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QuPath, originally created at the Centre for Cancer Research & Cell Biology at Queen’s University Belfast
as part of a research programme in digital pathology (DP) funded by Invest Northern Ireland and Cancer
Research UK, is arguably the most wildly used image analysis software program in the world. On the back
of the explosion of DP and a need to comprehensively visualise and analyse whole slides images (WSI),
QuPath was developed to address the many needs associated with tissue based image analysis; these
were several fold and, predominantly, translational in nature: from the requirement to visualise images
containing billions of pixels from files several GBs in size, to the demand for high-throughput repro-
ducible analysis, which the paradigm of routine visual pathological assessment continues to struggle
to deliver. Resultantly, large-scale biomarker quantification must increasingly be augmented with DP.
Here we highlight the impact of the open source Quantitative Pathology & Bioimage Analysis DP system
since its inception, by discussing the scope of scientific research in which QuPath has been cited, as the
system of choice for researchers.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

The use of open source software is becoming a key component
of modern scientific activity. Indeed, there is increased evidence
that some of the key discoveries in many areas of science would
have not been possible without open source tools [1]. Of the thou-
sands of scientific applications world-wide, the use of open prac-
tices and open resources in the field of digital pathology has
revolutionizing tissue-based image analysis [2]. In areas such as
cancer diagnostics and cancer research, there is an increasing
interest in analyzing how these practices are dictating patient
management and patient stratification [3]. We hereby analyze
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how QuPath, arguably the most widely used image analysis soft-
ware in the world, has impacted the quantitative analysis of tissues
and cells in research and diagnostics, as a way to illustrate how
these tools are influencing the delivery of contemporary research.

QuPath, short for Quantitative Pathology, is an open source soft-
ware with an active and engaged community able to support the
development of tools for image analysis. The platform allows
researchers with software development skills to add their own
extensions to solve new challenges, but was designed for users
without computer programing skills. QuPath is able to exchange
data with existing tools such as ImageJ and MATLAB, and while
ImageJ is perhaps the best known open source software for
biomedical image analysis, it has historically struggled to deal with
the size of whole slides images (WSI). On the back of the explosion
of DP and a need to comprehensively visualise and analyse WSIs,
QuPath was developed to address the many needs associated with
tissue-based image analysis [4]. These needs were several fold and
predominantly translational in nature: from the requirement to
visualise images containing billions of pixels from files several
GBs in size, to the demand for high-throughput reproducible anal-
ysis, which manual pathological assessment continues to struggle
to deliver [5–7]. Resultantly, large-scale biomarker quantification
must increasingly be augmented with DP.

QuPath was designed with the user in mind, with an easy-to-
use interface that provides researchers and diagnosticians an abil-
ity to easily navigate complex tasks, such as automatically detect-
ing many thousands of objects, classify and count these across
large images, all while providing flexibility and high-throughput
automated processing capabilities. Specific documentation on the
introduction to analysis, installation, useful tutorials and much
more is maintained and curated by the lead creator and developers
of QuPath and can be found here: https://qupath.readthedocs.io/.

Due to its comprehensive nature as a tool for working withWSI,
QuPath is a cross-platform software application designed for
bioimage analysis that can be applied to numerous types of images
beyond pathology. Although primarily created and used in cancer
research for high throughput biomarker analysis in immunohisto-
chemically stained formalin fixed paraffin embedded tissues,
QuPath is able to meet the needs of many users: from laboratory
researchers wishing to obtain raw quantitative data, to computa-
tional scientists working on the development and testing of algo-
rithms. Primarily, QuPath software was designed for WSIs in
digital pathology, to enable the analysis of immunohistochemistry
(brightfield or fluorescent) and haematoxylin and eosin (H&E)
images. QuPath’s interactive interface is user-friendly and is able
to count cells, and classify objects and pixels in large WSIs without
the need for cropping or down-sampling images to lower file sizes
for subsequent analysis.

