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Respiratory tract infections are a leading cause of morbidity and mortality in newborns,
infants, and young children. These early life infections present a formidable immunologic
challenge with a number of possibly conflicting goals: simultaneously eliminate the acute
pathogen, preserve the primary gas-exchange function of the lung parenchyma in a
developing lung, and limit long-term sequelae of both the infection and the inflammatory
response. The latter has been most well studied in the context of childhood asthma,
where multiple epidemiologic studies have linked early life viral infection with subsequent
bronchospasm. This review will focus on the clinical relevance of respiratory syncytial virus
(RSV), human metapneumovirus (HMPV), and rhinovirus (RV) and examine the protective
and pathogenic host responses within the neonate.
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RESPIRATORY VIRAL INFECTIONS IN THE
NEONATAL POPULATION

Global studies estimate that over 100 million lower respiratory tract infections occur annually in
children under the age of 5, accounting for 700,000-900,000 deaths per year in this age group (1).
The estimated RSV and HMPV lower respiratory tract infection burden in this age group is
approximately 33.1 million and 14.2 million cases per year, respectively (2, 3). For context, estimates
of influenza lower respiratory tract infection in children under the age of 5 is 10.1 million cases per
year (4). RV lower respiratory tract infection burden has not been quantified on a global scale;
however, at least in hospitalized children, RV has been shown to be a common cause of bronchiolitis
(5–7).

RSV is a negative-sense single-stranded RNA virus in the Pneumoviridae family (8). RSV cases
typically peak in the winter months in temperate climates (9). RSV is a common pathogen in young
children, with one study estimating the infection rate as 68.8/100 children under the age of 1 year
with near ubiquitous exposure by 2 years (10). RSV infection typically presents with upper
respiratory symptoms, with progression to lower respiratory symptoms in approximately 40% of
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cases (11, 12). While progression to bronchiolitis requiring
hospitalization is relatively rare (1-2% of all RSV cases), RSV
accounts for nearly 70% of all hospitalizations for bronchiolitis in
the United States (13, 14). Global estimates of RSV disease are
staggering, with 3.2 million hospital admissions and 59,600 in-
hospital deaths in 2015; 45% of hospitalizations (~1.4 million)
and deaths (~27,300) were in infants under the age of 6 months
(2). Premature infants are at especially high risk, with one meta-
analysis indicating 3-fold higher risk of hospitalization in
premature compared to term infants (15).

HMPV is a negative-sense single-stranded RNA virus first
isolated from children with lower respiratory tract infection by
Dutch investigators in 2001 (16). HMPV is also a member of the
Pneumoviridae family (16–18). HMPV largely occurs in the
winter and early spring months in the United States, typically
1-2 months after the peak of RSV season (19–22). Most children
are infected with HMPV within the first years of life, although re-
infection can occur frequently with either heterologous or
homologous strains of HMPV (22, 23). HMPV infection most
commonly presents in children with fever, rhinorrhea, and
cough, while wheezing on presentation has been reported in
approximately 50% of pediatric cases (22, 24, 25). One
prospective multicenter surveillance study demonstrated that
HMPV causes 7% of sick clinic and emergency department
visits for children <5 years of age (26). In 2018, HMPV
infections globally in children under the age of 5 years
contributed to approximately 500,000 hospital admissions and
11,300 deaths (3). Infants had a disproportionately high risk of
hospitalization and death—a trend that was magnified in low-
income or low-middle-income countries (3). Infants with history
of prematurity also have increased susceptibility to
hospitalization and severe HMPV disease (26–29).

Human rhinoviruses are positive-sense single-stranded RNA
virus in the family Picornaviridae and genus Enterovirus (30–32).
Rhinovirus (RV) infection most commonly occurs in the fall with
a smaller peak in the spring (33, 34). The mean age for first
symptomatic RV infection is approximately 6 months, with re-
infection via heterologous strains occurring frequently (35, 36).
RV infection has a range of presentations: asymptomatic
(occurring frequently in young children), upper respiratory
tract infection (known colloquially as the ‘common cold’), and
lower respiratory tract infection (37–42). However, RV is a
frequent cause of lower respiratory tract infection in infants
and toddlers, causing common presentations of bronchiolitis,
pneumonia, and wheezing episodes (43–50). Hospitalization
among children with RV was disproportionately seen in
infants <6 months, with RV infection accounting for ~5 out of
every 1,000 hospitalizations in this age range (51). Like RSV and
HMPV, RV infection can cause severe disease in premature
infants; in fact, nosocomial outbreaks of RV have been described
in neonatal intensive care units (52–54).

Collectively, RSV, HMPV, and RV represent three leading
causes of respiratory morbidity and mortality in young children,
highlighting the need to understand host-pathogen interactions
in the lung that put these patients at higher risk of poor
outcomes. The unique immunologic functions of the neonatal
Frontiers in Immunology | www.frontiersin.org 2
lung in homeostas is shape the responses to these
three pathogens.
LUNG DEVELOPMENT AND
PRENATAL IMMUNITY

Structurally, the lungs in utero undergo three major
developmental stages characterized by histologic appearance:
pseudoglandular, canalicular, and terminal saccular stages (55).
When the lungs spring open with the newborn’s first cry, the
primary functions of ventilation and oxygenation begin as
residual amniotic fluid is absorbed. However, for the next 4
weeks in mice and the next 1-2 years in humans, the last stage of
development, alveolarization, occurs. This process is marked by
increased branching and budding of alveoli, exponentially
increasing the surface area of cells capable of performing gas-
exchange (55).

