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Protein secondary structures have been identified as the links in the physical processes

of primary sequences, typically random coils, folding into functional tertiary structures

that enable proteins to involve a variety of biological events in life science. Therefore,

an efficient protein secondary structure predictor is of importance especially when

the structure of an amino acid sequence fragment is not solved by high-resolution

experiments, such as X-ray crystallography, cryo-electron microscopy, and nuclear

magnetic resonance spectroscopy, which are usually time consuming and expensive.

In this paper, a reductive deep learning model MLPRNN has been proposed to predict

either 3-state or 8-state protein secondary structures. The prediction accuracy by the

MLPRNN on the publicly available benchmark CB513 data set is comparable with those

by other state-of-the-art models. More importantly, taking into account the reductive

architecture, MLPRNN could be a baseline for future developments.

Keywords: protein secondary structure, deep learning, multilayer perceptron, recurrent neural network, sequence

profile

1. INTRODUCTION

Proteins are biomacromolecules that function in various life processes, many of which have
been found as drug targets of human diseases (Huang et al., 2016; Li et al., 2021). The
syntheses of proteins as long polypeptide chains or primary sequences take place in the
ribosomes. Released from the ribosomes, the chains fold spontaneously to produce functional
three-dimensional structures or tertiary structures (Anfinsen et al., 1961), which are usually
determined by experiments, including X-ray crystallography, cryo-electron microscopy, and
nuclear magnetic resonance spectroscopy. However, these experiments are often time consuming
and expensive, which to a large extent explains the gap between the number of protein structures
(∼150,000) deposited in the Protein Data Bank (PDB) (Berman et al., 2002) and that of sequences
(∼140,000,000) stored in the UniProtKB/TrEMBL database (The UniProt Consortium, 2017,
2018). Therefore, it is of importance to develop efficient computational methods for protein
structure prediction. The three-dimensional structure of a protein is determined most by its amino
acid sequence (Baker and Sali, 2001), indicating the possibility of theoretical prediction of a protein
structure from its amino acid sequence.
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Protein secondary structures are characterized as local
structures that are stabilized by hydrogen bonds on the backbone
and considered as the linkages between primary sequences and
tertiary structures (Myers and Oas, 2001; Zhang, 2008; Källberg
et al., 2012). According to the distinct hydrogen bonding modes,
generally three types of secondary structures have been identified,
namely helix (H), strand (E), and coil (C), where the helix
and strand structures are most common in nature (Pauling
et al., 1951). Later in 1983, a finer characterization of secondary
structures was proposed. In the new classification calculated
by DSSP algorithm, previous 3 states are extended to 8 states,
including α-helix (H), 310 helix (G), π-helix (I), β-strand (E),
β-bridge (B), β-turn (T), bend (S), and loop or others (C)
(Kabsch and Sander, 1983), among which the α-helix and β-
strand are the principal structure features.

The 3-state or Q3 prediction problem has been extensively
studied since 1974 (Chou and Fasman, 1974). As summarized
by Stapor and coworkers, the computational models reported
after 2007 can provide the prediction accuracy of 80% and above
(Smolarczyk et al., 2020). Until 2018, the theoretical limit 88%
of the Q3 protein secondary structure prediction was achieved
first by Lu group (Zhang et al., 2018). At the same time, it is
noticed that the 8-state or Q8 prediction would provide more
valuable information. For instance, π-helix is found abundant
and associated with activities in some special proteins (Cooley
et al., 2010). As a result, over the few years many efforts have been
made, trying to solve the Q8 prediction problem, which is much
more complicated and challenging (Li and Yu, 2016; Wang et al.,
2016; Fang et al., 2017; Heffernan et al., 2017; Zhang et al., 2018;
Krieger and Kececioglu, 2020; Uddin et al., 2020; Guo et al., 2021)
If not otherwise specified, the models discussed in this paper
are non-template based. The Q8 prediction accuracy has reached
70% and at present the best record is 77.73% (Uddin et al., 2020).
Thus, there is still a deviation of about 10% from the theoretical
limit of 88% (Rost et al., 1994).