Herein, we highlight the global impact of QuPath since its
inception and discuss the scope of scientific research in which
QuPath has been cited as the system of choice for researchers.
Lastly, we aim to illustrate the need for reliable analysis in a digi-
tised framework especially with regard to the development of arti-
ficial intelligence (AI) models.

1.1. The application of QuPath

Detailed information, including specific resources for support,
documentation, compatible file types and instruction on the use
of QuPath are available https://qupath.github.io/, https://qupath.
readthedocs.io/, https://www.youtube.com/c/QuPath and are con-
sidered beyond the scope of this article. Broadly speaking, the soft-
ware can support a wide variety of applications. QuPath is able to
open and present WSIs from a wide range of file type’s from many
digital pathology scanners. It is perhaps important to highlight that
QuPath does support the Digital Imaging and Communications in
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Medicine (DICOM) standard format for WSIs. Users can view asso-
ciated properties of an image, and using intuitive controls and ges-
tures, navigate around images, panning and zooming as needed.
Users can easily annotate tissues manually or with automated pro-
cesses. Detection of cells is effortless with in-built steps and help-
ful default settings. Users can simply view measurements and
export data. While performing analysis in this interactive step-
wise method has its uses, the software contains the potential to
create and apply similar analysis in a reproducible batch process-
ing manner across a large image sets.

The flexible WSI viewer, which incorporates specific tracking
slide navigation, is the cornerstone of many other relevant tools
[8]. QuPath supports the quantification of hybridization signals
with specific subcellular localization detail, automated tumour
identification, tile-splitting of images to encourage faster analysis,
estimation of stain intensity, capacity to exchange data with open
source tools and the ability to read many image types, while carry-
ing out real-time analysis with clinic-pathological parameters.

These automated processes are easily arranged into simple
workflows created from the command history. As an example of
a popular workflow within QuPath, the assessment of tissue
microarrays (TMA) begin with the creation of an analysis project
followed by automated de-arraying of the TMA and estimation of
staining. A single-cell detection is then undertaken, followed by
trainable cell classification. Following biomarker detection, data
may be further analysed within the software or exported. QuPath
also facilities batch processing, and contains comprehensive sur-
vival analysis tools. Creation of workflows, allows the possibility
to automate some or all of the analysis across multiple images.
Viewing the command history allows for the creation of a script
containing all the steps which have thus far been applied to an
image. QuPath can be instructed to run a script over all project
images to be analysed in a reproducible way. The flexibility of
QuPath is continually evolving and scripting within QuPath can
speed up analysis considerably. Advanced users recognise that
scripting is able to unlock a huge range of features and possibilities.

1.2. The need for reliable analysis in a digitised framework.

The need for reliable analysis in a digitised framework is appli-
cable to research and clinical applications, including diagnosis [9]
and prognosis [10]. The increasing interest in digital pathology as
a tool that supports discovery and delivers clinical utility may have
arisen from the series of technical improvements which have
transformed DP over the last 40 years into a reliable application
[11]. These improvements and transformations include high-
quality whole slide scanners, adequate image sizing and compres-
sion, speed and automation of the scanning process, and numerous
options for image storage, and real-time retrieval/review. These
technical developments have enabled DP to be the conduit to bring
quantitation to a paradigm previously dominated by subjectivity.
Quantitation such as: measuring nuclear morphology and DNA
content; quantitative immunohistochemistry; analysis in multiple
formats (e.g. tissue microarrays, appreciation of tumour hetero-
geneity and phenotypic variation); and capacity to identify and
quantitate both chromogenic and fluorescent signals is swiftly
achieved using DP. Resultantly, DP is able to overcome one of the
main challenges we face in tissue analysis today, namely quantita-
tive biomarker discovery. Indeed, DP can in parallel support the
drug development and associated biomarker analysis process [11].