As infectious threats to the newborn lung can be present from
that first breath, it is unsurprising that development of the
immune system within the lung occurs early in embryonic
development (56). Immune cells, particularly embryonic
macrophages and dendritic cells, can be found in the lung as
early as embryonic day(E) 9.5 in mice and E35 in humans (57,
58). NK cells are present early in fetal development in the murine
liver and spleen at E14.5 and 15.5, respectively (59). Shortly after,
gd T cells develop in the embryonic thymus and are important
sources of prenatal IL-17 (60, 61). Proteins like mucins (e.g.
Muc5b) and surfactants (e.g. SP-A) are released from the
prenatal lung into the amniotic fluid and both substances have
immunomodulatory properties (62–66).
OVERVIEW OF LUNG INNATE IMMUNITY
IN THE NEONATE

Shortly after birth, the composition of the innate immune system
in the lung changes. Single-cell RNA sequencing of post-natal
day 1 mice demonstrate the presence of 5 unique subsets of
macrophages/monocytes and 3 subsets of dendritic cells (DCs),
as well as mast cells, basophils, and neutrophils (67).
Interestingly, the monocytes present in the murine lung
prenatally differentiate into long-lived alveolar macrophages
within the first week of life in a GM-CSF-dependent fashion
(68). Following LPS stimulation, murine neonatal macrophages
have increased production of IL-10 (an anti-inflammatory
cytokine); IL-1, IL-6 and TNF production were significantly
decreased following LPS stimulation, potentially due to
decreased TLR2 and TLR4 expression (Figure 1) (69). Between
postnatal day 3-21 in mice, macrophages in the neonatal lung
show increased polarization towards an M2-like macrophage
phenotype, which is temporally associated with alveolarization
(70). In contrast, phagocytic function and bactericidal
capabilities of neonatal macrophages isolated from human
cord blood are comparable to that of adult cells (71, 72).
April 2022 | Volume 13 | Article 863149
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Human cord blood derived macrophages stimulated with LPS do
not decrease their oxygen consumption, indicating an impaired
ability to modulate metabolism and effectively activate
macrophages, while adult macrophages downregulate oxidative
phosphorylation, thus shifting to Warburg metabolism (73).

Human cord blood derived macrophages and monocytes are
also less responsive to IFN-g compared to adult cells (74). In
humans, circulating monocytes in the newborn exhibit decreased
MHC class II expression, which leads to impaired antigen
presenting capacity in tissues (75). Cord blood monocytes have
an intrinsic impairment in extravasation under homeostatic
conditions when compared to adult monocytes, although
activation of endothelial cells by inflammation can improve
neonatal monocyte migration (76).

In the newborn mouse, absolute number and function of DCs
are decreased compared to the adult lung (77, 78). Neonatal lung
DCs in mice promote tolerance by upregulating PD-L1
expression shortly after birth in a microbiota-dependent
fashion (79). Human cord blood derived DCs have decreased
expression of MHC class II and co-stimulatory molecules such as
CD25, CD83, and CD86 and exhibit blunted responses to LPS
(80, 81). Following LPS stimulation, human neonatal
conventional DCs (cDCs) have impaired transcription of IL12-
p35, a subunit of the Th1-potentiating cytokine IL-12p70,
although this expression was restored by exogenous IFN-g
Frontiers in Immunology | www.frontiersin.org 3
administration (82, 83). Similarly, stimulation of human cord
blood DCs with TLR7 and TLR9 agonists demonstrated defective
type I interferon responses (84, 85). Interestingly, murine
neonatal DCs may have a constrained response to TLR
stimulation in part due to IL-10 production by CD5+ B cells,
demonstrating the complex interplay of neonatal innate and
adaptive immunity (86, 87). In a human cohort followed
prospectively, IFN-a production by DCs increased to adult
levels by 1 year of age, IL-10 production declined to adult
levels by 2 years, while IL12-p70 secretion remained decreased
at 2 years (88). While similarities in decreased co-stimulatory
molecule expression and blunted inflammatory responses in DCs
have been characterized, other differences between murine and
human DCs responses to specific stimulations have been
reviewed elsewhere (89). More recently, fate-mapping and
sequencing based techniques in mice have demonstrated that
cDC2s derived early in life have differing responses to pathogens
compared to the adult cDC2s due to an altered cytokine milieu in
the lung, rather than inherent pre-programmed differences (90).

Although absolute numbers of neutrophils are comparable to
that of older children and adults, neonatal neutrophils exhibit
poor chemotaxis, endothelial adhesion, and phagocytic function
(91–93). Human neonatal neutrophils neither produce
neutrophil extracellular traps (NETs) nor respond to Fas-
mediated apoptosis as effectively as adult neutrophils (94–97).
FIGURE 1 | Baseline differences in the neonatal innate immune system. Several areas of the innate response are blunted in neonates, including macrophage
response to TLR signals, neutrophil/monocyte extravasation, and poor function of antigen-presenting cells (monocytes/dendritic cells). Anti-inflammatory signals are
also produced by the innate system, with IL-10 production via macrophages. Dendritic cells express PD-L1, a co-inhibitory receptor, shortly after birth and produce
less pro-inflammatory IL-12. NK cells show reduced effector function and increased expression of inhibitory receptors (e.g. NKG2A). Eosinophils accumulate in the
lung within the first two weeks of life in mice. Created with biorender.com.
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One study also identified a unique group of myeloid suppressor
cells with a neutrophilic/granulocytic phenotype (Gr-MDSC) in
human cord blood; this cell population was found to suppress
NK cell activation and T cell polarization to effector subsets (98).

