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Abstract The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
pandemic has emphasized the importance and challenges of correctly interpret-
ing antibody test results. Identification of positive and negative samples requires
a classification strategy with low error rates, which is hard to achieve when the
corresponding measurement values overlap. Additional uncertainty arises when
classification schemes fail to account for complicated structure in data. We ad-
dress these problems through a mathematical framework that combines high di-
mensional data modeling and optimal decision theory. Specifically, we show that
appropriately increasing the dimension of data better separates positive and neg-
ative populations and reveals nuanced structure that can be described in terms
of mathematical models. We combine these models with optimal decision theory
to yield a classification scheme that better separates positive and negative sam-
ples relative to traditional methods such as confidence intervals (CIs) and receiver
operating characteristics. We validate the usefulness of this approach in the con-
text of a multiplex salivary SARS-CoV-2 immunoglobulin G assay dataset. This
example illustrates how our analysis: (i) improves the assay accuracy (e.g. lowers
classification errors by up to 35 % compared to CI methods); (ii) reduces the num-
ber of indeterminate samples when an inconclusive class is permissible (e.g. by 40
% compared to the original analysis of the example multiplex dataset); and (iii)
decreases the number of antigens needed to classify samples. Our work showcases
the power of mathematical modeling in diagnostic classification and highlights a
method that can be adopted broadly in public health and clinical settings.

1Johns Hopkins University, Whiting School of Engineering, Department of Applied Mathemat-
ics and Statistics, Baltimore, MD ·

2National Institute of Standards and Technology, Applied
and Computational Mathematics Division, Gaithersburg, MD ·

3Johns Hopkins University,
Bloomberg School of Public Health, Department of Environmental Health and Engineering,
Baltimore, MD ·

4 Johns Hopkins University, School of Medicine, Department of Medicine,
Baltimore, MD ·

5 Johns Hopkins University, Bloomberg School of Public Health, Department
of Internal Health, Baltimore, MD ·

6 Johns Hopkins University, Bloomberg School of Public
Health, Department of Epidemiology, Baltimore, MD
Corresponding author: Rayanne A. Luke, rluke@jhu.edu
Senior authors: Paul N. Patrone and Christopher D. Heaney. Questions about assay design
can be directed to Christopher D. Heaney at cheaney1@jhu.edu.

http://arxiv.org/abs/2206.14316v1


2

Keywords antibody · classification · diagnostics · measurement dimension ·

probability models · SARS-CoV-21

1 Introduction

Antibody testing has become a crucial public health tool during the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Interpretation of
serology results typically uses mathematical analyses that classify samples as posi-
tive, negative, or indeterminate. Conventional classification strategies include con-
fidence interval (CI)-based schemes or receiver operating characteristics (ROC)
[1, 2]. The accuracies of both methods suffer from assumptions that fail to ac-
count for the structure of data.

Despite having a fundamental impact on classification, this concept of data
structure is rarely acknowledged and requires further consideration. For example,
CI and ROC-based methods do not address questions such as: how are positive
and negative populations clustered? In what direction does each population’s data
spread out? What shapes outline the measurement values of each population?
Throughout we refer to such ideas as the structure of data.

Equally important, neither CIs nor ROC thoroughly characterize the struc-
ture of positive and negative populations relative to each other. CIs for negative
populations are decoupled from information about positive samples. Specifically,
they label measurements outside a fixed number of standard deviations (3σ) from
the negative sample mean as positive [3, 4, 5]. However, low probability of being
negative does not imply high probability of being positive. Moreover, this choice
implicitly assumes that 99.7 % of negatives fall within the CI, or that a Gaussian
model fits the data, which may be unreasonable. ROC is a graphical method with
a straightforward interpretation as minimizing error, but it fails to account for how
the degree of overlap between positive and negative measurements changes with
prevalence. These observations suggest that more accurate classification methods
can be realized by explicitly quantifying the structure of data.

One strategy to overcome certain limitations of CIs and ROC is to build mathe-
matical modeling-based classification schemes, which can leverage structural prop-
erties of data to improve accuracy. Probability models can be formulated to quan-
tify phenomena, such as: (i) the degree to which positive samples have higher
antibody levels than negatives; (ii) statistical correlation of data; and (iii) the out-
line of data described in terms of shapes like spheres or cones. Several previous
works have used mathematical modeling in diagnostic classification [6, 7]. A recent
approach applied a combination of modeling and optimal decision theory to an-
tibody testing and proved optimality for binary classification [6]; [see 8, Chapter
3]. Another study built a statistical model for binary classification that accounted
for sample bias and used either antibody or viral-load tests [7].