In the research environment, it is now clear that the need for
more complex image analysis is growing exponentially and is
transforming tissue-based discovery. These needs include an eval-
uation of broad topographic components of disease; for instance,
the tumour stromal ratio in cancer samples or the characterization
of tumour budding at the epithelial-mesenchymal transition [12].

https://qupath.readthedocs.io/
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A clear example of the need for image analysis and the application of
deep learning to extract sub-visual features which can inform our
understanding of geospatial variability of host immunity, is typified
by the work of AbdulJabbar et al. [13]. In this study, the authors cre-
ated a deep learning pipeline that enabled the spatial mapping of
four distinct cell types within H&Es: malignant epithelial cells; lym-
phocytes; and non-inflammatory stromal cells, with an additional
class of other non-identifiable cells or less abundant cells. This work-
flow collectively elucidated immune-evasive tumour microenviron-
mental mechanisms that may permit the emergence of aggressive
clinical phenotypes [13]. The complexity and importance of the prog-
nostication of spatial relationship is being further elucidated within
the literature [14,15]. Recently, Tsakiroglou et al. concluded that
the proximity (<30 mm) of CD8 t-cells to PD-L1+ cells, as well as
PD-1+ cells to PD-L1+ cells, was prognostic for overall survival in
patients with head and neck squamous cell carcinoma. The authors
cite QuPath’s custom scripting capability, active supportive commu-
nity, well-maintained documentation, version management and
open source nature as rational for utility with in their study.

Through the quantitation of tissue-hybridisation signals for
specific biomarkers to confirm prognostic molecular pathways
[10], and diagnostic solutions [16], we have shown how image
analysis can greatly inform tissue-based discovery. Taking a robust
digital pathology approach, we evaluated the suitability of alterna-
tive immune classifiers on prognostication in two independent col-
orectal cancer cohorts. We went on to assess the relationship with
biology amenable to targeted therapy in a clinical trial cohort [10].
We have additionally shown the application of image analysis
beyond discovery into a clinical application is not only feasible
but much needed in the improvement of PD-L1 diagnostic accuracy
[9,16]. More generally, the application of image analysis and
specifically deep learning, may be a prerequisite in the predication
of molecular and outcome data from simple H&E images.

Sirinukunwattana et al. were able to take complex tissue organi-
sation features from unclassifiable or heterogeneous cases of colorec-
tal cancer and accurately predict RNA expression [17]. While not yet
clinically viable, increasing the level of actionable data extracted
from routine H&E slides, inaccessible to human interpretation, may
providing vital information regarding tumour heterogeneity, with
application potential in settings where previously there may have
been no means of applying expensive molecular testing.

In the histopathological diagnostic setting, the need for digitisa-
tion and DP implementation cannot be overemphasised. Key ele-
ments to support such diagnostic decisions include [18]:

1. The need for accurate biomarker analysis in leading reference
hospitals. Clinical trials in tertiary healthcare are in urgent need
of digitisation, and in many cases are a conditio sine qua non for
trial delivery

2. The need for reproducibility, consistency and accuracy in phe-
notypic diagnostics

3. The relevance of DP as a cost-effective tool, with formal accred-
itation by quality agencies

4. The need of a digitised service to apply AI solutions
5. The requirement for solutions allowing remote pathology diag-

nosis in the context of pandemics

It is in this fertile ground that we believe the numerous advan-
tages of QuPath have flourished to support basic, translational and
clinical research.
2. Methodology

The original paper [4], cited anywhere between 400 and 679
times at the time of writing according to aWeb of Science Core Col-
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lection [19], and Google Scholar Cited Reference Search, spans
many disciplines. Due to the prevalence of pre-print articles
returned via Google Scholar, which are defined as preliminary
reports that have not been peer-reviewed, we have chosen to focus
on the conservative citation number fromWeb of Science, with the
caveat that QuPath has been utilised in many more publications
than cited. Our data does not include the frequent use of QuPath
in abstracts for major scientific conferences such as USCAP and
AACR meetings which we acknowledge are numerous.