NK cells in the human lung exhibit a selective tolerogenic
phenotype where they retain their ability to generate strong
antibody-dependent cell-mediated cytotoxicity (ADCC)
responses similarly to adult NK cells, but are unable to mount
a response against cells displaying non-self peptide or lacking
MHC class I receptor (99). Analysis of human cord blood
revealed that NK cells have increased expression of inhibitory
receptors (e.g. NKG2A/CD94) and decreased expression of
activation receptors (e.g. leukocyte immunoglobulin-like
receptor (LIR)-1), leading to impaired recognition of MHC-I
negative cells (100–102). Human cord blood derived NK cells
also had decreased toll-like receptor 3 (TLR3) expression and
failed to mount a response to polyinosinic-polycytidylic acid
(poly(I:C)), a synthetic viral double-stranded RNA viral
pathogen-associated molecular pattern, but paradoxically had
increased IFN-g release with TLR8 stimulation (103, 104). NK
cells isolated from cord blood also had a 3-fold lower capacity for
cytolytic activity and decreased degranulation and cytokine
production (e.g. IL-15, IL-2, granzyme B, and IFN-g)
compared to adult NK cells (100, 105–107). Maturation of
neonatal murine NK cells into adult-like NK cells was
constrained by TGF-b signaling (108).

While comparing murine-derived data from lung tissue with
peripherally acquired human cells presents a challenge, a pattern
of anti-inflammatory and tolerogenic responses from neonatal
innate immune cells emerges. Stimuli that would normally
initiate a robust inflammatory response in adult models, such
as LPS or other pathogen-associated molecular patterns, have
blunted effects on neonatal dendritic cells and macrophages (69,
73, 82–86). Further, innate immune cells in the neonate
contribute to the local anti-inflammatory milieu by production
of IL-10 with suppression of ‘typical’ inflammatory cytokines
(e.g. IL-12), upregulation of co-inhibitory receptor (e.g. PD-L1)
expression, and reduced co-stimulatory receptor expression (69,
79–83, 88).. Collectively, these alterations not only stifle an
inflammatory innate response in the neonatal lung, but also
effect downstream adaptive immunity as well.
OVERVIEW OF LUNG ADAPTIVE
IMMUNITY IN THE NEONATE

Although once thought to be in a relative state of
immunosuppression due to poor adaptive immunity, recent
studies clearly demonstrate the presence of a more nuanced
adaptive immune response in the neonate (109–112). Single cell
RNA sequencing demonstrated T cell and B cell numbers
increase in the murine neonatal lung on the first day of life
(67, 113). This early arrival in the lungs is not necessarily in
response to a stimulus, but reflective of the fact that neonatal
naïve T cells extravasate into end-organ sites to a higher degree
than adult naïve T cells (114–116). Following trafficking to the
Frontiers in Immunology | www.frontiersin.org 4
lung, the adaptive immune system of the neonate has strikingly
different properties than adult counterparts (117, 118). This
concept has been described as a ‘layered immunity,’ as
neonatal B and T cells have functional differences that
phenotypically distinguish these cells (119–123)..

While CD8+ T cells are present in the murine newborn lung
at a relatively low abundance, exposure to pathogens can lead to
rapid induction of CD8+ T cells (67, 113, 124, 125). Neonatal
CD8+ T cells demonstrate greater proliferative capabilities with
rapid terminal differentiation at the expense of memory
formation (Figure 2) (123, 126–128). From a functional
perspective, neonatal CD8+ T cells demonstrate decreased
cytotoxicity but increased innate-like characteristics, such as
antimicrobial peptide production and reactive oxygen species
formation (118, 129). Furthermore, antigen-naïve murine CD8+

T cells in the neonate can secrete IFN-g in response to cytokine
stimulation alone, suggesting less reliance on TCR signaling
(118, 123). IL-12 in particular appears to be a key cytokine in
changing the epigenetic landscape of human neonatal CD8+ T
cells, shifting functionality towards a more ‘adult’ phenotype
(130, 131).

Similar to the findings of neonatal CD8+ T cells, neonatal
CD4+ T cells have greater proliferative capabilities (117, 132), a
more restrictive T cell receptor (TCR) repertoire with bias
towards self-reactive TCRs (133–135), and are more likely to
become terminally differentiated rather than form a memory
population (136). However, neonatal CD4+ T cells have
significant heterogeneity in differentiation states (e.g. subsets)
and effector function. Compared to adult cells, murine CD4+ T
cells found after birth skew towards Th2 and away from Th1 cells
(Figure 2) (137–139). Neonatal CD4+ T cells produce an
abundance of IL-4 and IL-13 after activation, in part due to
hypomethylation of a key murine Th2 cytokine regulatory region
(CNS-1) and an open IL-13 locus resistant to transcriptional
repression in human cells (140–142). This epigenetic pattern in T
cells in mice changes rapidly post-birth, reaching adult-like
epigenetic patterns within 6 days of life and thus contributing
to this notion of a “critical window” of Th2 bias (143). In murine
Th1 cells, lack of IL-12 in the milieu leads to upregulation of IL-
13Ra1, allowing for IL-4 signaling through the IL-4 receptor
which results in induction of apoptosis, furthering the imbalance
of Th2/Th1 cells (144–146).