In contrast to previous work, we use high-dimensional mathematical modeling
to address the shortcomings of CIs and ROC. We first observe that appropri-

1 List of abbreviations: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
confidence interval (CI), receiver operating characteristics (ROC), two-dimensional (2D),
three-dimensional (3D), immunoglobulin G (IgG), nucleocapsid (N), receptor binding domain
(RBD), spike (S), median fluorescence intensity (MFI), coronavirus disease of 2019 (COVID-
19), enzyme-linked immunosorbent assay (ELISA).
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ately increasing the dimension of data—i.e., measuring IgG binding to relevant
additional antigens, or, in a multiplex assay, taking advantage of previously un-
used information—can reveal nuanced structure and better separate positive and
negative populations. Next, we construct conditional probability models for the
corresponding measurements. We use an optimal classification scheme [6] to im-
prove accuracy and decrease the number of indeterminate test results when such
a class is permissible. We validate these ideas by constructing three-dimensional
(3D) models for a SARS-CoV-2 immunoglobulin G (IgG) assay [9, 10].

By construction, our 3D modeling classification is more accurate than CI meth-
ods, because we both adapt to the structure of the data and use an optimal method.
ROC does not have an analog to our results because the technique is unusable be-
yond one dimension [see 6]. Further, antibody assays can have a narrow linear
detection range that interferes with the interpretation of statistical CIs; in con-
trast, our method makes no assumption about linearity of the detector, and we
can account for such (and related) effects as needed.

A key result of our work is that increased data separation in higher dimensions
decreases the number of indeterminate test results while improving classification
accuracy. As an unexpected bonus, our higher dimensional work allows us to im-
prove upon the performance in a related work [11] while reducing the number of
measurement targets in the analysis from eight to three. We attribute this im-
provement to the increased data separation of working in 3D and the fidelity of
our models to the structure revealed in higher dimensions.

A key goal of this manuscript is to be accessible to the broader clinical com-
munity. As such, we provide intuitive examples and highlight core ideas, leaving
technical details and most equations for the Appendix. In the Materials and Meth-
ods section, we introduce the multiplex oral fluid (hereafter, salivary) SARS-CoV-2
IgG assay data and provide a straightforward understanding of our 3D models with
figures. We display the optimal classification domains and compare our results to
CI methods and the original analysis [9] in the Results section; this is followed by
further analysis, limitations, and extensions in the Discussion.

2 Materials and Methods

2.1 Data Introduction

We consider a multiplex salivary SARS-CoV-2 IgG assay that measures anti-IgG
specific to three domains of SARS-CoV-2: nucleocapsid (N) protein, receptor bind-
ing domain (RBD), and full spike (S) protein [9, 10]. Measurements are reported as
median fluorescence intensities (MFIs). The dataset is separated into training and
test populations following the same delineation as the original analysis [9, 10] for
which the true classes are treated as known and unknown, respectively. Notably,
the original assay used seven SARS-CoV-2 antigen-specific IgG targets; we will
show that our modeling achieves better accuracy using only one N and one RBD
antigen. We empirically select these antigens as the pair with the greatest sepa-
ration as defined by the silhouette coefficient [12]. In this context, the silhouette
coefficient measures how close a negative sample is to the mean of the negative
population relative to how close it is to the mean of the positive population. (Ques-
tions of optimal down-selection are reserved for future work.)
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Fig. 1: Positive (red X) and negative (blue �s) training antibody data. (a) N
plotted against RBD, (b) the ELISA-based total IgG is added as the vertical axis.
The green boxes in (a) and (b) are the negative sample mean plus 3σ confidence
intervals. Supplemental Figure 1 shows an animation of (b).