2.1. The spread of QuPath

The areas of specialization are numerous and span a broad
range of disciplines from oncology to computer science, although
it is perhaps unsurprising that oncology, cell biology and pathology
are the more common areas of research that regularly utilise
QuPath, as shown Fig. 1.

Of these disciplines, there are >50 countries and regions repre-
sented that have published experience with QuPath in terms of the
institutional affiliations associated with publications, (Fig. 2).
Many of these articles associate with multiple countries for which
the argument could be made that not only has DP facilitated and
fostered national and international inter-laboratory collaborations,
but owed to its open-source nature, that QuPath itself has con-
nected institutions which otherwise would have little means of
collaboration.

The utility of QuPath continues to grow unabated year on year,
with publications growing at a rapid pace (Fig. 3). A cursory search
of PubMed reveals that each year more authors and institutions are
utilising QuPath for their research, although citation of the primary
source is sometimes lacking, e.g. 2017–2020 [20–23].

In addition to published research, communication and knowl-
edge gathered internally and throughout our CRUK Accelerator
network (https://www.qub.ac.uk/research-centres/PMC/cruk-cen-
tres-network-accelerator-award/) and beyond, indicate that
QuPath is routinely used for the scoring of stained biomarkers in
clinical trial material. Indeed, we are aware of contract research
organisations, charities and biopharma are beginning to have an
interest in utilising QuPath in their data analysis pipelines. The
impact of QuPath is seen not only across domains as indicated
above, but across translation boundaries within specialisms. The
application of QuPath is regularly seen at the basic research level
[24,25], also within the translational research sphere [10,26,27],
and recently in the clinical domain [16,28]. Our own experience
with contract research has indicated that in addition to off-the-
shelf image analysis solutions, requests for biomarker analysis
increasingly specify the use of QuPath for quantification https://
www.qub.ac.uk/research-centres/PMC/Filestore/Filetou-
pload,972238,en.pdf. From a cost-analysis perspective, the ability
to utilise an open-source DP platform with non-inferior perfor-
mance to off-the-shelf DP solutions is appealing. In one such
inter-platform and inter-operator analysis using the proliferation
marker Ki67, a key comparative study concluded that QuPath
was indistinguishable from others [29].

2.2. QuPath, a community

Owing to the open-source nature of QuPath, motivated and like-
minded individuals can come together to contribute and share
their experiences of QuPath. User forums provide a conduit to
share workflow scripts, opinions and plans with other community
members, general users and users of other complementary valu-
able open source projects.

The dialogue between users serves as a platform for develop-
ment of novel algorithms, workflows and workarounds (https://fo-
rum.image.sc/tags/qupath), as well as the identification of software

https://www.qub.ac.uk/research-centres/PMC/cruk-centres-network-accelerator-award/
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Fig. 1. QuPath Research Areas. A treemap visualisation of the 15 top research areas assigned to the publications citing the seminal QuPath paper. Publications are not
restricted to a single discipline.

Fig. 2. The Global Reach of QuPath. A visualisation of the regions and countries with institutional recognition of the use of QuPath, by way of publication.

Fig. 3. The Citation of QuPath Per Year. Web of Science Core Collection Cited
Reference Search. Data last accessed 31/12/2020 11:00.
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‘‘bugs” or glitches (https://github.com/qupath/qupath/issues). At a
time in which intellectual property and software development
appear to be an indispensable component in developing a reliable
research tool, QuPath’s co-operative model provides a fresh alter-
native. A high-quality academic open-source development, sus-
tained and improved by a community of users represents a
pathway with many advantages such as: accessibility, affordability
and access to constant development of the original published plat-
form. This ecosystem is at the heart of the ongoing evolution of
QuPath.
2.3. The impact of QuPath