Over the past few decades, a variety of state-of-the-art
methods have been developed to improve Q3 or Q8 prediction
accuracy and most progresses are contributed by machine
learning based models (Li and Yu, 2016; Wang et al., 2016; Fang
et al., 2017; Heffernan et al., 2017; Zhang et al., 2018; Krieger and
Kececioglu, 2020; Uddin et al., 2020; Guo et al., 2021) So far as
we know, the predictive power of a machine learning model is
governed mainly by two elements, namely feature representation
and algorithm. For instance, the introduction of sequence
evolutionary profiles from multiple-sequence alignment (Rost
and Sander, 1993), such as position-specific scoring matrices
(PSSM) (Jones, 1999), improves prediction accuracy significantly
(Zhou and Troyanskaya, 2014). In addition to PSSM, either the
hidden Markov model (HMM) profile (Guo et al., 2021) or
amino acid parameters (Zhang et al., 2018) can also contribute
to the improvement of prediction accuracy. As to a machine
learning algorithm, the major task is to capture either local or
non-local dependencies from the input features using different
neural network architectures. For instance, a specific neural
network, namely convolutional neural network (CNN) (LeCun
et al., 1998), is successful in capturing short-range features. At
the same time, the recurrent neural network (RNN) equipped

with bidirectional gate current unit (BGRU) (Cho et al., 2014) or
long short-term memory (LSTM) (Hochreiter and Schmidhuber,
1997) can be used to capture long-range dependencies. CNN
and RNN architectures were integrated for the first time in the
DCRNN model to predict protein secondary structures (Li and
Yu, 2016; Zhang et al., 2018). Some models employ different
deep learning architectures, such as the deep conditioned neural
field (DeepCNF) (Wang et al., 2016) and the deep inception-
inside-inception network (Deep3I) (Fang et al., 2017; Uddin et al.,
2020). In particular, the model SAINT that incorporates self-
attention mechanism and Deep3I provides up-to-date the best
Q8 prediction accuracy (Uddin et al., 2020).

Noting that as the neural network architecture gets more
complex or deeper, the number of parameters grows. In this
work, a reductive neural network architecture MLPRNN has
been proposed that include a two-layer stacked bidirectional
gated recurrent unit (BGRU) block capped by two multilayer
perceptrons (MLP) at both sides, like a sandwich. Encouragingly,
the prediction accuracy for Q3 and Q8 reach 83.32 and 70.59%,
respectively, comparable with other state-of-the-art methods
developed recently. More importantly, taking into account the
reductive architecture, MLPRNN would provide an extensible
framework for future developments.

2. METHODS AND MATERIALS

2.1. Data Sets
In this work, two publicly available data sets, CB6133-filtered and
CB513 (Zhou and Troyanskaya, 2014), which have been widely
applied in protein secondary structure prediction (Li and Yu,
2016; Fang et al., 2017; Zhang et al., 2018; Guo et al., 2021), were
used to train and test the new model, respectively. The CB6133-
filtered is the result of removing the sequences that have >25%
identity with the CB513 and the redundancy with the CB513
from the original CB6133. As expected, the distributions of 8
states with respect to the CB6133-filtered and CB513 are similar
(Supplementary Figure 6).

2.1.1. CB6133-Filtered

An open-source protein sequence data set, namely CB6133-
filtered, was employed for training in this work (Zhou and
Troyanskaya, 2014). CB6133-filtered is a large non-homologous
sequence and structure data set that contains 5,600 training
sequences. This data set was produced with the PISCES Cull
PDB server, a public server for culling sets of protein sequences
from the Protein Data Bank (PDB) by the sequence identity and
structural quality criteria (Wang and Dunbrack, 2003). Notably,
the data set was created with better than 2.5Å resolution while
sharing less than 30% identity.

