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Abstract. Wilms tumor (WT) is the most common type of 
renal malignancy in children. Survival rates are low and 
high-risk WT generally still carries a poor prognosis. To 
better elucidate the pathogenesis and tumorigenic pathways of 
high-risk WT, the present study presents an integrated analysis 
of RNA expression profiles of high‑risk WT to identify predic-
tive molecular biomarkers, for the improvement of therapeutic 
decision-making. mRNA sequence data from high-risk WT 
and adjacent normal samples were downloaded from The 
Cancer Genome Atlas to screen for differentially expressed 
genes (DEGs) using R software. From 132 Wilms tumor 
samples and six normal samples, 2,089 downregulated and 
941 upregulated DEGs were identified. In order to identify hub 
DEGs that regulate target genes, weighted gene co-expression 
network analysis (WGCNA) was used to identify 11 free-scale 
gene co-expressed clusters. The Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways were annotated using KEGG 
Orthology Based Annotation System annotation of different 
module genes. The Search Tool for the Retrieval of Interacting 
Genes was used to construct a protein-protein interac-
tion network for the identified DEGs, and the hub genes of 
WGCNA modules were identified using the Cytohubb plugin 
with Cytoscape software. Survival analysis was subsequently 
performed to highlight hub genes with a clinical signature. The 
present results suggest that epidermal growth factor, cyclin 

dependent kinase 1, endothelin receptor type A, nerve growth 
factor receptor, opa-interacting protein 5, NDC80 kinetochore 
complex component and cell division cycle associated 8 are 
essential to high-risk WT pathogenesis, and they are closely 
associated with clinical prognosis.

Introduction

Wilms tumor (WT), or nephroblastoma, is a type of pediatric 
renal malignancy that typically occurs in children, representing 
6-14% of childhood tumors (1,2). With the advancement 
of multimodal therapies for WT, the 5-year overall survival 
rate has reached its peak (2,3). Unfortunately, high-risk WT, 
including anaplastic histology WT subtypes, rhabdoid tumor, 
metastatic renal sarcoma and carcinoma, still have a generally 
poor prognosis (4). Additionally, current treatment strate-
gies for high-risk nephroblastoma include surgery, radiation 
therapy and chemotherapy; however, a targeted cure is still 
lacking (5). Therefore, novel therapeutic methods targeting 
specific mechanisms of high‑risk nephroblastoma carcinogen-
esis are required to improve treatment efficiency and avoid the 
side effects of traditional therapy.

Advances in RNA sequencing technologies have revealed 
the complexity of the human genome. Investigation of the 
RNA transcriptome is one of the most important challenges 
facing biology today, as RNAs represent novel potential 
biomarkers and drug targets (6-9). Presently, accumulating 
evidence suggests that numerous key mRNAs identified 
in WT are closely associated with the pathogenesis of this 
tumor, including programmed cell death, reversion inducing 
cysteine rich protein with kazal motifs, TIMP metallopepti-
dase inhibitor 3, tropomyosin 1 and phosphatase and tensin 
homolog (10). However molecular biomarkers that may be 
predictive of a curative effect and prognosis in high-risk WT 
have not been reported.

The Cancer Genome Atlas (TCGA), a publicly available 
database, provides the gene expression profiles of >10,000 
specimens from >25 different tumor types to be used for 
biological discovery (11). In the present study, weighted gene 
co-expression network analysis (WGCNA) and other analyses 
were performed using TCGA datasets to identify hub genes 
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associated with clinical features of WT. These hub genes have 
the potential to be biomarkers of high-risk WT tumorigenesis.

Materials and methods

Study population. Datasets were manually retrieved from 
TCGA database (12). The primary tumor site for high-risk 
WT was the kidney. Regarding experimental strategy, RNA 
sequencing (seq) was used. Taken together, a total of 132 WT 
and 6 normal samples, including the clinical information and 
mRNA-seq data, were downloaded via the Data Transfer 
Tool (provided by GDC Apps; https://tcga-data.nci.nih.gov/). 
The sequenced data were all derived from IlluminaHiSeq 
RNA-Seq platforms. The present study followed the publica-
tion guidelines provided by TCGA (http://cancergenome.nih.
gov/publications/publicationguidelines).