In addition to favoring the Th2 subset, naïve T cells from the
neonate preferentially differentiate into regulatory T cells (Tregs)
(117, 132). Using a fate-mapping Foxp3 mouse, Tregs generated
early in life in the lung demonstrated suppressive activity that
was maintained into adulthood (147). Similarly, in humans,
Tregs directed against maternal alloantigens could be detected
in children 7-17 years old, suggesting a long-lived functionality
of neonatal Tregs (148). To a lesser extent than Th2/Treg
skewing, one murine fate-mapping model showed increased
neonatal T cell differentiation towards Th17 cells (149).
Human cord blood derived T cells cultured in Th17-polarizing
conditions produced higher levels of IL-22, an anti-inflammatory
cytokine designed at maintaining epithelial barriers, when
compared to adult T cells (150).
April 2022 | Volume 13 | Article 863149
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T follicular helper (Tfh) cells, a Bcl6-dependent CD4+ T cell
subset that specializes in facilitating germinal center reactions and
B cell development, also show altered function in neonates (151).
In studies of neonatal immunization, induction and migration of
Tfh cells were impaired compared to adult mice (152, 153).
Further, impaired Tfh cell function in neonates led to reduced
germinal center quantity, less differentiation of B cells towards
plasma cells, and reduced antigen-specific IgG production when
compared to adult mice (152). While neonatal Tfh cells
demonstrate some degree of intrinsic dysfunction, the extrinsic
milieu in the neonate also plays a factor; for instance, IL-4 seems to
promote Tfh cell development and localization to germinal
centers, while simultaneously constraining IL-17 production by
Tfh cells and skewing the humoral response towards IgE
production (152, 153). Using microarray, a more recent study
Frontiers in Immunology | www.frontiersin.org 5
demonstrated that neonatal Tfh cells can initiate the
transcriptional program associated with Tfh development, but
preferentially differentiate into short-lived pre-Tfh cells more so
than adult counterparts (154). Further, these neonatal Tfh cells
also expressed a signature more classically associated with Th2
cells, such as increased expression of IL-13 and transcription
factors associated with Th2 development (154).

While the diminished function of Tfh cells in neonates
contributes to the changes in the humoral response, there are
also key differences between neonatal and adult B cells. The
murine and human neonatal B cell compartment is largely
composed of a first layer of B-1 B cells arising from the
embryonic yolk sac and fetal liver, compared to mature B-2
cells in the adult (120). Murine B-1 cells, unlike B-2 cells, do not
require IL-7 or B cell activating factor (BAFF) for development
FIGURE 2 | Baseline differences in the neonatal adaptive immune system. The neonatal CD4+ T cell compartment is skewed towards Th2 (due to hypomethylation
of critical Th2 regulatory regions) and Treg development. There is less differentiation towards Th1 due to reduced IL-12 in the milieu, coupled with increased Th1
apoptosis due to IL-4 signaling. Tfh cells, while stimulated by IL-4 to differentiate, have arrested development, with generation of short-lived pre-Tfh cells. IL-4
signaling on Tfh cells also limits IL-17 production and skews the humoral response towards IgE production. Both neonatal Tfh and B cells have poor migration to
germinal centers, which structurally demonstrate poor organization. B cells also have increased production of IL-10 and spontaneous secretion of IgM. CD8+ T cells
show radically different properties in neonates compared to adults, with increased proliferation, generation of reactive oxygen species (ROS) and antimicrobial
peptides (AMPs), and reduced cytotoxicity and memory formation. Created with biorender.com.
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and are more responsive to TSLP (155, 156). Neonatal B cells in
mice also have low levels of activation induced cytidine
deaminase (AID) leading to lower affinity antibody responses
(157). Human cord blood derived B-1 cells have a more
restricted immunoglobulin repertoire, spontaneously secrete
IgM, and exhibit limited somatic hypermutation (158). Passive
humoral immunity, though, is provided via transplacental
transfer of high-titer maternal antibodies, which occurs in
humans during the third trimester of pregnancy (159–161).

Taken together, these studies not only indicate that the
neonatal lung has a coordinated first layer of adaptive
immunity at baseline, but are also identifying the mechanistic
differences between neonatal and adult adaptive immunity. The
evolutionary reasons for these altered responses remains an
active question. Considering the altered CD4+ T cell response
as a prototypical example, the Th2-predominance may be critical
for lung development, as evidenced by the temporal association
of polarization of M2-like macrophages and recruitment of
eosinophils with alveolarization and primary septation,
respectively (70, 162). Additionally, there is a theological
argument to be made for limiting a potentially inflammatory
and cytotoxic Th1 response in area of active development. While
sustaining a milieu favoring Th2 vs. Th1 cells in the neonatal
lung under physiologic conditions presumably confers some
evolutionary advantage to the host, understanding this baseline
difference—along with the others discussed in these last two
sections—informs how the neonatal immune system responds in
the face of a viral infection.
Frontiers in Immunology | www.frontiersin.org 6
NEONATAL IMMUNE RESPONSES TO
RESPIRATORY VIRAL INFECTION IN
PRECLINICAL MODELS

Several neonatal animal models exist to study the host-pathogen
interactions of respiratory viruses, with the most extensive body
of literature surrounding neonatal RSV infection.

