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� Grapevine interacts different
microbiota living around and within
its tissues

� Addition of microbial genes to plant
genome gives supplementary
functions to the holobiont

� The composition of grapevine
microbiota varies according to
endogenous and exogenous factors

� Microbiota variations can lead to
perturbations of grapevine
metabolism

� The link between symptom
emergence of dieback and microbial
imbalance is currently studied
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Background: Grapevine is a woody, perennial plant of high economic importance worldwide. Like other
plants, it lives in close association with large numbers of microorganisms. Bacteria, fungi and viruses are
structured in communities, and each individual can be beneficial, neutral or harmful to the plant. In this
sense, microorganisms can interact with each other and regulate plant functions (including immunity)
and even provide new ones. Thus, the grapevine associated with its microbial communities constitutes
a supra-organism, also called a holobiont, whose functioning is linked to established plant-
microorganism interactions.
Aim of review: The overall health of the plant may be conditioned by the diversity and structure of micro-
bial communities. Consequently, an optimal microbial composition will consist of a microbial balance
allowing the plant to be healthy. Conversely, an imbalance of microbial populations could lead to (or
be generated by) a decline of the plant. The microbiome is an active component of the host also respon-
sive to biotic and abiotic changes; in that respect, a better understanding of the most important drivers of
the composition of plant microbiomes is needed.
Key scientific concepts of review: This article presents the current state of the art about the grapevine
microbiota and its composition according to the plant compartments and the influencing factors. We also
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focus on situations of imbalance, in particular during plant disease or decline. Finally, we discuss the pos-
sible interest of microbial engineering in an agrosystem such as viticulture.
� 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
I. Introduction II. Origin, structure and composition of the plant microbiota
Grapevine is a perennial plant of global economic importance:
the International Organization of Vine and Wine estimated that
7.4 million hectares were planted with vineyards worldwide in
2018 (including 3.7 in Europe and 2.2 in Asia, the two most impor-
tant surfaces) and produced 77.8 million tons of grapes. The diver-
sity of technical routes (e.g., pruning, fertilization) and associated
soils and climates allow the production of a wide variety of wines
(263 million hectoliters in 2019). The organoleptic characteristics
of wines depend on different factors such as the localization of
the vineyard, the winemaking process or the microbial flora asso-
ciated with grapes and the winery. These concepts are at the origin
of the notion of ‘‘terroir”, which encompass the biotic and abiotic
parameters of a given region to explain the production of a wine
with unique characteristics [1–3].

The hologenome theory of evolution emerged in 2008. It is
based on four axioms: (1) all animals and plants establish symbi-
otic relationships with microorganisms, (2) symbiotic microorgan-
isms are transmitted across generations, (3) the host-symbiont
association affects the fitness of the holobiont within its environ-
ment, (4) variations in the hologenome come from changes in
the host or the microbiota genomes; under environmental stress,
the symbiotic microbial community can change rapidly [4,5].
Therefore, the plant microbiota gathers all eukaryotic (fungal, pro-
tozoan, chromistan) and prokaryotic (bacterial, archaeal) microor-
ganisms as well as viruses living in association with them.

Most of the currently published studies on grapevine micro-
biota mainly target fungal and/or bacterial communities. The
microbiota is found in a latent or active state in each organ, from
the roots to the aerial parts, in the form of endophytes (i.e., coloniz-
ing internal tissues) or epiphytes (i.e., on the surface of tissues, in
contact with the environment in the rhizosphere, lignosphere,
caulosphere, phyllosphere, anthosphere or carposphere) [6,7].
The endophytic and epiphytic bacterial and fungal communities
associated with the different grapevine organs are influenced by
the taxonomic composition of the soil surrounding roots, which
is the main reservoir of microorganisms (endophytic bacteria
[8–14] and fungi [15–19]). Arbuscular mycorrhizal fungi (AMF)
constitute a separate category among soil microbes. They form a
mutually beneficial symbiosis with grapevine roots called
mycorrhiza [20]. AMF, together with certain endophytic bacteria,
promote grapevine growth and resistance to biotic or abiotic stres-
ses [21,22].