Positive samples were confirmed via quantitative polymerase chain reaction
tests and were collected more than fourteen days post-coronavirus disease of 2019
(COVID-19) symptom onset. Negative samples were collected prior to the pan-
demic and have small signals, potentially arising from cross-reactivity with other
coronaviruses such as 229E, NL63, OC43, and HKU1. Data in the original analysis
[9, 10] were labeled indeterminate if samples classified as SARS-CoV-2 IgG nega-
tive contained salivary total IgG less than or equal to 15 µg/mL as measured by an
enzyme-linked immunosorbent assay (ELISA). In this way, salivary total IgG was
used as a measure of sample adequacy. Additionally, some samples were labeled
indeterminate in the original analysis due to low sample volume and instrument
error. In contrast, we establish our indeterminate class by a variation of a method
that holds out samples with the lowest probability of being correctly classified [11].
This is discussed in the Indeterminate Class subsection.

The two antibody targets are represented as a measurement double r̂ = (x̂, ŷ).
The measurements are transformed to a logarithmic scale, via the equation

x = log
2
(x̂+ 2)− 1, (1)

with a similar transformation defining the variable y. This transformation is a
modeling choice that puts the data on the scale of bits and separates the data
well. We denote the corresponding variables by r = (x, y). Note that r can be
interpreted as an ordered pair in 2D. We plot N vs. RBD in Figure 1a. The
positive population is indicated by red Xs and the negatives by blue �s. The
green box indicates the 3σ CIs for the negative population, which do not model
the correlation structure of the data. Figure 1a shows that in two dimensions some
positive and negative samples overlap.

In Figure 1b, adding the ELISA-based salivary total IgG values as a third
dimension separates the data by lifting it into 3D. This additional measurement
dimension must be related to the assay in a meaningful way to be useful. The three
antibody measurements are transformed as above and represented as a measure-
ment triple r = (x, y, z), which can be thought of as a point in 3D space. In doing

https://livejohnshopkins-my.sharepoint.com/:f:/g/personal/rluke3_jh_edu/Emfsn6KpxtBLv9rg0VmTkFEBWn6PspYkfYTmaYyvuEJD3Q?e=eFNhOA
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Fig. 2: 3D probability model plotted along with the training data. Positive samples
are indicated by red Xs and negatives with blue �s. Supplemental Figure 2 shows
an animation.

so, many positively and negatively classified samples are pulled away from each
other, significantly reducing overlap. The N and RBD levels of the negative data
are lower than the positive values. The positive data are distributed roughly along
a diagonal from the origin to the upper right corner, where all three of N, RBD,
and the ELISA-based salivary total IgG are large. By eye, the different classes are
much better separated in 3D than 2D, although there remains some overlap. Even
in 3D, the CIs do not capture the structure of the data. The next section shows
how modeling overcomes this problem.

2.2 Probability Models

Our models predict the probability that a known positive or known negative sample
yields a triple r of RBD, N, and ELISA-based salivary total IgG measurements.
The training data is plotted with the models in Figure 2. Regions of constant color
are equal probability contours; the color corresponds to the positive (yellow) and
negative (purple) models. The inner, darker volumes are regions of high probability
that a given population yields a specific measurement value. Figure 2 shows the
probability model contours for positive and negative populations along with the
training data. The models quantify the structure in the two populations, which will
later allow us to better classify samples. Figure 2 and its corresponding animation
(see Supplemental Figure 2) are powerful illustrations of the model fits to the data
and a useful way to understand its structure. We denote the positive model by P (r)
and the negative model by N(r). Detailed mathematical descriptions of models
are provided in Appendix A.

https://livejohnshopkins-my.sharepoint.com/:f:/g/personal/rluke3_jh_edu/Emfsn6KpxtBLv9rg0VmTkFEBWn6PspYkfYTmaYyvuEJD3Q?e=eFNhOA
https://livejohnshopkins-my.sharepoint.com/:f:/g/personal/rluke3_jh_edu/Emfsn6KpxtBLv9rg0VmTkFEBWn6PspYkfYTmaYyvuEJD3Q?e=eFNhOA
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2.3 Classification

Denote the prevalence of previously-infected individuals in the population by q; the
fraction of uninfected individuals is 1− q. The probability that a random sample
is both positive and has measurement r is qP (r); the probability that a random
sample is both negative and has measurement r is (1 − q)N(r). A measurement
equally likely to be positive or negative satisfies the equation:

qP (r) = (1− q)N(r). (2)

This equation defines a boundary in 3D that is analogous to cutoff values routinely

used for single-antigen assays. If the probability of being positive is greater, the
measurement is classified as positive. If the probability of being negative is greater,
the measurement is classified as negative. This classification scheme maximizes the
accuracy, which we define as the prevalence-weighted combination of sensitivity
and specificity; see [6] for the objective function (Eq. 5) and justification of these
statements.