Differentially expressed gene (DEG) analysis. Prior to 
statistical analysis, the high-risk WT RNA-seq data derived 
from 138 WT samples were normalized across all matrixes 
using the ‘batch’ package (13). In addition, tumor sample 
and normal sample data were merged and expressed data, 
which closed to zero, were deleted. Differential expression 
(DE) for genes, including all six normal control samples, was 
tested with the ‘DESeq’ and ‘edgR’ packages in R software 
version 3.4.0 (14,15). The empirical probability distribution 
of the fold‑changes associated with significant DEs (P<0.05) 
was used to define a |log2 fold-change| with a threshold 
>2.0 (16). To remove potential noise, all fold‑change values 
associated with comparisons that were not considered signifi-
cant by the ‘Limma’ package or potentially significant by 
threshold‑filtering were converted to ‘zero’, which in the log2 
scale corresponds to the complete absence of differential regu-
lation among all samples, with the function f(C)=IC (X), where:

Finally, to maintain every one data corresponding to per 
samples, the retained fold-change values were calculated by 
subtracting the median normalized log2 expression values of 
the normal samples from the respective WT samples.

Construction of gene co‑expression network. WGCNA is a 
systems biology method for describing the correlation patterns 
among genes across microarray samples. WGCNA may 
be used for identifying modules of highly correlated genes, 
summarizing such clusters using a module eigengene or an 
intra-modular hub gene, relating modules to one another and 
to external sample traits, and for calculating module member-
ship measures. Correlation networks facilitate network-based 
gene screening methods that may be used to identify candidate 
biomarkers or therapeutic targets (17-19).

To identify the interactions between the DEGs, the 
WGCNA, which used the topological overlapping measure-
ment, was performed to identify the co-expression modules 
with a threshold of power cutoff of 14 and a module size cutoff 
≤30 (13). All DEGs were used, and Pearson's correlation was 
calculated for all pairs of selected genes. The correlation data 

were converted into the adjacency matrix with a power func-
tion; therefore, the correlation strength between two genes, 
xi and xj, was defined as aij=| 0.5 * (1+cor(xi, xj))|β, where 
xi and xj represent the expression values of the probes. The 
parameter β was determined by the criterion that the resulting 
adjacency matrix approximately met a scale-free topological 
feature, according to the proposed model‑fitting index. The 
row index u (u=1,…, m) represents sample measurements. 
This was further transformed into a topological overlap matrix 
(TOM), which captures not only the direct interaction among 
two genes, but also the indirect interactions throughout all the 
other genes in the network. In the present study, it was possible 
to identify two functions of adjacency matrices. At first, the 
TOM is defined as follows:

Therefore, it was possible to calculate the node connectivity. 
Secondly, the other function was performed as a matrix into 
hierarchical clustering of the transcript profiles for identifying 
the modules, and it may be defined as follows:

Functional annotation and protein‑protein interactions 
(PPIs). To identify Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways associated with each DEG, the 
KEGG Orthology Based Annotation System (KOBAS) was 
used to annotate the function of different module genes, with 
a false discovery rate thresholds <0.05 (20). Cytoscape soft-
ware was used to construct a co-expression network of hub 
DEG-mediated pathways (21). These DEG-pathway network 
data were subsequently exported as Microsoft Excel files 
(Microsoft Corporation, Redmond, WA, USA).

In order to obtain protein interactions between DEGs of 
different modules, we used the Search Tool for the Retrieval 
of Interacting Genes online tool to construct a PPI network 
for the DEGs (minimum required interaction score >0.4) (22). 
In addition, Cytoscape software was used to visualize the PPI 
networks. Finally, the Cytohubb plugin was used to identify 
the hub genes in the PPI network (23).

Survival analysis. In order to identify prognostic hub mRNA 
signatures, survival curves of all the clinical data from patients 
in TCGA were combined with those of hub DEGs using 
log-rank tests. The ‘survival’ package was adopted to produce 
the survival curves in R software (24). This analysis was based 
on Kaplan‑Meier univariate survival analysis (24). P<0.05 was 
considered to indicate a statistically significant difference.