2.1.2. CB513

The testing data set CB513 was introduced by Cuff and Barton
(Cuff and Barton, 1999, 2000). Noting that the length of one
sequence is longer than the maximal of 700, this sequence has
been split into two overlapping sequences. As a result, CB513
contains 514 sequences. Both CB6133-filtered and CB513 data
sets can be downloaded via Zhou’s website.
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2.2. Input Features
2.2.1. PSSM Profile

Statistically, homologous proteins often have similar secondary
structures. Thus, all homologous proteins can be grouped
into a family through the multiple sequence alignment (MSA)
with a fitting cutoff (Sander and Schneider, 1991). Then the
approximate structure of the family can be predicted. Apparently,
theMSA gives muchmore structural information than one single
sequence (Rost and Sander, 1993). One of the most popular
position-specific profile of proteins is the PSSM (Jones, 1999),
which can be produced by the PSI-BLAST algorithm (Altschul
et al., 1997). The PSSM dimension of a sequence is N × S, where
N and S denote the types of amino acids and the length of the
sequence, respectively. Normally, N is 20 that corresponds to the
20 standard amino acid types. Here, one additional type, marked
as X, was added to the PSSM profile to represent non-standard
amino acids. Thus, N is 21 instead of 20 for the PSSM profile.
According to the PSI-BLAST, each position of amino acids gets
a score of hit that denotes the appropriate probability of the
amino acid staying in this position solidly. For instance, if the
score of the hit is high, a position is supposed to be conserved.
Otherwise, the position is not likely a conserved site (Gribskov
et al., 1987; Jeong et al., 2010). Usually, a sigmoid function is
applied to restrain the scores of the hits that range from 0 to 1
(Jones, 1999).

2.2.2. HMM Profile

Recently, it has been demonstrated that the combination of
HMM and PSSM profiles as input of the model DNSS2
can improve the Q8 prediction accuracy by about 2% (Guo
et al., 2021). Thus, in this work, we follow the scheme above
and the PSSM and HMM profiles were used as input. The
HMM profile was calculated with the HHblits (Remmert et al.,
2012), a software that can convert amino acid sequences into
hidden Markov model profiles by searching specific databases
iteratively. The database used in this work is the publicly
available uniclust30_2016_03.tgz. The columns in the HMM
profile correspond to the 20 amino acid types. In each column,
a substitution probability is provided based on its position along
the protein sequence (Smolarczyk et al., 2020). Finally, the
values generated by the HHblits were transformed to the linear
probabilities, which can be formulated as follows:

p = 2−N/1000 (1)

where N denotes the score number from the profile (Sharma
et al., 2016). Compared to the sequence-search tool PSI -BLAST,
HHblits is faster because of its discretized-profile prefilter. Also,
HHBlits is more sensitive than PSI-BLAST (Remmert et al.,
2012).

2.3. Model Design
The reductive model MLPRNN proposed in this study is
composed by one BGRU and two MLP blocks. In this section,
MLP and BGRU will be introduced separately. Followed is the
explanation in details of the overall architecture.

2.3.1. MLP

The multi-layer perceptron (MLP) is a reductive neural network
with at least three layers, namely an input layer, a hidden layer,
and an output layer. Taking the three-layer MLP exploited in this
study as an example, as illustrated in Figure 1, each neuron at
the hidden layer integrates the messages from all input nodes
and spreads the integrated message to all neurons at the output
layer. A linear function is used to adjust the number of neurons
at each layer. Each neuron need to work with a non-linear
activation function, such as Rectified Linear Unit (ReLU), and a
dropout method.