2.4 Indeterminate Class

We construct our indeterminate class by holding out samples with the lowest prob-
ability of being correctly classified. This concept of local accuracy [11] gives the
probability conditioned on a measurement value that the corresponding sample
is correctly classified by optimal classification domains. Equations are given in
Appendix C. The method [11] solved an optimization problem to determine the
minimal number of samples to hold out to achieve a desired classification accu-
racy. We take a simpler approach by identifying a local accuracy threshold up to
which we hold out samples so that the empirical classification accuracy reaches
a desirable level. In higher dimensions, the modeling allows us to hold out fewer
samples than both the original analysis [9] and the local accuracy work [11] while
improving classification accuracies. This capitalizes on the data separation abili-
ties of additional measurement dimensions. In the Results section, we describe our
optimal classification domains for our example dataset and compare our classifica-
tion sensitivities, specificities, and accuracies to those of CI methods and the two
aforementioned papers.

3 Results

The models built on the training data are used to create the optimal classification
domains; the classification boundary is given by Eq. 2. Figure 3 shows the optimal
positive (yellow) and negative (purple) classification domains for the SARS-CoV-
2 IgG data. See Supplemental Figures 3 and 4 for animations of Figure 3. The

curved boundary between the negative and positive optimal domains reflects the

structure and separation of the sample classes.

Our classification accuracy directly depends on this fidelity of our models to
the data. Figure 3a shows results for the training data with known prevalence
q. Our model-based classification distinguishes between high and low salivary to-
tal IgG concentration for the same anti-N and anti-RBD IgG level. For example,

https://livejohnshopkins-my.sharepoint.com/:f:/g/personal/rluke3_jh_edu/Emfsn6KpxtBLv9rg0VmTkFEBWn6PspYkfYTmaYyvuEJD3Q?e=eFNhOA
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Fig. 3: Optimal classification domains for the training (a) and test (b) data. Posi-
tive samples are indicated by red Xs and negatives with blue �s. The green boxes
drawn in (a) and (b) are the negative sample mean plus 3σ confidence intervals.
Supplemental Figures 3 and 4 show animations.

in the middle of the plot we correctly classify negative samples with high total
IgG concentrations and positive samples with low total IgG concentrations. Fur-
ther, the optimal positive domain captures many positive samples even though it
is nearly impossible to separate some negatives and positives that cluster along
the diagonal. In contrast, for this dataset a CI categorizes samples with a fixed
same N and RBD measurements and a variable ELISA-based salivary total IgG
as members of the same class, leading to higher error rates. Our method admits
four false positives and 16 false negatives; the CI yields six false positives and 26
false negatives. Despite inaccuracies, the modeling reduces false classifications by
37.5 %.

Figure 3b shows the classification scheme applied to the test data using an
estimated prevalence q̂. This estimated prevalence can be computed using the
models without classification (see Appendix B and [6]). Our method yields nine
false classifications; the CI admits ten. The optimal classification domains are
similar to those in Figure 3a due to slight randomness in the prevalence estimate.

Figure 4 shows the optimal classification domains for the models with inde-
terminate samples excluded in the white domain; Supplemental Figures 5 and 6
are animations of Figure 4. The indeterminate domain removes many samples in
regions of high overlap between populations. Specifically, many positive samples
with low N and RBD values are held out as these previously overlapped with many
negative samples. The indeterminate domain describes the characteristic minimum
separation between positive and negative samples that is needed to classify them
with confidence; holding out samples that cannot be classified with sufficient ac-
curacy increases sensitivity and specificity of the remaining data. The CI-based
classification is also applied to the samples without indeterminates for comparison.

