate the dynamic interplay between the

semantic and cingulo-opercular network in successful speech compre-

hension under adverse listening conditions.
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