2.3.2. BGRU

In this study, the bidirectional gate current units (BGRUs) were
used to capture long-range dependencies in the amino acid
sequences. Assuming the number of hidden units is k and the
input of a GRU(t) is (lt , ht−1). The activated reset gate rt , update
gate ut , internal memory cell h̃t , and GRU output ht(∈ R

k) can
be expressed as follows:

rt = σ (Wlrlt +Whrht−1 + br) (2)

ut = σ (Wlult +Whuht−1 + bu) (3)

h̃t = tanh(Wl̃hlt +Wh̃h(rt ⊙ ht−1 + b̃h)) (4)

ht = ut ⊙ ht−1 + (1− ut)⊙ h̃t (5)

where Wlr , Whr , Wlu, Whu, Wl̃h, and Wh̃h (∈ R
3q×k) denote

weight matrices. br , bu, and b̃h (∈ R
k) are bias terms. ⊙,

σ , and tanh stand for element-wise multiplication, sigmoid,
and hyperbolic functions, respectively (Li and Yu, 2016). As
illustrated in the inset of Figure 1, each GRU contains one input
and one output. A BGRU layer, such as BGRU 1 in Figure 1, not
only learns input features from head to tail, but also tail to head,
so as to catch the dependencies at both sides. Thus, a BGRU need
read input features twice. In the end, outputs of two GRU chains
are merged together as the final output.

2.3.3. Overview of MLPRNN

Figure 1 illustrates the data stream of an amino acid in the
sequences and the other dimension perpendicular to the plot is
the amino acid sequences. As illustrated in Figure 1, MLPRNN
has a sandwich like architecture where a two-layer stacked BGRU
block is capped by two MLP blocks at both sides. Both MLP
blocks have one hidden layer. In specific, 41-dimensional features
are taken as the input of the first MLP block. The dimensions
of the input, hidden, and output layers in the first MLP block
are 41, 256, and 512, respectively. The BGRU block is fed with
the 512-dimensional output of the first MLP. The BGRU block
is followed by the other MLP block with one hidden layer too.
The dimensions of the input, hidden, and output layers are
512, 256, and 9, respectively. Finally, the prediction is made
by a softmax unit fed by the output of the second MLP block.
The dimensions of the hidden and output layers in the MLP
blocks are selected based on the prediction accuracy. As shown

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 June 2021 | Volume 9 | Article 687426

http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Lyu et al. Protein Secondary Structure Prediction

FIGURE 1 | Schematic diagram of the MLPRNN model.

in Supplementary Table 1, the combination of the dimensions
256 and 512 give not only the best Q8 prediction, but also
the fastest convergence. From Supplementary Table 2, one can
see that the model with two-layer stacked BGRU block gives
best performance in view of accuracy as well as efficiency. For
instance, the models with respect to two-layer and three-layer
stacked BGRU blocks give similar accuracies, but the former
has less parameters. Thus, the two-layer stacked BGRU block is
chosen in this study.

2.4. Implementation Details
In all experiments, the optimizer named Adam was used during
the training to calculate and update the parameters of the
model. The default original learning rate is set 0.001, which
decreases every 10 epochs with the rate of 0.997. All sequences
were padded with zero if the sequence length is shorter than
700. As a consequence, zero could be learned by the model,
which is undesired. To remove the effect of the zero class, the
Multiple Cross-Entropy Loss function was employed, which is
based on the cross-entropy loss function. The weight constraint
of dropout with the parameter p= 5 was applied to avoiding over
fitting by BGRUs and the tails of MLPs. Our experiments were
implemented under the PyTorch (version 1.7.1) environment
and the model was trained on a single NVIDIA Titan RTX GPU
with 24 Gigabyte (GB) memory. Each experiment in this work
was trained and tested for at least 3 times and the best result was
taken as the final solution. In this work, the average of the loss
over the last 10 epochs was used to determine at which epoch the
convergence was reached for the testing set.

2.5. Performance Evaluation
The Q Score formulated as Equation (6) has been widely used
to examine protein secondary structure predictions. In brief,
it measures the percentage of residues for which the predicted

secondary structures are correct (Wang et al., 2016).

Qm = 100%×

∑m
i=1 Ncorr(i)

N
(6)

where m indicates the number of classes. m = 3 and m = 8
correspond to Q3 and Q8 predictions, respectively (Lee, 2006).
Ncorr(i) is the number of correctly predicted residues for state i
and N is the total number of residues.