Results

Patient characteristics. The detailed clinical characteristics 
of the WT study population are summarized in Table I. In the 
present study, the median age of patients with WT was 3 years 
old and the median survival time was 77.5 months. In addi-
tion, there were more female patients (54.4%) compared with 
male patients (45.6%). The distribution of race among patients 
demonstrated that Caucasian represented largest proportion 
(68.4%). Regarding the tumor stage, it was identified that the 
patients with stage II and III represented the largest proportion 
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(33%) compared with other stage groups. As demonstrated in 
Table I, the distribution of histological classification illustrated 
that the patients with favorable-histology WT were increased 
compared with those with diffusely anaplastic WT. Regarding 
adverse events, patients with WT suffered more relapses 
(18.8%) compared with patients with progression (2.1%).

Gene expression profiles in high‑risk WT. Using high-risk 
WT expression profiles from the TCGA database, signifi-
cant DEGs in 138 tumor samples compared with six normal 
samples were identified. There were 2,089 downregulated 
and 941 upregulated DEGs identified by the DESeq package, 
accounting for 68.94 and 31.06% of all DEGs, respectively. 
In total, 4,894 DEGs were identified using the edgR package, 
among which 2,044 DEGs were downregulated in high-risk 
WT tumor samples and 2,850 were upregulated. According 

to the Venn diagram, a total of 2,921 overlapping DEmRNAs 
were identified, among which 1,987 were downregulated 
DEGs and 934 were upregulated, accounting for 68.02 and 
31.98% of all overlapping DEGs, respectively. These genes 
were DEGs, as computed by the DESeq and edgR algorithms 
(Fig. 1). The top 10 upregulated and downregulated mRNAs 
with a |log2foldchange|>2.0 are presented in Table II.

Construction of weighted gene co‑expression modules. To 
explain the association between the 2,921 overlapping DEGs, 
WGCNA, a systems biology method, was used to screen poten-
tial biomarkers and therapeutic targets via gene co-expression 
network construction. DEGs involved in similar pathways or 
with the same biological function tended to have the same 
expression cluster. As demonstrated in Fig. 2 and Table III, 
a total of 11 co-expressed modules were identified with a 
power cutoff of 14 and a module size cutoff ≤30. Therefore, 
the grey colored clusters represent the non-clustering genes 
in WGCNA. As six colored DEG modules, specifically black, 
blue, magenta, red, turquoise and yellow, were more numerous 
compared with the other color module genes, these key 
modules were selected for further analysis.

PPI network and functional annotation for the modules. To 
better understand the associations between DEGs in the six 
different color modules, a PPI network was constructed using 
Cytoscape software (Fig. 3). The black module had 42 nodes 
and 58 interactions. There were 11 upregulated and 31 down-
regulated DEGs in this module. In total, six hub genes were 
identified in the center of the PPI network identified by the 
Cytohubb plugin, including epidermal growth factor (EGF), 
arginine vasopressin receptor 2, adrenoceptor β2, bradykinin 
receptor B2, endothelin receptor type A (ENDRA) and nerve 
growth factor receptor (NGFR). In addition, the KOBAS 
online tool was used to predict possible enrichment pathways 
(Table IV). There were 21 pathways enriched in this module, 
including ‘calcium signaling pathway’, ‘cGMP-PKG signaling 
pathway’ and ‘pathways in cancer’.

Figure 1. Venn Diagram for selecting identical DEGs obtained by the 
different algorithms. Number of dysregulated expression genes identified by 
edgR (pale green) and DESeq (light coral), and overlapping DEGs (brown). 
DEGs, differentially expressed genes.

Table I. Clinical characteristics of 138 patients with Wilms 
tumor.