RSV infection of newborn mice resulted in prolonged viral
replication when compared to adult mice, although neonates are
capable of controlling and clearing infection (163, 164). Neonatal
epithelial cells release IL-33 and TSLP in greater magnitude
following RSV infection compared to adult mice (Figure 3) (165,
166). Early mediators of antiviral response such as recruitment of
plasmacytoid DCs (pDCs) and production of IFN-a and IFN-b
were deficient in neonatal mice infected with RSV (167). cDC1s
were adequately recruited to the lung, but failed to respond to
type I IFNs and upregulate co-stimulatory molecules (e.g. CD80/
CD86) required for proficient CD8+ T cell response following
RSV infection in mice (168). cDCs from human cord blood
infected with RSV similarly had poor co-stimulatory molecule
expression (168). Antigen-specific CD8+ T cells were induced in
neonatal mice following RSV infection but were less likely to
produce IFN-g (169). This lack of IFN-g production leads to a
delayed and blunted classically activated macrophage response in
neonatal mice (163). TLR4 or TLR9 agonist treatment increased
co-stimulatory molecule expression on murine cDCs and
restored CD8+ T cell responses to adult levels (170).
Interestingly, the CD8+ T cell repertoire following RSV
FIGURE 3 | The immune response to respiratory viruses in neonates. The neonatal response favors a type II response, with increased IL-33, IL-25 and TSLP
released from the epithelium, increased type 2 innate lymphoid cells (ILC2), increased type 2 helper T cells (Th2), and differentiation of M2-like alveolar macrophages
(M2). CD8 T cells have reduced T cell receptor (TCR) avidity, while both CD8 T cells and natural killer (NK) cells show reduced effector functions. Germinal center
(GC) reactions are diminished in neonates, with less T follicular helper (Tfh) cell differentiation and less IgG production from GC B cells. Created with biorender.com.
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infection is significantly different in neonatal mice with
variations in epitope-specific Vb repertoire usage and lower
functional avidity, a finding that resolves within 2 weeks of life,
highlighting a critical window for altered CD8+ T cell
responses (164).

Neonatal RSV infection in mice was associated with
recruitment of CD4+ T cells with a Th2 bias (171). Compared
to adult mice, the CD4+ T cell compartment of neonatal mice
showed increased proliferative capacity, expression of IL-4Ra,
and differentiation into Th2 cells following RSV infection (172).
Using a lamb model, neonatal RSV infection further increased
Th2 cytokine production in the setting of an elevated baseline
Th2 milieu (173). This skewing towards type 2 inflammation
(e.g. increased ILC2s and Th2s) was due to rapid and increased
production of IL-33 in neonatal mice (165, 174). Consistent with
a Th1/Th2 imbalance, neonatal mice had fewer Th1 CD4+ cells
in the bronchoalveolar lavage fluid when compared to adult
mice (171).

RSV infection of 7-day-old mice resulted in long-standing
pathophysiologic changes such as reduced lung function, chronic
inflammation, and airway remodeling; synergistic changes were
noted in mice sensitized to OVA after prior neonatal RSV
infection (175). Re-infection 4-6 weeks after initial neonatal
infection led to an exaggerated Th2 response and increased
airway hyperresponsiveness when compared to weanling-aged
or adult-aged mice infected twice with RSV (172, 176).
Mechanistically, neonatal mice with repeated exposure to RSV
demonstrated a break in tolerance to an antigen (OVA) present
in maternal breastmilk, increasing susceptibility to allergic
airway disease (177). It should also be noted that RSV strain
virulence could also play a role in mediating pathology, as a
chimeric RSV A2 strain carrying the F protein from a clinical
isolate induced a more robust Th2 response and subsequent lung
pathology (178).

Murine Th2 responses following neonatal RSV infection
contribute to pathology. CD4+ T cell-specific deletion
of IL-4Ra led to reduced Th2 responses and reduced
airway hyperresponsiveness following secondary exposure
(172). Similarly, administration of an IL-4Ra antisense
oligonucleotide during the initial neonatal infection mitigated
Th2-mediated pathology with subsequent RSV exposure (179).
Interestingly, administration of recombinant IFN-a during
primary infection led to reduced pathology with re-infection,
in part by limiting increased IL-4Ra on Th2 cells (167).
Amelioration of altered airway responses after secondary
infection could also be achieved with administration of an IL-
13Ra2 fusion protein, blockade of IgE, blockade of IL-33
signaling, or inhibition of STAT6 during the primary infection
(165, 176, 180, 181).