3. RESULTS AND DISCUSSION

3.1. Prediction Accuracy
Q3 and Q8 prediction accuracy have been estimated by the
proposed model MLPRNN and compared with the values by
another 5 state-of-the-art methods that also used CB513 for
testing. Here Q8 is transformed to Q3 by treating 310-helix and
π-helix as α-helix (H) and merging β-bridge (B) to β-strand
(E). As to the rest, turn (T) and bend (S) are treated as coil
(C). As illustrated in Table 1, the prediction accuracy for either
Q3 or Q8 by MLPRNN is at the same level with other state-
of-the-art methods. In particular, the Q8 prediction accuracy
obtained by the new model is about 1 and 3% lower than those
given by CRRNN (Zhang et al., 2018) and DNSS2 (Guo et al.,
2021), respectively. Here, the DNSS2 integrates 6 deep learning
architectures, which is much more complex than the present
MLPRNN. In addition to the PSSM and HMM profiles, another
three input features were utilized in the DNSS2 model (Guo
et al., 2021). With respect to CRRNN, the training set TR12148
applied by this model is about twice larger than the CB6133-
filtered used in this work (Zhang et al., 2018). Thus, the present
MLPRNN could be improved with more input features such as
the ones introduced by DNSS2 or a larger training dataset like
the TR12148. It should be noted that MLPRNN and DNSS2 share
the same method of mapping Q8 to Q3. Although CRRNN and
DeepCNF use anothermethod for the transformation. In specific,
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TABLE 1 | Q3 and Q8 prediction accuracy (%) comparison.

Method References Q3 Q8

DeepCNF Wang et al., 2016 82.30 68.30

MUFOLD-SS Fang et al., 2017 82.98 71.05

BGRUCB Drori et al., 2018 82.85 70.10

CRRNN Zhang et al., 2018 85.30 71.40

DNSS2 Guo et al., 2021 82.56 73.36

MLPRNN 83.32 70.59

FIGURE 2 | Losses as a function of epoch by MLPRNN for the training (open

circles) and testing (solid circles) data sets, respectively.

α-helix (H), β-strand (E), and the rest 6 states in Q8 form the 3
classes of Q3, respectively. It has been reported that the selection
of the transformation method from Q8 to Q3 can influence
prediction performance to some extent (Cuff and Barton, 1999).
Indeed, replacing the present method of converting Q8 to Q3
with the one employed by CRRNN, the prediction accuracy of
Q3 by MLPRNN increases from 83.32 to 85.38%, slightly higher
than 85.30% by CRRNN.

3.2. Convergence Rate
The losses as a function of epoch for the training (CB6133-
filtered) and testing (CB513) data sets, respectively, have been
calculated to examine the convergence. As illustrated in Figure 2,
the loss for CB513 drops from 0.39 to 0.30 within 6 epochs
and stabilized or converged around 0.26 for another 38 epochs.
The following two experiments have been designed, trying to
explain the fast convergence of loss for CB513 byMLPRNN. First,
the MLP blocks were removed from MLPRNN. As a result, the
number of epochs required for loss convergence increases to 70
(Supplementary Figure 1), which is expected as BGRU is known
as slow in learning when compared with other neural network
architectures (Bradbury et al., 2016). Next, MLP was replaced
with CNN, and the resulting convergence rate is similar with
that by the original MLPRNN (see Supplementary Figures 2,
3). Thus, the sandwich-like reductive architecture itself is
responsible for the fast loss convergence. It should be noted that
MLP is more suitable than CNN for this model in terms of
prediction accuracy, which will be discussed later.

TABLE 2 | Q8 prediction accuracy (%) with different input features.

Model Q3 Q8

PSSM 82.27 69.50

HMM 80.51 62.49

PSSM+HMM 83.32 70.59

FIGURE 3 | Prediction accuracy obtained by the multilayer perceptron

(MLP)-removed MLPRNN model (gray) and the original MLPRNN model (cyan)

for three sequence length regions.

TABLE 3 | Q3 and Q8 prediction accuracy (%) where multilayer perceptrons

(MLPs) in the MLPRNN are replaced by convolutional neural networks (CNNs).