 Patients with
Variable Wilms tumor (n=138)

Age, years 
  Median 3
  IQR 2-5
Overall survival time, months 
  Median 77.5
  IQR 44.75-109
Sex 
  Male   63 (45.4%)
  Female   75 (54.6%)
Race 
  Caucasian   94 (68.4%)
  African American   24 (17.7%)
  Other   20 (13.9%)
Ethnicity 
  Local   86 (62.2%)
  Hispanic or Latino 11 (8%)
  Other   41 (29.8%)
Tumor stage 
  Stage I 28 (20%)
  Stage II 45 (33%)
  Stage III 46 (33%)
  Stage IV  10 (7.6%)
  Stage V    9 (6.4%)
Histology classification 
  Favorable-histology Wilms tumor  117 (85.7%)
  Diffusely anaplastic Wilms tumor   21 (14.3%)
Adverse event 
  Progression   3 (2.1%)
  Relapse   26 (18.8%)
  None 109 (79.1%)

IQR, interquartile range.
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In the blue module, there were 40 nodes and 53 interac-
tions. There were fewer upregulated genes than downregulated 
genes; 10 and 30, respectively. In total, three key dysregulated 
mRNAs, including glucagon receptor, prostaglandin E receptor 
1 and SGK2, serine/threonine kinase 2, were identified as hub 
genes. There were seven enriched KEGG pathways in this 

module, which included ‘neuroactive ligand-receptor interac-
tion’, ‘calcium signaling pathway’, ‘foxO signaling pathway’ 
and ‘glucagon signaling pathway’.

The magenta module had 22 nodes and 28 interactions. 
The number of upregulated genes was lower compared with 
the downregulated genes (five upregulated genes; 17 downreg-
ulated genes). Cadherin 1, claudin 7 and tight junction protein 
3 were identified as hub genes. In total, eight enriched KEGG 
pathways were identified, which included ‘cell adhesion 
molecule’, ‘melanoma’ and ‘hippo signaling pathway’.

The red module had 70 nodes and 658 interactions. All 
the DEGs were upregulated in this module. Five hub genes 
were identified by the Cytohubb plugin, including mitotic 
arrest deficient 2 like 1, cyclin A2, cyclin dependent kinase 1 
(CDK1), opa-interacting protein 5 (OIP5) and NUF2, 
NDC80 kinetochore complex component (NUF2). A total 
of 16 pathways were enriched in the red modules, including 
‘progesterone-mediated oocyte maturation’, ‘HTLV-I 
infection’ and ‘viral carcinogenesis’, among others.

In the turquoise module, there were 116 nodes and 532 
interactions. All the DEGs were upregulated in this module. 
Only three hub genes were identified, including BUB1 mitotic 
checkpoint serine/threonine kinase (BUB1) B, BUB1 and cell 
division cycle associated 8 (CDCA8). There were a total of 
eight pathways enriched in the turquoise module, including 
‘cell cycle’, ‘oocyte meiosis’ and ‘progesterone-mediated 
oocyte maturation’, among others.

In the yellow module, there were 65 nodes and 293 interac-
tions. All the DEGs were downregulated in this module. Five 
hub genes were identified, including FOS proto‑oncogene, 
AP-1 transcription factor subunit, early growth response 1, 
activating transcription factor 3, dual specificity phosphatases 
and JunB proto-oncogene, AP-1 transcription factor subunit. A 
total of 13 pathways were identified, including ‘TNF signaling 
pathway’, ‘MAPK signaling pathway’ and ‘Toll-like receptor 
signaling pathway’, among others.

Co‑expression network of the hub DEG‑mediated pathways. 
According to KOBAS annotation, a co-expression network 
was constructed to exhibit the enrichment pathways and 

Table II. The top 10 upregulated and downregulated genes.