Plant-fungus and plant-bacterium interactions are triggered by
the ability of microorganisms to fix themselves on plant tissues
and live within them. This led to the ideas of the microbiome as
the ‘‘set of genes brought by microbes forming the microbiota
within a holobiont” [23] and the microbiota as a ‘‘second plant gen-
ome”, a supplementary source of genes and functions, or a full
component of plant defense [6,24,25].

Considering the holobiont as a functional whole opens up new
fields of investigation, particularly in terms of biotechnological
applications [23,26]. While metagenomic methods are used to
identify the present microbial genes and associated functions, tran-
scriptomic, proteomic and metabolomic methods are used to study
the spatio-temporal and functional dynamics of the grapevine
holobiont [24]. Each of these -omics methods is applied individu-
ally in plant research, including research on the grapevine, but
their combination is still rare.
2

II.1. Origin of the plant microbial community

II.1.1. Getting into the plant
Finding microbial species both present outside and inside the

different plant compartments suggests that microbes find entry
points in the plant and then reach endospheric tissues. The root
system gathers different gateways: intercellular junctions in the
epidermis where root hairs or lateral roots emerge or wounds on
the rhizoplane are widely used by soil microorganisms. Once the
plant innate immunity is overcome [27], they colonize the root cor-
tex or the vascular system to spread within the host. It appears that
the following colonization via grapevine roots [28], 28 % of rhizo-
sphere microorganisms can colonize the root endosphere, and 4
% can reach the aerial parts [11,29].

Roots exude a various range of compounds differing in quality
and quantity among plant species and developmental cycles. This
rhizodeposition leads to an active selection of soil microbes, result-
ing in different bacterial and fungal communities living nearby in
the surrounding soil or within plant roots [30,31]. Different gate-
ways have also been described in aerial parts, such as leaf stomata,
trichomes, surface wounds or hydathodes [32,33]. Piercing and
sucking insects (e.g., leafhoppers, wasps) can also inject microor-
ganisms directly into the plant vascular system [34,35].
II.1.2. Mechanisms and origins of microbiota dispersal
The microbiota is dispersed from grapevine to grapevine [36,37]

or the surrounding flora and fauna [38] and the environment
through different mechanisms: anemochory, zoochory, hydrochory
and anthropochory. As agrosystems, vineyards are strongly modi-
fied by humans (anthropization), who can also be a source of
microorganisms [39].

The soil is now often seen as a bacterial reservoir. It has been
observed that the microbial communities of leaves, grapes and
flowers share many more taxa with the soil than among them
[29,40]. 28 % of the endophytes found in the biocompartments they
studied (bulk soil, rhizosphere, roots, cordons, canes and sap) were
of soil/rhizosphere origin [28]. Some microorganisms in the aerial
parts can come from the soil through tillage, which generates dust
that may deposit on leaves, berries, and trunks [41]. Indeed, as a
perennial part, the trunk is also a microbial reservoir for annual
parts (shoots, leaves, grapes; [42]).
II.2. Different microbiota within the plant

The studies that covered the microbiota in the soil – roots – aer-
ial parts continuum found pronounced microbiota differences
between belowground and aboveground compartments (see
Table 1 and Fig. 1). Indeed, it seems that the bacterial specific rich-
ness and diversity vary following a decreasing gradient from the
soil to the aerial parts [41,43,44]. In addition, fungal specific rich-
ness and diversity appear to decrease from the bulk soil to the
endorhizosphere, with a sharp decrease from the surrounding soil
to the endorhizosphere; this suggests a significant limitation of
root colonization by fungi [45].

These differences seem more evident when studying epiphytes;
while endophytes, which move around the whole plant through
the sap, appeared to be more mixed [28]. Moreover, functional

http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1
Bacterial and fungal microbiota associated with grapevine compartments.