Figure 4a shows the training data. Our method yields four false negatives and
no false positives. In contrast, the CI yields one false positive and four false neg-
atives. Figure 4b shows the test data; the model and CI both admit one false
negative but the CI allows five false positives, whereas our method correctly clas-
sifies all negative samples.

https://livejohnshopkins-my.sharepoint.com/:f:/g/personal/rluke3_jh_edu/Emfsn6KpxtBLv9rg0VmTkFEBWn6PspYkfYTmaYyvuEJD3Q?e=eFNhOA
https://livejohnshopkins-my.sharepoint.com/:f:/g/personal/rluke3_jh_edu/Emfsn6KpxtBLv9rg0VmTkFEBWn6PspYkfYTmaYyvuEJD3Q?e=eFNhOA
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Fig. 4: Optimal classification domains for the training (a) and test (b) data with
a holdout region (white; magenta and cyan markers are indeterminate samples).
Positive samples are indicated by red Xs and negatives with blue �s. The green
boxes drawn in (a) and (b) are the negative sample mean plus 3σ confidence
intervals. Supplemental Figures 5 and 6 show animations.

Our classification results highlight the usefulness of working in higher dimen-
sions while allowing flexible domains/shapes to separate data instead of CIs. Table
1 shows our method applied to multiplex salivary SARS-CoV-2 IgG data for train-
ing and test populations [9, 10]. The table compares sensitivity, specificity, and
classification accuracy results from our models to 3σ CIs from the negative sample
means, the original analysis [9], and holdout work [11].

Our model-based classification accuracy (prevalence-weighted sum of sensitiv-
ity and specificity) always improves upon that given by CIs. We achieve classifi-
cation error rates under 1.1 % in two cases, which are not attained by the CIs for
any subpopulation. On average, we reduce the classification error by 34.4 %, with
an 84.0 % reduction when all training samples are considered. Overall errors are
larger without an indeterminate class; this shows the challenges of working with
overlapping positive and negative data.

Table 1 also compares our model-based accuracy to the original analysis [9],
which created their own indeterminate class. Using a local accuracy threshold of
99 %, we reduce the number of indeterminate samples by 28.7 % for the training
data and by 51.6 % for the test data. The original analysis [9] used the ELISA-
based salivary total IgG and all seven antibody targets, although the latter were
summed to form a single number. Thus, while the original work [9] required eight
dimensions (i.e., measurements), the analysis was projected onto two. In contrast,
we only use two antibody targets and the ELISA-based salivary total IgG, treating
these as a measurement triple. We improve classification accuracy from 98.8 % to
98.9 % for the training data and from 99.5 % to 99.6 % for the test data. While the
improvements are small, we achieve them while using 13.8 % more of the available

data. This example highlights the ability of modeling to simultaneously minimize
classification errors, use fewer antibody targets, and hold out fewer samples.

In Table 1 we also compare sensitivity and specificity results from our models
against corresponding results from 3σ CIs. Our model sensitivities and specificities

https://livejohnshopkins-my.sharepoint.com/:f:/g/personal/rluke3_jh_edu/Emfsn6KpxtBLv9rg0VmTkFEBWn6PspYkfYTmaYyvuEJD3Q?e=eFNhOA
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Data and method Positive Negative Total

Training samples

147 283 430

All data Sensitivity (%) Specificity (%) Accuracy (%)

Model 131/147, 89.1 279/283, 98.6 410/430, 95.4
Confidence interval 121/147, 82.3 277/283, 97.9 398/430, 92.6

Inconclusive data excluded Sensitivity (%) Specificity (%) Accuracy (%)

Model 111/115, 96.5 256/256, 100 367/371, 98.9
Confidence interval 111/115, 96.5 255/256, 99.6 366/371, 98.7
Pisanic et al. (2020) 111/115, 96.5 219/219, 100 330/334, 98.8
Patrone et al. (2022) 115/119, 96.6 227/227, 100 342/346, 98.8

Test samples

87 192 279

All data Sensitivity (%) Specificity (%) Accuracy (%)

Model 83/87, 95.4 187/192, 97.4 270/279, 96.8
Confidence interval 81/87, 83.1 188/192, 97.9 269/279, 96.4

Inconclusive data excluded Sensitivity (%) Specificity (%) Accuracy (%)

Model 80/81, 98.8 163/163, 100 243/244, 99.6
Confidence interval 80/81, 98.8 158/163, 96.9 238/244, 97.5
Pisanic et al. (2020) 81/81, 100 125/126, 99.2 206/207, 99.5
Patrone et al. (2022) 81/82, 98.8 157/158, 99.4 238/240, 99.2