Gene symbol logFC Adjusted P-value

LIN28B 13.36619486 5.42x10-6

SIX2 12.52402043 7.06x10-47

DGKK 12.24930467 4.66x10-16

VSTM2B 12.04214637 6.34x10-9

GPAT3 11.61327772 1.85x10-9

CHRNA1 11.52619613 2.15x10-13

DLK1 11.46063048 1.56x10-3

COL2A1 10.55873377 1.68x10-44

PCDH15 10.33793967 2.40x10-25

GATA4 10.29733454 1.25x10-7

Gene symbol logFC Adjusted P-value

UMOD -18.37509732 9.61x10-65

AQP2 -13.96005987 1.11x10-32

KNG1 -12.65948815 3.72x10-41

FXYD4 -12.04659281 4.80x10-61

GP2 -11.12440106 9.70x10-28

SLC9A4 -10.52222348 1.56x10-29

CLCNKA -10.26143663 1.07x10-23

BSND -10.11652616 8.55x10-22

HRG -10.11203117 3.38x10-19

SEMG2 -9.973583814 3.12x10-6

FC, fold-change.

Table III. Gene co-expression module sizes.

Module color Number of genes

Black 320
Blue 380
Brown 152
Cyan 80
Green 204
Green yellow 111
Grey 106
Magenta 464
Red 292
Salmon 84
Turquoise 424
Yellow 274

Figure 2. Hierarchical clustering dendrograms of identified co‑expressed 
genes in modules. The dendrogram was generated by unsupervised hier-
archical clustering of genes using topological overlap. The colored strips 
below each dendrogram indicate the module designation identified though 
the clusters of co-expressed genes, and assigned the merged module color to 
the original module color.
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biological processes that may be activated by 25 hub DEGs 
(Fig. 4). Among these key DEGs, it was identified that seven 
had more interactions enriched in ‘cell cycle’ and ‘pathways in 
cancer’ compared with other regulators, including EGF, CDK1, 
ENDRA, NGFR, OIP5, NUF2 and CDCA8. These genes may 
represent key regulators associated with the progression of 
high-risk WT.

Survival analysis of hub DEGs. The mRNAseq data and clin-
ical information of all high-risk WT samples were combined 
for Kaplan-Meier univariate survival analysis. The seven most 
crucial hub genes were subjected to survival analysis. As a 
result, the high expression levels of three DEGs, including 
EGF, ENDRA and NGFR, were associated with a longer 
overall survival time compared with the low gene expression 
(P<0.05). On the contrary, four overexpressed DEGs (CDK1, 
OIP5, NUF2 and CDCA8) demonstrated that they were all 
associated with poor prognosis in patient overall survival 
(P<0.05). All survival analyses are plotted in Fig. 5.

Discussion

WT is the most common genitourinary malignant tumor in 
children (1). High-risk WT, called anaplastic WT, and infants 
and children with rhabdoid tumor, were studied to deter-
mine why they have a much poorer prognosis. Even though 
numerous efforts have been made to investigate the key regu-
latory genes or molecules in malignant neoplasms, few studies 
have been able to predict the prognosis for high-risk WT, and 

no reliable biomarkers for the improvement of therapeutic 
decision‑making have been identified.

In the present study, 2,921 overlapping DEGs, using the 
DESeq and edgR algorithms, were identified in gene expression 
profiling analysis. Furthermore, WGCNA was used to construct 
a free-scale gene co-expression network to investigate the asso-
ciations between different sets of DEGs. To clarify the different 
clusters of WGCNA, PPI networks were built with Cytoscape 
software and the hub genes were identified by the Cytohubb 
plugin. Finally, using clinical information, it was identified that 
seven hub genes, including EGF, CDK1, ENDRA, NGFR, OIP5, 
NUF2 and CDCA8, may be potential biomarkers for prognosis 
prediction of patients with high-risk WT.

EGF is a member of the epidermal growth factor super-
family (25). The protein encoded by EGF acts as a potent 
mitogenic factor that serves a critical role in the prolif-
eration, growth and differentiation of various cell types. 
Lanuti et al (26) identified that EGF is associated with patients 
with high-risk esophageal adenocarcinoma. Tanabe et al (27) 
identified that modulation of EGF gene expression levels is 
directly associated with the risk of developing hepatocellular 
carcinoma following liver cirrhosis. However, considering the 
survival analysis in the present study, it is noteworthy that the 
overexpression of EGF was demonstrated to be associated 
with better survival compared with a lower mean expression 
level in high-risk WT. In addition, KEGG pathway annotation 
demonstrated that EGF was associated with biological process 
and molecular function pathways, including ‘Rep1 signaling 
pathway’, ‘pathways in cancer’, and ‘PI3K-Akt signaling 

Figure 3. Protein‑protein interaction network visualization of modules identifies hub genes. Different colors represent the status of genes dysregulated, upregu-
lated DEGs (red) and downregulated DEGs (green). The triangle nodes represent the hub genes in each module. The oval nodes represent genes and the lines 
represent interactions. DEGs, differentially expressed genes.
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Table IV. KEGG pathways of weighted gene co-expression network analysis modules.