Fig. 1. Factors known to affect the composition and the structure of grapevine microbiota.
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differences between the microbiota from aerial or underground tis-
sues were found [29]. The environmental conditions of the com-
partments strongly differ in terms of temperature, moisture, light
incidence or even human contact. In consequence, it is no surprise
that the diversity and structure of microbial communities of grape-
vine should be compartment dependent and that the diversity
found in aerial parts is lower as opposed to the underground com-
partments [29,38,46–48].

II.2.1. Belowground compartments: Fine roots and rhizosphere
The sharpest microbial differences are found between the out-

side and the inside of the roots, confirming the selection by the
plant of only certain strains that will be able to cross the rhizoderm
and live inside the plant (for bacteria: [29,49]; for fungi: [28,45]).
However, the significant discrepancies among the different studies
for certain bacterial taxa (e.g., Chloroflexi and Gemmatimonadetes)
show that other factors than root selection act on relative bacteria
abundances ([28,29,50] ; see Fig. 1 for other hypotheses consid-
ered). Rhizospheric soil is enriched in Ascomycota, compared to
endosphere roots that are richer in Basidiomycota [45]. This differ-
ence is found at the trophic level: saprotrophs are relatively more
abundant in the soil than in the rhizosphere or endorhizosphere,
but pathotrophs and symbiotrophs are not.

However, we have noted that the primers used to amplify fun-
gal sequences target different types of strains (especially mycor-
rhizal or non-mycorrhizal ones). Consequently, most of the
studies devoted to the total fungal diversity of vineyard soils
exclude mycorrhizal fungi to only focus on non-mycorrhizal ones,
and vice versa [51–56]. This choice can result in a taxa bias in some
studies.

II.2.2. Aboveground compartments: Woody parts, phyllosphere,
anthosphere, carposphere and spermosphere

If we concentrate on the aerial organs, we can differentiate two
types of compartments: the annual structures (shoots, leaves,
flowers and berries) are differentiated over a vegetative cycle,
whereas the perennial structures (woody parts: trunk, spurs and
canes) persist year after year, and are reserve structures (especially
for sugars and nitrogen) and a microbiota reservoir as explained
before. Woody compartments are not completely homogenous, in
particular, because of the coexistence of living and dead tissues.
We can assume that the microbiota associated with the perennial
woody parts is subject to less variation than the microbiota of
other aerial parts because of its permanence. It is more diverse
because more it is stable over time.

The bacterial microbiota of epiphytic bark is described as being
more complex than it is on leaves and grapes [42]. The majority of
grapevines planted in European vineyards are grafted, i.e., formed
from a scion (a grapevine variety selected for its wine-making
qualities) associated with a rootstock (selected according to its
interactions with the soil and its resistance to stresses). In grafted
plants, bacterial species seem to be fairly regularly distributed
according to the woody area and despite diversity, gradients men-
tioned later, whereas fungal species appear to be more specific to
the part of the sampled wood [38].

Among the aboveground vegetative compartments, the phyllo-
sphere is the most studied vegetative compartment, probably
owing to its accessibility. The upper and lower surfaces of leaves
are subjected to different thermal and water constraints, leading
to variations in the abundance and diversity of bacteria (more
microorganisms in the upper surface than in the lower one, despite
being exposed to greater UV radiations and temperature and mois-
ture variations [57]).

Finally, among the anthosphere, carposphere and spermo-
sphere, there is no doubt that the berry microbiota has been the
most studied. Generally, the latter is rarely considered for its link
4

with plant health but more for its effect in wine-making ([58–60]
for example). Nevertheless, flower and seeds microbiota have also
been the focus of other works. Namely, Compant et al. explored
endophytes of reproductive organs and found that even the pips
were colonized by bacteria (although less than other compart-
ments) [11]. This could also suggest a possible transmission of
microbiota between the plant and its descendants (i.e. zygotes)
[61].