Table 1: Summary information about the SARS-CoV-2 datasets with sensitivities,
specificities, and classification accuracies for training and test data with and with-
out allowing an indeterminate class. Model and 3σ (relative to negative sample
mean) confidence interval results are shown for all samples; the original analysis
[9] was conducted on all seven antibody targets and the ELISA-based total IgG
without indeterminate samples.

match or best those given by CIs. We increase sensitivities from 92.7 % to 95.0 %
and specificities from 98.1 % to 99.0 % on average, even including the data in our

indeterminate region. Excluding indeterminate data, we achieve 100 % specificity
for both the training and test populations, which is not realized by CIs. The
number of false positives and false negatives increases when indeterminate samples
are considered. However, we still have fewer false classifications as compared to
CIs.

Table 1 includes sensitivities and specificities from the original analysis [9]. Our
approach matches training data sensitivities and specificities of 96.5 % and 100 %.
Test data sensitivity is lowered from 100 % to 98.8 % but specificity is increased
from 99.2 % to 100 %. This discrepancy arises from the different objectives in
our work versus the original analysis [9]; our optimal classification maximizes the
prevalence-weighted sensitivity and specificity, whereas the prior method maxi-
mized specificity while maintaining an acceptable sensitivity. As such, our results
do not outperform the original analysis for each case, but we improve overall clas-
sification accuracy. Further, our method yields acceptable sensitivities and speci-
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ficities using the indeterminate data in our holdout region; the original analysis
excluded those samples.

We also report sensitivity, specificity, and classification accuracy results from
holdout work [11] in Table 1 for comparison. We reduce the number of holdout
samples by 14.6 % relative to their method. In doing so, we use 25 more training
samples while holding fixed the number of misclassified points at four. Further,
we use four additional test samples and have one fewer misclassifications, thereby
reducing test classification error by 50 %. This improvement is surprising given
that their original work already significantly decreased the number of holdouts.
Like the original analysis of the data [9], that study [11] summed seven of the eight
available antibody measurements to yield a single number; our results suggest that
considering measurements separately improves performance.

4 Discussion

High dimensional mathematical modeling is a powerful tool for classification.
Adding dimensions can improve data separation and allow models to better lever-
age the underlying structure, thereby increasing classification accuracy. We illus-
trate high dimensional modeling with a binary classification of 3D SARS-CoV-2
antibody response measurements. Our 3D modeling yields significant improve-
ments over CI methods, even when indeterminate data are considered. For the
examples considered herein, we decrease average classification errors by 34.4 %. A
combined specificity + sensitivity of at least 150 % is desirable [13]; our average
(194 ± 4.84) % is close to the perfect 200 % and higher than that of CIs (191 ±

7.40) %.

Our work is limited by the inherent subjectivity of selecting mathematical
models. In high dimensions, new structures of the data become apparent, which
can necessitate more nuanced modeling. However, this does not suggest how to
determine when a model is optimal. One approach is to construct a family of
models and identify the one with the smallest error rate [6]. Encouragingly, the
subjectivity issue may be lessened by adding more data points [14]. Our models
are not designed to account for waning antibody levels, which can drop below
detection thresholds when measured several months after infection [15]. Further,
our models do not differentiate between demographic factors like age or biological
sex, although data could be stratified based on these factors. For example, children
have better COVID-19 outcomes than adults [16], suggesting the usefulness of
modeling their antibody test results as a distinct group.

A significant benefit of our modeling approach is its adaptability to any num-
ber of measurement targets and classes. While our work is demonstrated using N,
RBD, and ELISA-based salivary total IgG, modeling four targets and beyond is
possible. A more challenging extension is to identify which antibody targets min-
imize classification errors; we anticipate difficulties in visualization and compari-
son between dimensions. To this end, models could be constructed for all possible
antigen and ELISA combinations to determine the result yielding the highest clas-
sification accuracy. More generally, our method does not address the problem of
antigen down-selection, which is important for assay design. Given the competing
needs to understand correlates of protection and estimate prevalence, it is unclear
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how to define an objective function that yields an optimal choice of antigens. We
leave this for future work.