Module name  KEGG pathways Input number P-value

Black module hsa04080:Neuroactive ligand-receptor interaction 13 1.02x10-8

 hsa01100:Metabolic pathways 21 3.37x10-7

 hsa04020:Calcium signaling pathway 8 7.78x10-6

 hsa04810:Regulation of actin cytoskeleton 7 1.05x10-5

 hsa00830:Renin secretion 4 2.61x10-5

 hsa05202:Transcriptional misregulation in cancer 6 2.84x10-5

 hsa04110:Cell cycle 5 7.34x10-5

 hsa04151:PI3K-Akt signaling pathway 8 1.23x10-4

 hsa05200:Pathways in cancer 8 2.45x10-4

 hsa04014:Ras signaling pathway 5 5.83x10-4

 hsa04022:cGMP-PKG signaling pathway 6 6.04x10-4

 hsa04024:cAMP signaling pathway 5 6.50x10-4

 hsa04010:MAPK signaling pathway 6 7.21x10-4

 hsa05219:Bladder cancer 4 7.37x10-4

 hsa05218:Melanoma 4 7.59x10-4

 hsa04068:FoxO signaling pathway 3 7.66x10-4

 hsa04510:Focal adhesion 5 8.40x10-3

 hsa04923:Regulation of lipolysis in adipocytes 4 4.38x10-3

 hsa05160:Hepatitis C 4 1.20x10-2

 hsa04072:Phospholipase D signaling pathway 3 3.34x10-2

 hsa04144:Endocytosis 4 4.93x10-2

Blue module hsa01100:Metabolic pathways 15 3.10x10-3

 hsa04020:Calcium signaling pathway 5 3.17x10-3

 hsa04080:Neuroactive ligand-receptor interaction 6 4.24x10-3

 hsa04060:Cytokine-cytokine receptor interaction 8 3.67x10-2

 hsa04080:Neuroactive ligand-receptor interaction 6 3.69x10-2

 hsa04068:FoxO signaling pathway 3 4.02x10-2

 hsa04922:Glucagon signaling pathway 3 4.53x10-2

Magenta module hsa04530:Tight junction 6 3.27x10-6

 hsa04514:Cell adhesion molecule 4 8.15x10-4

 hsa05219:Bladder cancer 3 6.33x10-3

 hsa04390:Hippo signaling pathway 3 9.48x10-3

 hsa05218:Melanoma 2 9.51x10-3

 hsa05100:Bacterial invasion of epithelial cells 3 1.75x10-2

 hsa05200:Pathways in cancer 4 1.88x10-2

 hsa04670:Leukocyte transendothelial migration 3 2.07x10-2

Red module hsa04110:Cell cycle 11 3.77x10-11

 hsa04114:Oocyte meiosis 10 6.60x10-10

 hsa04914:Progesterone-mediated oocyte maturation 7 5.89x10-7

 hsa04115:p53 signaling pathway 4 3.63x10-4

 hsa05200:Pathways in cancer 6 7.66x10-4

 hsa01100:Metabolic pathways 12 2.08x10-3

 hsa04152:AMPK signaling pathway 3 4.54x10-3

 hsa05166:HTLV-I infection 4 7.30x10-3

 hsa04060:Cytokine-cytokine receptor interaction 4 1.10x10-2

 hsa04080:Neuroactive ligand-receptor interaction 4 1.33x10-2

 hsa00982:Drug metabolism-cytochrome P450 2 1.36x10-2

 hsa00980:Metabolism of xenobiotics by cytochrome P450 2 2.13x10-2

 hsa01524:Platinum drug resistance 2 2.13x10-2

 hsa01230:Biosynthesis of amino acids 2 3.38x10-2

 hsa00430:Taurine and hypotaurine metabolism 2 4.54x10-2

 hsa05203:Viral carcinogenesis 3 4.83x10-2
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pathway’, which suggests that EGF may be the key regulator in 
the progression of WT to high-risk WT.