QuPath’s adoption by research groups delivering highly impact-
ful research is undeniable. The ability to reliably and reproducibly
quantify biomarkers has enticed researchers to use QuPath from
round the world. As demonstrated by its appearance in some of

https://github.com/qupath/qupath/issues
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the most impactful publications in journals such as Nature [30–
32], Cell [33–36] and Science [37,38]. Roberti et al. used QuPath
to quantify the cell density of DAB-positive cCasp3 cells; these data
in part contributed to the demonstration that immunogenic ileal
apoptosis contributed to the prognosis of chemotherapy-treated
colon cancer [30]. The ability to use QuPath to robustly quantify
Ki67 is well documented [29,39]. In one Nature study the authors
used QuPath to quantify the frequency of Ki67 positive cells in the
whole crypt region of small intestine samples; these data con-
tributed to the revelation of a regulated dynamic neuro-immune
circuit where a trade-off between innate immune protection and
efficient nutrient absorption was found. Indeed, this mechanism
may be effective for enhancing resistance to pathogens and in
the treatment of metabolic diseases [31]. A less often published
capability of QuPath is the ability to robustly quantify BaseScope
and RNAScope, two applications which allow for the in situ visual-
isation of biological functional units such as cell junctions, and
RNA. Again in Nature, QuPath was used in the field of multiple scle-
rosis to quantify the number of BaseScope-positive signals in anno-
tated regions. These data contributed to evidence that
oligodendroglial heterogeneity in multiple sclerosis may be impor-
tant for understanding disease progression and developing thera-
peutic approaches (32).

In developing the prognostic use of QuPath as a tool for annota-
tion training for deep learning, Liu et al. [40] showed in 843 sam-
ples that their network could stratify patients with nasopharyngeal
carcinoma into a high risk group with shorter than 5 year progres-
sion free survival (p < 0.0001).

It is clear that the majority of publications have used QuPath in
brightfield histopathological assessment of biomarkers in FFPE sec-
tions, be these in resections [39,41], biopsies [42,43], cytology
specimens [9,44], TMAs [10,45–48], or embedded cell culture mod-
els [49,50]. This is in addition to the multitude of immunofluores-
cence applications of QuPath [14,16,36,51,52]. Yet the intuitive
annotation and stain quantification capabilities have enabled the
application of QuPath in other, perhaps unexpected domains. For
example, QuPath was used to perform semi-automated boundary
detection of particles from X-ray fluorescence images from the
mining domain, i.e. the processing of extracting precious mineral
resources such as gold and silver [53]. Here the authors used pixel
counting and boundary detection using specific colour values in
QuPath to estimate the optical density of relatively high-arsenic
regions in images which are critical to assessing potential short-
and long-term exposure health risks to humans and surrounding
environments.

2.4. The flexibility of QuPath

QuPath has undoubted utility in the quantification of ‘routine’
DAB biomarkers [9,10,54–57], including RNAScope [28,58–60],
and the ability to handle complex quantification of multiple
immunofluorescence biomarkers [16,23,51,61]. As we have seen
in the examples above, QuPath provides a framework for the train-
ing, provision and application of advanced AI, beyond that of the
inbuilt machine learning methodologies. This framework could
consist of anything from the training of more advanced deep learn-
ing neural networks by way of pathologist annotation or patch
extraction, to ultimately the visualisation of the deep learning
models trained on data acquired outside QuPath [62–67].

Using open source software for research purposes is useful, but
translating such research to clinical utility poses challenges. A
means of software version control is essential whereby changes
in software versions are tracked, maintaining an understanding
and traceability of how iterative versions of the same software dif-
fer one from another. In this way, regulatory bodies when review-
ing software developments for use in clinical workflows can
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understand the mechanism by which a clinical decision is made,
or trace any occurrences of clinical error, ensuring sufficient data
for root cause analysis. Such measures required for the develop-
ment of AI tools in clinical trials have been outlined [68]. The use
of QuPath in the development of AI via deep learning techniques
in a supervised or semi-supervised manner requires a level of ver-
sion control to meet these challenges. The integration with a qual-
ity management system whereby documentation and version
control is maintained, along with fully curated sample cohorts
and robust metadata is matched with training and competency
records of laboratory staff and those providing annotations. Inde-
pendent and ongoing review of annotation data and feedback
between data scientist and reviewer can identify any need for
retraining of annotators (Fig. 4). In such a process version control
of developing networks is possible. Tracking the version of QuPath
used for annotations is recorded for the training and testing of neu-
ral networks, therefore resulting models can be version controlled,
even when using open source software.