II.3. Differences and similarities among compartments lead to core
microbiota

Despite the microbial selection leading to taxonomic differ-
ences between compartments [62], the existence of a continuum
of species from the underground parts to the aerial parts is at the
origin of the concept of core microbiota. The core microbiota can
be understood as a set of species found within a single individual
in all the studied compartments, but also as a set of species found
in a given compartment on different individuals, whatever their
genotype, age, location, and the climate or edaphic properties
[29,63]. The 10 dominant bacterial phyla in the soil, leaves and
grapes are Actinomycetes, Proteobacteria, Firmicutes, Bacteroidetes,
Gemmatimonadetes, Acidobacteria, Nitrospirae, Chloroflexi, Verru-
comicrobia and Planctomycetes (e.g. [13,41,43,64]). This core micro-
biome can also be demonstrated on a fungal scale, for example
with the predominance of Ascomycota genus Cadophora, Cladospo-
rium, Penicillium and Alternaria in the wood of different rootstocks
at different developmental stages [65]. Interestingly, the existence
of a core microbiome of grapevine (Vitis vinifera) independent of
the region, the climate and the sampling method was demon-
strated [29]. These authors analyzed grapes from New York and
Bordeaux as well as grape juice from California and identified sev-
eral OTUs present in more than 80 % of the samples. In another
study, a core mycobiota whose majority composition is indepen-
dent of the sampled site or season and the grapevine organ consid-
ered was also highlighted in a study in Hungary ([66], see Fig. 2).
III. Factors influencing the microbiota in healthy grapevines

The fact that microorganisms are in permanent interaction with
each other and with the plant, but also that they can pass from a
latent to an active state (whether pathogenic, beneficial or neutral),
raises the question of the factors influencing the microbial status of
grapevine at a given time. These factors can be termed endogenous
(e.g., plant genotype, plant age) or exogenous (e.g., climatic, geo-
graphic parameters, cultivation practices) [6,67] (see Fig. 1).

III.1. Genetic diversity of the grapevine

Plant genetic diversity is one of the intrinsic factors influencing
the microbiota, more specifically in grapevine both at the scion and
rootstock level [68,69]. This can be seen in different studies carried
out on the rhizosphere with the same variety grafted onto different
rootstocks [28,48,62,69–71] and with different cultivars grafted
onto the same rootstock [15].

Rootstock genotypes and their produced rhizodeposition are
major drivers of microbial selection and structure in the rhizo-
sphere [72]. Therefore, it came as no surprise that the host genetic
control of the microorganisms was more evident in a mature 25-
year-old vineyard than in a younger, 7-year-old one [52]. Addition-
ally, genetics plays a crucial role in the innate immune system - a
natural barrier microorganisms encounter when establishing a
relationship with host plants (e.g., [73,74]. Therefore, the fact that
certain rootstocks are resistant or confer resistance to certain
pathogens is understandable (e.g., [75–77]). As regards the aerial



Fig. 2. Above-ground parts of white grapevine Vitis vinifera cv. Furmint share core members of the fungal microbiome. Four different compartments (young leaf, old leaf,
grape and rachis) have been sampled in 6 different vineyards (STT, BET, NEG, URA, KIR, HAN) in Hungary, at three different developmental stages (spring, summer, autumn)
within the same growing year. The fungal endophytic microbiome is dominated by Aureobasidium pullulans, Cladosporium spp. and Alternaria alternata at every site, season
and plant organ, according to Knapp et al., 2021 [66].
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parts, the influence of genetics seems to be more complex. Indeed,
Singh et al. explored the microbial diversity of the phyllosphere
and the carposphere of 279 grapevine varieties cultivated in two
experimental vineyards around Montpellier (France). They divided
the cultivars into three genetic pools and found that genotype had
an impact on microbial composition at a particular geographic
location [78]. Nevertheless, when they compared five commer-
cially important varieties sampled in three different climatic
regions, they concluded that the terroir effect was more important
than the genotype effect [46]. Moreover, they observed that the
variety-dependent differences in microbiota were greater on the
berries than on the leaves. Interestingly, the taxa that best con-
tribute to differentiate cultivars are fermentation microorganisms,
which could participate in the typicity of grape variety [40,58].
Finally, differences in the composition of the microbial communi-
ties of leaf samples from nine grapevine varieties cultivated in
the same plot have been evidenced [79]. Such results further
proved that variety could be an important factor affecting the
microbial community.