CDK1 is a member of the Ser/Thr protein kinase family, 
which serves a critical role in the G1/S and G2/M phase 

Table IV. Continued.

Module name  KEGG pathways Input number P-value

Turquoise module hsa04110:Cell cycle 17 3.25x10-15

 hsa05166:HTLV-I infection 12 4.94x10-6

 hsa04114:Oocyte meiosis 8 5.99x10-6

 hsa05200:Pathways in cancer 13 2.23x10-5

 hsa05202:Transcriptional misregulation in cancer 8 2.94x10-5

 hsa04914:Progesterone-mediated oocyte maturation 6 8.26x10-4

 hsa01040:Biosynthesis of unsaturated fatty acids 3 1.36x10-2

 hsa01212:Fatty acid metabolism 3 4.05x10-2

Yellow module hsa04668:TNF signaling pathway 12 4.98x10-13

 hsa04380:Osteoclast differentiation 9 2.27x10-10

 hsa05166:HTLV-I infection 11 2.03x10-8

 hsa05323:Rheumatoid arthritis 7 5.60x10-8

 hsa04933:AGE-RAGE signaling pathway in diabetic complications 7 3.68x10-7

 hsa04010:MAPK signaling pathway 7 7.13x10-7

 hsa04210:Apoptosis 5 2.20x10-4

 hsa05161:Hepatitis B 5 5.67x10-4

 hsa05142:Chagas disease (American trypanosomiasis) 4 6.82x10-4

 hsa04620:Toll-like receptor signaling pathway 4 1.58x10-3

 hsa05168:Herpes simplex infection 5 1.69x10-3

 hsa01100:Metabolic pathways 14 1.93x10-2

 hsa04510:Focal adhesion 5 4.47x10-2

KEGG, Kyoto Encyclopedia of Genes and Genomes; PI3K, phosphoinositide 3-kinase; Akt, protein kinase B; cGMP, cyclic guanosine monophos-
phate; PKG, protein kinase G; cAMP, adenosine monophosphate; MAPK, mitogen‑activated protein kinase; AMPK, 5' AMP‑activated protein 
kinase; HTLV-1, human T-cell leukemia virus type 1; TNF, tumor necrosis factor; AGE, advanced glycation endproducts; RAGE, receptor for 
advanced glycation endproducts.

Figure 4. Co-expression network of the hub DEGs mediated in the pathways. Each node represents a hub DEG, and the different colors represent the modules to 
which they belong. The number of connections indicates the association between the hub DEGs and signaling pathways. DEGs, differentially expressed genes.
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Figure 5. Survival curve analysis of hub DEGs for the overall survival in patients with high-risk Wilms tumor. In total, seven hub DEGs (CDK1, OIP5, NUF2, 
CDCA8, EGF, ENDRA and NGFR) are presented (P<0.05). DEGs, differentially expressed genes; CDK1, cyclin dependent kinase 1; OIP5, opa‑interacting 
protein 5; NUF2, NUF2, NDC80 kinetochore complex component; CDCA8, cell division cycle associated 8; EGF, epidermal growth factor; ENDRA, endo-
thelin receptor type A; NGFR, nerve growth factor receptor.
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transitions of the eukaryotic cell cycle (28). In the present 
results, it was also identified that CDK1 is associated with 
significant cancer-associated pathways, including ‘oocyte 
meiosis’, ‘p53 signaling pathway’ and ‘viral carcinogenesis’. 
In addition, survival analysis demonstrated that high CDK1 
expression decreased patient survival time. Although CDK1 
was determined to be a prognostic predictor of high-risk WT, 
further research is required to verify this result.