The lack of a strong Th1 response in neonates also may
contribute to pathology. RSV-infected human cord blood DCs
produce increased TGF-b, an anti-inflammatory cytokine that in
this context limits IL-12p70 production (and subsequent Th1
differentiation), compared to RSV-infected DCs derived from
adults (182). Recombinant IFN-g therapy diminished the
number of GATA3+ CD4+ T cells (Th2) and increased
Frontiers in Immunology | www.frontiersin.org 7
antigen-specific CD8+ T cell recruitment to BAL fluid (171).
Recombinant IFN-g treatment in mice activates classically
activated and alveolar macrophages and leads to improved
RSV clearance (163, 183). Likewise, neonatal infection with a
recombinant RSV strain expressing IFN-g led to improved viral
clearance with primary infection and reduced pathology upon
secondary infection (184). Collectively, these studies suggest that
diminishing an exuberant Th2 response or enhancement of a
deficient Th1 response can limit RSV-induced pathology.

Type 17 immunity has been implicated in protection and
pathology in neonatal RSV infection. To recapitulate the clinical
phenomenon of infants with CX3CR1 gene variants having
worse outcomes with RSV infection, Das et al. evaluated
neonatal RSV infection in mice lacking this chemokine
receptor (185, 186). Cx3cr1 knockout mice also had worsened
pathology dependent on increased IL-17 from gd T cells (185).
Administration of IL-22, a cytokine produced by Th17 cells,
Th22 cells, and others to neonatal mice infected with RSV led to
faster reduction in RSV burden by limiting RSV-mediated
subversion of autophagy (187). RSV infection of a subgroup
neonatal B cells named B regulatory cells (nBregs) derived from
human cord blood occurs through interaction with the
chemokine receptor CX3CR1; infection of nBregs led to
secretion of IL-10, further blunting the Th1 response (188).

From a humoral perspective, neonatal mice produced RSV-
specific IgE after infection, consistent with a Th2 bias (181).
However, neonatal mice had a less robust RSV-specific
neutralizing IgG response compared to adult mice (189).
Interestingly, depletion of CD4 and CD8 T+ cells, NK cells, or
IFN-g blockade led to enhanced RSV-specific antibody
production in the neonates (189). The poor antibody response
in neonates was the result of poor germinal center activity and
deficient differentiation of CD4+ T cells to the follicular helper
(Tfh) subset (190). Mice lacking Tfh cells had increased
pathology with re-exposure to RSV, while blockade of IL-2 led
to increased Tfh number, reduced RSV-driven pathology, and
increased RSV-specific IgG production (190). Interestingly,
administration of recombinant IFN-a during neonatal RSV
infection led to increased B cell trafficking to the lung,
increased B-cell activating factor (BAFF) and a proliferation-
inducing ligand (APRIL) expression, and increased RSV-specific
IgA (191).

Another member of the Pneumoviridae family, pneumonia
virus of mice (PVM), has been utilized as a murine model of early
life lower respiratory tract infection (192, 193). Unlike RSV or
HMPV, however, PVM is a natural murine pathogen; this allows
for the investigation of infection dynamics and the resultant
immune response in context of a natural host-pathogen dyad
(192). Although kinetics of PVM infection were similar between
neonatal and adult mice, neonatal mice had markedly reduced
pro-inflammatory mediator production and leukocyte
recruitment (194). In a model of severe bronchiolitis using
IRF7-deficienct mice, neonatal infection with PVM led to
release of IL-33 and HMGB1 (high-mobility group box 1),
another nuclear alarmin, both of which contributed to ILC2
proliferation, type 2 inflammation, and airway remodeling (195).
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Similar to neonatal models of RSV, early life PVM coupled with
exposure to an allergen led to Th2-driven phenotype mirroring
asthma (196, 197).

The relationship between neonatal infection and type 2
inflammation has also been well characterized in a neonatal RV
model. RV infection in mice at DOL7 led to detectable viral RNA
for 7 days, accompanied by inflammatory cell infiltration and
upregulation of IL-13 in the acute phase (198). However, pathology
persisted 4 weeks after initial exposure, as mice with neonatal RV
infection had exaggerated airway hyperresponsiveness compared to
age-matched uninfected controls and RV-infected adult mice
(198). Interestingly, these late-phase pathologic effects were
mitigated by anti-IL-13 treatment in the immediate post-
infectious period (198). Neonatal RV infection resulted in
induction of IL-33, IL-25, and TSLP–all of which are epithelial
derived cytokines implicated in asthma pathogenesis–and in this
model contributed to type 2 innate lymphoid cells (ILC2)
expansion (199–201). Neonatal infection with RV followed by a
challenge with a heterologous strain of RV lead to increased
expansion of this pathologic ILC2 population, perhaps serving as
a murine model of the clinical response in children with frequent
RV re-exposure (202). Additionally, sensitization to an unrelated
antigen (e.g. OVA) followed by antigen challenge led to worsening
airway hyperresponsiveness in mice with a history of neonatal RV
infection (198). There were strain differences observed as well, as
neonatal RV-C infection led to an enhanced type 2 response when
compared to RV-A infection, in part due to poor inflammasome
activation and decreased IL-1b production in the RV-C infected
animals (203). Mitigation of this strong type 2 inflammatory
response could be achieved with recombinant IFN-g treatment,
demonstrating a reciprocal relationship between type 1 and type 2
immunity (204).