It is important to highlight here the need for widespread adop-
tion of data version control (DVC) in the development and collab-
oration of AI models. DVC is a data versioning and experimental
management tool, which builds upon established workflows. The
sharing and collaboration often done through a standard Git-flow
(i.e. commits, pull requests, etc.), can be combined with DVC to
enable data scientists and machine learning teams to version con-
trol experiments, make projects reproducible and curate large
datasets [69]. In addition to the accessibility of image training
datasets and methods of classification, the quality of coding in AI
and data driven machine learning applications is a pre-
requirement for successful and sustainable software development.
Property-based testing methodology ensuring code quality is nec-
essary for the quality assurance, interpretation and tractability of
graphical learning models [70]. These factors, as well as specifying
programming languages utilised and clarifying whether these pro-
cess are fully or semi-automated, need to be considered with a
holistic appreciation for the complexity of a pathology department.
While the specifics of any one element are vital decisions which
must be taken for the introduction of AI and machine leaning, an
end-to-end overview is necessary to appreciate the interdependen-
cies of all workflow components [71].

As the third revolution in pathology evolves [72], the need for
robust, and reliable bio-imaging tools will become necessary, and
one where users of QuPath can rise to meet the challenge (Fig. 4).

2.5. Abstract and outlook

Disruptive technologies are often embraced by many, while
simultaneously resisted by those whose faith in the prevailing
paradigm is based on years of tried and tested methodologies.
Since its inception, QuPath has achieved a remarkable uptake in
its use across the domain of pathology. However, a limitation of
our review of this space fails to capture the use of QuPath beyond
that collated within publication repositories, such as the impact of
QuPath within pathology education or the specific number of users
within the biopharma industry. More recently, the flexibility of the
system has appealed to researchers from other disciplines. Within
a discovery research setting, it is clear that image analysis, and the
application of deep learning has clear utility and robustness. The
challenges facing clinical pathology is whether a seamless integra-
tion of image analysis into a digitised service is not only repro-
ducible, consistent and accurate, but that it can be user-friendly,
cost-effective and fold seamlessly into the framework of accredita-
tion laboratories, while adding substantive value in supporting
clinical services. Furthermore, improvements in explainable and
transparent AI away from the perception of a black-box is essential
for such models to be not only usable but also useful to the expert.



Fig. 4. Translating research to practice. Workflow outline of using open software such as QuPath as a training tool for deep learning neural networks within a quality
management system which maintains document and software control. Alongside training and competency of laboratory staff, annotators are trained and output is
independently reviewed before being used in the training of the network. Change control is thus recorded to aid in the understanding of the development of the neural
network for acceptance by regulators and the clinical community.
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The usability of AI models will build trust overtime allowing mea-
surement of effectiveness, efficiency and satisfaction for users [73].
Whether QuPath may play a role in this future remains to be seen.

The concept of using open-source software either as stand-
alone machine learning quantitative tools, or as a means to support
the development of AI for clinical deployment will need to be used
within a version controlled quality management system. An envi-
ronment which can be validated and critically evaluated by regula-
tors, pharma and co-industrial partners, and the clinical
community. Commercial platforms are therefore seen as having
the support from commercial-grade & quality assured frameworks
and are perhaps better positioned to support image analysis for
clinical utility. What is in no doubt, is that the development and
application of image analysis and the development of AI will con-
tinue unabated. The translation of these tools from a research set-
ting into a clinical setting through acceptance by regulators,
industry and clinical groups is key to driving the next revolution
in tissue based biomarker discovery.

The latest release of QuPath is accessible here: https://qupath.
github.io/
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