ENDRA generally encodes the receptor for endothelin-1, 
a peptide that serves a role in potent and long-lasting vaso-
constriction (29). The receptor for ENDRA is associated with 
guanine-nucleotide-binding proteins (30). In the present study, 
it was additionally identified that the ENDRA may activate 
specific pathways (‘cGMP‑PKG signaling pathway’, ‘cAMP 
signaling pathway’ and ‘pathways in cancer’) to mediate 
high-risk WT. Combined with clinical data, survival analysis 
demonstrated that higher expression levels of ENDRA may 
prolong the overall survival time in patients with high-risk 
WT.

NGFR is a transmembrane receptor with intracellular tyro-
sine kinase activity (31). Through KEGG annotation, it was 
observed that NGF is enriched in ‘transcriptional dysregulation 
in cancer’, ‘PI3K-Akt signaling pathway’ and ‘Rap1 signaling 
pathway’. In 2008, Soland et al (32) verified that NGFR 
overexpression was associated with a pattern of invasion and 
a poor prognosis in oral squamous cell carcinoma. However 
in the present survival analysis, high NGFR expression was 
demonstrated to predict a longer survival time in patients with 
high‑risk WT. Further investigations are required to confirm 
the impact of such gene expression on high-risk WT.

OIP5 is localized as adherent to centromeres (33). 
Expression of OIP5 is upregulated in a number of cancer 
types, making it a potential therapeutic target (34-37). 
Chun et al (37) reported that OIP5 is a highly expressed thera-
peutic target in colorectal and gastric carcinomas. Similarly, 
Koinuma et al (35) identified OIP5 as a molecular target in 
lung and esophageal carcinogenesis due to its biological func-
tions. In the present study, survival analysis demonstrated that 
OIP5 overexpression was negatively associated with high-risk 
WT patient overall survival. Therefore, it was suggested that 
OIP5 may be a potential biomarker of high-risk WT, although 
the mechanism of OIP5-induced carcinogenesis should be 
further elucidated.

The protein encoded by NUF2 is generally a component 
protein that regulates chromosome segregation in the cell 
cycle (38). A previous study identified NUF2 to be associated 
with the malignant potential of colorectal cancer (39). In the 
present study, it was identified that, for the first time to the best 
of the authors' knowledge, NUF2 is associated with the clinical 
outcomes of patients with high-risk WT. Survival analysis 
demonstrated that NUF2 overexpression was negatively asso-
ciated with patient overall survival. This result suggested that 
NUF2 expression knockdown may suppress the growth and 
progression of WT tumor cells. CDCA8 protein may additionally 
encode a component of the chromosomal passenger complex, 
which serves a regulatory role in mitosis and cell division (40). 
Additionally, higher expression of CDCA8 is associated with 
longer survival compared with lower expression.

However, the primary limitation of the present study was 
that these important DEGs remain to be verified by experiments; 

therefore, further analyses are required to determine the mecha-
nisms underlying the process of malignant progression in 
high-risk WT. Future studies may aim to use polymerase chain 
reaction assays or western blotting to verify the expression levels 
of key genes between tumor and normal samples. Furthermore, 
conservative statistical methods with corrections for multiple 
testing at each level of analysis were applied; however, the present 
study still did not identify a better mathematical model to combine 
all eligible hub genes together for predicting the survival of WT. 
Therefore, future studies may aim for a better re-evaluation of the 
prognostic performance of the model for WT.

In conclusion, based on the gene expression profile 
analysis conducted in the present study, using TCGA data-
base, DEmRNAs between high-risk WT samples and normal 
samples were identified. There were 2,921 DEGs identified 
by comprehensive bioinformatics analysis. The WGCNA 
method was used to identify hub genes involved in high-risk 
WT development. Specifically, EGF, CDK1, ENDRA, NGFR, 
OIP5, NUF2 and CDCA8 may serve a fundamental role in the 
development of high-risk WT and are predicted to be involved 
in carcinogenesis pathways. These findings may provide 
potential biomarkers for further study of WT mechanisms, 
and may be efficacious targets for therapeutic intervention or 
diagnosis in high-risk WT.
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