Limited preclinical studies exist on neonatal HMPV infection,
although unpublished data generated in our laboratory suggest
neonatal mice are capable of HMPV clearance similar to RSV
models. In children less than <3 years of age with a documented
HMPV infection, nasal secretions showed a relative increase in
proteins associated with Th1 responses but not Th2 responses;
this deviation in Th1/Th2 balance was abrogated in patients with
a history of prematurity (205). In contrast, a second study
evaluating nasal protein levels found infants with HMPV
infection had a decrease in IFN-g/IL-4 ratio (e.g. Th2-skewing)
when compared to RSV and influenza (206).

In summary, the preclinical neonatal models of respiratory
viral infection demonstrated an amplification of the baseline
neonatal immune response: dampened early antiviral pro-
inflammatory mediators, reduced co-stimulatory help via
antigen-presenting cells, poor organization of Tfh/B cell
interactions, and reinforced dominance of type 2 immunity.
The latter is driven by epithelial-derived cytokines like
IL-33, IL-25, and TSLP and contributes to longstanding
pathophysiologic changes in some models. Addition of another
antigen or allergen synergistically contributed to asthma-like
pathology. Collectively, these models demonstrate a skewed, but
protective, immune response in neonates compared to adult
animals, and help establish a mechanistic link between
Frontiers in Immunology | www.frontiersin.org 8
respiratory viral infection early in life and long-term sequelae
like asthma.
LONG-TERM CLINICAL RAMIFICATIONS
OF EARLY LIFE RESPIRATORY
VIRAL INFECTION

Several epidemiologic studies have supported the clinically
observed phenomenon of development of asthma after an early
respiratory viral infection, with a particular focus on RV and
RSV (207, 208). Interestingly, first-time wheeze in young
children was predominantly associated with RV (44, 209).
A prospective study of children showed that wheezing with a
RV infection in infancy was associated with a significantly higher
risk of wheezing at age 3 and a 10-fold increase in risk of
diagnosis of asthma at the age of 6 (210, 211). Similarly,
a prospective study of children presenting with bronchiolitis
used machine learning clustering to identify risk factors for
recurrent wheeze; RV detection was the strongest single
predictor (212). A prospective study found RV-C bronchiolitis
in infancy, but not RV-A or -B, was associated with recurrent
wheeze and IgE-sensitization compared to infants with RSV
bronchiolitis (213). Genetic-environment interactions play a
role in this process, as RV-related recurrent wheeze (but not
RSV) was associated with polymorphisms in the 17q21 locus,
a well-established susceptibility locus for development of
childhood asthma (214, 215).

Similar to RV, an RSV illness with wheeze early in life also
showed a significant 3-fold increase in risk of subsequent asthma
development (209, 211). Children with RSV-bronchiolitis that
went on to develop asthma were more likely to have an elevated
IgE, higher birth weight, or delivery via caesarean section (216).
At age 18, children with a history of RSV bronchiolitis within the
first year of life had an increased risk of asthma, allergy, and
sensitization to perennial allergens compared to controls; these
differences were magnified when accounting for parental history
of asthma (217). Further endotyping of children with RSV
bronchiolitis found those with parental asthma, RV co-
infection, IgE sensitization, a Moraxella-dominant airway
microbiome, and high IFN-g responses had the highest risk of
subsequent asthma development, highlighting the myriad factors
contributing to this outcome (218). One study of Danish twins
found hospitalization with RSV was associated with increased
short-term risk of admission for asthma; asthma admission was
also associated with severe RSV, demonstrating a bidirectional
association, emphasizing a genetic component (219). A second
twin study found that RSV hospitalization in early childhood
may not directly cause asthma but may indicate a genetic
predisposition for subsequent asthma development (220).
Large systematic reviews of studies evaluating risk of asthma
after RSV infection during infancy demonstrate a higher
prevalence of asthma throughout childhood years (221).

Like RSV and RV, HMPV in childhood is associated with
development of asthma. Children followed prospectively after a
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HMPV lower respiratory tract infection were found to have a
shorter duration of time between wheezing episodes (both with
and without a subsequent viral trigger) when compared to
controls without evidence of HMPV infection (222).
Furthermore, patients with a history of HMPV bronchiolitis
were much more likely to have asthma by age 5 (odds ratio=5.21)
compared to patients without HMPV bronchiolitis (223).
Additionally, HMPV lower respiratory tract infection in
premature infants was associated with abnormal lung function
at one year of age (224). In regards to upstream mediators of
asthma-like inflammation, HMPV has been shown to induce in
vitro expression of IL-33 and TSLP in human alveolar epithelial
cells (225). Clinically, serum levels of TSLP in children with
wheeze during HMPV infection were elevated, further
potentiating a link between TSLP production and HMPV
infection (226).

While specific pathogens have been evaluated, Bønnelykke et
al. recently demonstrated that any lower respiratory tract
infection (e.g. viral or bacterial) in the first years of life and the
frequency of infections were variables associated with increased
risk of asthma at age 7 (227). Additionally, while the focus of this
review is on infectious triggers of asthma, childhood-onset
asthma represents a multifactorial disease (e.g. genetic,
exposures, atopy, microbiome etc.) contributing to
pathogenesis (228).
TREATMENT/PREVENTION

There is a relative dearth of antiviral agents directed against the
respiratory viruses reviewed here. Aerosolized ribavirin has been
studied in severely ill children with RSV but has demonstrated
minimal efficacy (229). No licensed therapeutic options currently
exist for HMPV or RV (18, 30).