Model Q3 Q8

CNN (k = 1) BGRU 83.32 70.59

CNN (k = 3) BGRU 82.89 68.30

CNN (k = 7) BGRU 82.14 67.46

3.3. Feature Analysis
Feature representation is essential for the prediction of protein
secondary structures. In this work, the input features are
represented by the concatenation of PSSM and HMM profiles,
both of which transfer the evolutionary information for
amino acids in the sequences. Thus, it is of interest to
examine the impacts of the two profiles separately. The loss
convergence plots of the two experiments can be found in
Supplementary Figures 4, 5. From Table 2, one can see that the
prediction accuracy with PSSM profile is higher than that with
HMM profile. In particular, the discrepancy is about 7% for Q8
prediction. However, when PSSM is combined with HMM, the
prediction accuracy is improved by about 1% for both Q3 and
Q8 predictions, implying that HMM profile is complementary to
PSSM profile, which is consistent with the result obtained by the
DNSS2 model (Guo et al., 2021).

Noting that the PSSM profile was generated by the PSI-
BLAST, a profile-sequence alignment method, and the HMM
profile was generated by the method HHblits that uses both
profile-sequence alignment and profile–profile alignment. It has
been suggested that the HHblits method is more sensitive to
identify distant homologous sequences than the PSI-BLAST,
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TABLE 4 | Prediction accuracy (%) for Q8 states.

Label Types Count BGRUa MLPRNN MLPRNN MLPRNN CNN(k = 3) CNN(k = 7)

(PSSM)b (HMM)c BGRUd BGRUe

H α-helix 405560 91.28 92.42 92.32 90.72 93.15 92.88

E β-strand 255887 81.52 83.34 81.67 82.04 84.20 82.28

L Coil 225493 64.48 68.34 64.97 67.22 71.22 71.36

T Turn 132980 17.88 54.02 50.78 46.55 55.92 52.73

S Bend 97298 6.73 26.83 27.91 0 0 0

G 310-helix 46019 1.50 25.73 29.92 0 0 0

B β-bridge 12096 0 0 0 0 0 0

I π-helix 209 0 0 0 0 0 0

aMLPs are removed.
b Input features are represented by PSSM profile.
c Input features are represented by HMM profile.
dMLPs are replaced by CNNs with the kernel size k = 3.
eMLPs are replaced by CNNs with the kernel size k = 7.

indicating different sensitivity and specificity between the two
methods (Guo et al., 2021), which might explain the distinct
performances between PSSM and HMM profiles found in the
current protein secondary structure prediction. In specific, the
PSI-BLAST method is perhaps more sensitive to the sequence
homology of the datasets utilized in this work. In addition, the
present HMM profile was generated based on a smaller sequence
database, whichmight influence the accuracy of the HMMprofile
and the resulting prediction accuracy.

3.4. Model Analysis
The current reductive model MLPRNN is constructed by only
a two-layer stacked BGRU block capped by two MLP blocks,
facilitating detailed model analysis. To examine the impact of
adding MLP blocks to both sides of BGRU block, the input data
were trained with BGRU block alone and the resulting prediction
accuracies are 73.22 and 61.95% for Q3 and Q8, respectively,
about 10% lower than those by the originalMLPRNNwhereMLP
blocks are present. Apparently, the MLP blocks in the MLPRNN
model are essential to the prediction.

Further, to investigate where the MLP-related improvement
occurs, the sequences for testing were split into three groups
according to the length N of a sequence. As illustrated in
Figure 3, the prediction accuracy where N is larger than 50 is
below 40%, about 15% lower than that where N is smaller than
50. When the MLP blocks are added, the prediction accuracies
are all above 60% for the three length regions, indicating that
MLP blocks could help capture very long-range dependencies.
The experiment above highlights that the two MLP blocks are
indispensable complementary to the BGRU block for protein
secondary structure prediction.