Finally, our classification scheme minimizes average rates of false negatives and
false positives, which relate to sensitivity and specificity. The problem could be
formulated as a constrained optimization to meet desired sensitivity and specificity
targets to create a “rule-out” or “rule-in” test [2].

In conclusion, the usefulness of our procedure is due to the inherent separation
of data in additional dimensions and the ability of models to fit the structure
of the data, which molds the classification domains to the negative and positive
populations. Our high dimensional models achieve superior classification accuracy
and have the potential to replace traditional methods.
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A Details of Models

Our mathematical models are probability distributions that describe the chances of observing
a positive or negative sample in 3D measurement space. To create a probability distribution,
we select a parameterized model that qualitatively describes the shape of the population.
Examples of distributions commonly used to model biological phenomena include the normal,
uniform, beta, and exponential.

To motivate a specific choice, first note that much of the negative data have N and RBD
values that are roughly proportional. Mathematically, this means that the data lies along the
diagonal line y = x, suggesting the change of variables

u =
x+ y
√

2
, wn =

x− y
√

2
, v = z. (A1)

Additionally, the negative data fans out away from the origin along the diagonal (see Figure
1a). This suggests that the variance of the difference wn between N and RBD increases with
their sum, i.e., the variable u. We empirically choose the variance σw of this difference to be

σw = α exp

[

u− µu

β

]

, (A2)

for constants α and β, where µu is a characteristic total SARS-CoV-2 antibody level, which
is yet to be determined.

A 3D distribution in variables u,wn, and v was created for the negative population. We
select a hybrid triple normal distribution having the form

N(r) =
1

(2π)3/2σuσwσv
exp

{

−
1

2

[

(

u− µu

σu

)2

+

(

wn − µw

σw

)2

+

(

v − µv

σv

)2
]}

, (A3)

where σu and σv are constants and σw is defined by Eq. A2. We use maximum likelihood
estimation (MLE) to identify the model parameters µu, µw, µv, σu, σv, α, and β that maximize
the probability of observing the negative training data [8].

Similarly, we introduce changes of variables and model the positive population. The struc-
ture of the positive data motivates a change to a spherical coordinate system:

ζ =
√

x2 + y2 + z2, ω = arctan

(

√

x2 + y2

z

)

, φ = arctan
( y

x

)

, x > 0. (A4)

This reflects the fact that the data moves out radially in 3D from the origin. We use a hybrid
triple normal distribution:

P (r) =
1

(2π)3/2σuςwσv
exp

{

−
1

2

[

(

u− µu

σu

)2

+

(

wp − µw

ςw

)2

+

(

v − µv

σv

)2
]}

, (A5)

where σu, ςw and σv are constants. MLE is used to determine the optimal model parameters
using the positive training data.

Using either a known prevalence q or estimated prevalence q̂ (see Section B), we then
classify a measurement r as positive if

(1 − q)N(r) < qP (r) (A6)

and negative if
qP (r) < (1 − q)N(r). (A7)
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B Prevalence Estimation

We can estimate the disease prevalence if it is unknown following [6]. The strategy requires
dividing the measurement space into two arbitrary regions. Many clustering algorithms to
select these regions exist [17, 18]; our implementation chooses these regions based on a k-
means clustering of the data. For a binary classification, we use k = 2 clusters and assign each
point in our 3D measurement space to the cluster with the closest mean. We select a region
D on one side of the boundary separating the clusters and count the total number of points
irrespective of their (unknown) class; call this number QD. We compute the integrals

PD =

∫

D
P (r)dr, ND =

∫

D
N(r)dr, (A8)

which are the probabilities that a known positive or known negative sample falls in the domain
D. Then our prevalence estimate is computed as

q̂ =
QD −ND

PD −ND
. (A9)

This estimate q̂ can be used in place of the true prevalence when q is unknown. Our estimate
is unbiased. Moreover, as the number of samples increases, q̂ will converge to q.

C Local Accuracy

The local accuracy, Z, of a test sample with measurement r is given by

ZP (r) =
qP (r)

qP (r) + (1− q)N(r)
(A10)

if the sample falls in the optimal positive domain, and by

ZN (r) =
(1− q)N(r)

qP (r) + (1− q)N(r)
(A11)

if the sample falls in the optimal negative domain. The denominators in Eqs. A10 and A11
give the probability that a test sample has a measurement value r. See [8] for details.
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