Given the lack of effective therapies, the focus has turned to
prevention. Vaccination against these respiratory pathogens has
been an area of particular emphasis. However, the turbulent
experiences of the formalin-inactivated RSV vaccine in the
1960’s delayed progress (230). Infants and toddlers who
received the formalin-inactivated RSV vaccine demonstrated
worsened outcomes of RSV infection, with 80% requiring
hospitalization and two succumbing to infection (231–233).
Studies have demonstrated a role for Th2-bias leading to the
pathology of this enhanced respiratory disease (ERD); this theory
was recently strengthened further after transcriptomic analysis of
autopsy specimens from the two fatal cases of ERD in toddlers
showed a Th2-signature and low-affinity antibodies causing
complement deposition (169, 234–237). Several candidate
vaccines, including live-attenuated, inactivated, particle-based,
and subunit based, are in preclinical development or clinical
trials (233, 238). An alternative approach has focused on
maternal immunization with passive immunity conferred to
the infant; a nanoparticle protein-based vaccine administered
in the third trimester showed a significant reduction in
hospitalization rate with RSV in the first 90 days of the infant’s
life (239). This would, however, be of less utility for premature
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infants delivered prior to vaccine administration. HMPV
vaccines, including protein-based vaccines, live attenuated
viruses, and virus-like particles, have shown promise in animal
models (240–247). However, one clinical trial of a live attenuated
HMPV vaccine showed only modest induction of a neutralizing
antibody response in 30% of participants (248). While RV
vaccines have proven difficult given the number of serotypes,
several approaches are being explored in preclinical models (30,
249, 250).

A degree of prevention has been achieved against RSV with
the use of monoclonal antibodies. Palivizumab, a humanized
monoclonal antibody directed against the F protein of RSV,
decreased hospitalizations in high-risk infants (e.g., prematurity,
congenital heart disease, immunodeficiency) when administered
monthly (251–253). However, cost limits the widespread use of
palivizumab (251, 254). Several other anti-RSV monoclonal
antibodies are in development, including a long-acting
monoclonal (nirsevimab) capable of offering protection for 5
months (230, 255). One recent study estimated that a strategic
switch from monthly monoclonal injections to either a maternal
immunization strategy and/or use of long-acting monoclonals
would afford significant cost-savings while providing a similar
degree of benefit (256).

Analogous to palivizumab, human monoclonal antibodies
against HMPV have been developed; in preclinical models,
these monoclonals have been shown to have preventative and
therapeutic potential (257, 258). Interestingly, certain HPMV-
derived monoclonals show a degree of cross-protection against
other Pneumoviridae family members, including RSV (259, 260).
Development of monoclonal antibodies directed against RV has
been studied, but face similar hurdles as RV vaccine
development (261).

While the search for a safe and effective vaccine and further
monoclonal antibodies continues, the COVID-19 pandemic has
also illustrated the efficacy of non-pharmaceutical public health
measures. From 2020 to 2021, strategies to mitigate COVID-19
such as masking and distancing effectively reduced the case
burden of RSV and HMPV (262). With loosening of these
restrictions in the summer of 2021, there was an anomalous
increase in pediatric RSV cases in the summer months (262).
Collectively, these findings illustrate that public health
approaches represent a cost-effective and, in the absence of a
pandemic, a possibly underutilized approach towards protecting
infants against respiratory viruses.
CONCLUSIONS AND FUTURE DIRECTIONS

Respiratory pathogens, such as RSV, HMPV, and RV, are major
contributors to morbidity and mortality in the neonatal
population. This may be in part due to the unique
immunologic milieu of the neonatal lung, which differs from
an adult immune response in practically every cell type. Type 2
immunity predominates in the neonatal lung and, in animal
models, contributes to long-term pathology. This is mirrored
clinically, as infants exposed to these viruses are at increased risk
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of development of long-term sequelae such as asthma. However,
deeper understanding of the underlying immunologic differences
in neonates has the potential to impact how clinicians consider
these pathologies, both in the acute and long-term settings. For
instance, understanding the pre-existing imbalance of type 1 and
type 2 immunity in the neonate could lead to development of
immunomodulatory therapeutics to boost the former or suppress
the latter. Several pre-clinical models have inhibited type 2
immune factors during the acute immune response and
mitigated long-term pathology. Preventing an increased risk of
asthma in infants with lower respiratory tract viral infections is a
lofty but worthy aspiration. From a basic science perspective,
there are many new avenues of neonatal lung biology to explore,
such as the roles of the neonatal microbiome (lung and gut) and
the use of broad -omics based techniques to elucidate novel
aspects of neonatal immunity. While the clinical realm awaits the
furthered characterization and promise of translation of these
findings, respiratory viral infections will continue to present a
significant challenge to neonates and infants. Far too many
young children still succumb to these infections, with
disproportionate mortality in resource-limited areas of the
world, highlighting the need for cost-effective interventions.
Although therapeutic options are limited at present, advances
Frontiers in Immunology | www.frontiersin.org 10
in vaccination and monoclonal antibody prophylactics are hoped
to translate to increased prevention in neonates.
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