CNNs have been used to couple with BGRUs for protein
secondary structure prediction since 2016 (Li and Yu, 2016;
Zhang et al., 2018). Therefore, it is of interest to see if the
current framework works with CNNs too. In this experiment,
MLPs in the MLPRNN model were replaced by CNNs where
the kernel size k equals 3 or 7. Noting that a CNN with the
kernel size k = 1 is equivalent to a MLP, MLPRNN is renamed

as CNN(k = 1)BGRU in Table 3. From Table 3, one can see
that the prediction accuracy reduces as the kernel size increases,
which is more evident for Q8 prediction, demonstrating that
MLPs match better with BGRUs than CNNs under the proposed
reductive architecture.

Standard RNNs include LSTMs and GRUs. Thus, it is worth
investigating the effect of replacing BGRUs with bidirectional
LSTMs (BLSTMs). As presented in Supplementary Table 2, the
BLSTMs show no impact on the prediction accuracy except
for the reduced convergence rate, which is mainly due to the
increased amount of parameters.

3.5. Prediction Accuracy for Individual Q8
States
Apart from the overall accuracy, the predictive precision for each
class of Q8 would provide more useful information. Thus, the
prediction accuracies for all Q8 states were calculated and listed
in Table 4 that includes the results by the MLPRNN model and
the experiments mentioned above. Here, the labels are ordered
based on the counts of 8 states in the training data set. It is
evident that the prediction of T by BGRU is poor when compared
with those by others, indicating that MLP or CNN blocks in the
current framework are essential to predict the turn structure.
Interestingly, only the MLPRNN model fed with at least PSSM
profile is able to distinguish S or G from other states, though the
prediction accuracy is still low.

From the third column of Table 4, one can see that the count
of S or G type is much smaller than those with respect to the
four most populated types, namely H, E, L, and T. Under such a
limited number of samples, accurate feature extraction is essential
for the prediction of S or G type. When CNNs are used, local
features are extracted preliminarily at the convolution step before
entering the neural network. Here, the range of the local features
is determined by the kernel size. When the kernel size of 3 or
above is used, some very local information, which are critical
for the prediction of S or G type, could be missed during the
convolution step. As a consequence, the following training in the
neural network would be affected. In that case, the kernel size of 1,
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which is equivalent toMLP employed by the proposedMLPRNN,
might be necessary.

From the prediction accuracies for individual Q8 states, it is
found that HMMprofile compensates PSSMprofile by improving
the prediction accuracies of H, E, L, and T types. Adding
HMM profile to PSSM profile as input, however, reduces the
prediction accuracies of the two less populated states, namely
S and G. In association with the discussion on input features
above, the poor prediction of either G or S type with the HMM
profile alone as input might be due to the underlying effect of
sequence homology.

The results above have provided twomessages, whichmight be
useful for future development. First, PSSM profile is better than
HMM profile in representing bend and 310-helix states. Second,
MLP is more suitable than CNN in predicting the two states.

4. CONCLUSION

In this study, we proposed a reductive deep-learning architecture
MLPRNN for protein secondary structure prediction. Based on
the benchmark CB513 data set, the prediction accuracy for either
Q3 or Q8 by MLPRNN is comparable with those by other state-
of-the-art methods, verifying the validity of this reductive model.
From the comparative experiments, it is found that MLPs are
non-trivial to the proposed model. First, MLPs contribute a lot
to secondary structure prediction made by MPLRNN, especially
at the long sequence length side. Besides, the reductive model
performs better in the presence of MLPs instead of CNNs. The
impact of input features have been studied too. It is revealed that,
in contrast to PSSM profile, HMM profile fails in representing
two less populated states, bend and 310-helix. In addition,
the prediction of the two states fails too if the MLPs in the
MLPRNN model are replaced with CNNs. Encouragingly, the

original MLPRNN model in the presence of MLPs could capture
features of the two states represented by PSSM profile. Finally,
the MLPRNN model proposed in this study has provided a
reductive and extensible deep learning framework, facilitating the
incorporation of more sophisticated algorithms or new features
in future for further improvement.
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