III.2. Intra-vineyard diversity

Today, most vineyards are planted with identical individuals:
clonal selection is very common in viticulture and vegetative prop-
agation is the usual practice. Therefore, if we do not consider epi-
genetics, it is quite easy to evaluate certain factors such as plant
age and the phenological stage within a population of genetically
identical individuals.

III.2.1. The age
Some studies are focused on vineyard age and compare individ-

ual grapevines cultivated in the same plot as regards bacterial
endophytes [70], wood fungal pathogens [80], stem fungi [81], rhi-
zosphere soil bacteria [82], or AMF [56]. A positive correlation
between grapevine age and the specific diversity of fungal endo-
phytes has been demonstrated [81]. However, the ‘‘plant age” fac-
5

tor may not always be most determining in microbiota variation
(e.g., the rhizosphere microbiota [54]).

III.2.2. The phenological stage
Numerous studies have characterized the microbiota in differ-

ent compartments of grapevine throughout the season, and
according to its phenological stages. The ‘‘season” or ‘‘developmen-
tal” variables do not seem to influence the associated microbiota
over the year (e.g., comparison of bacterial microbiota in bulk
and rhizosphere soil at the flowering and early fruit development
stages [83], AMF diversity in the roots [56], endophytic fungal
microbiota in aerial tissues [66]). Other studies reveal that the
microbiota is unstable over a full growing season (different abun-
dances of wood [65] or soil fungal communities [71,84], high struc-
turing of the leaf microbiota during the vegetative cycle [19,37,85],
variations of the culturable bacterial endophyte community [8]).

III.2.3. The plot location
It has also been shown that the microbiota associated with the

very same plants can also vary [8,52] or not [86] over successive
years, highlighting the impact of seasonality or of variable agro-
nomic practices from one year to another. Finally, interestingly
enough, intra-plot variability can be greater than inter-plot differ-
ences [87]. Even if the main determinants of the variations
observed over successive years are sometimes discussed, these
results may acknowledge the importance of specific interactions
between microorganisms, host plant and rhizospheric functioning,
which can change through sampling seasons.

III.3. Use of phytosanitary inputs

The microbiota composition is sensitive to chemical treatments,
as shown by studies comparing vineyards under conventional, sus-
tainable or biodynamic agriculture. The sensitivity of the soil
microbiota is dependent on the method [88–90]: the vineyards
cultivated under organic farming show greater specific fungal
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and bacterial richness and diversity [71,87,91]. It is likely that the
products applied for fertilization, weeding and phytopathogen
control directly and indirectly influence microbial communities
[53,92]. On the other hand, differences in soil microbial communi-
ties have been mainly explained by the absence or presence of
cover plants, regardless of how they were removed (soil cultivation
or herbicide treatment) [93].

Besides the soil microbiota, epiphytic [85] and endophytic
[94,95] bacterial or fungal communities can also be affected by
pest management [41,60,87]. When nitrogen and sulfur are artifi-
cially added to soils over a long period, the microbial diversity
associated with the roots is modified, which means that anthro-
pogenic activities (e.g. fertilization) can modify the rhizosphere
microbiota [30,96,97]. However, the changes in microbial commu-
nities in response to chemical treatments and technical itineraries
appear to be transient over time [98]. Overall, the results are con-
troversial. Furthermore, it is extremely difficult to draw general
conclusions about this point, as two plots under the same practice
(conventional, organic, or biodynamic) can receive completely dif-
ferent treatments.

III.4. Soil characteristics, climate and geography

Phytosanitary products have an impact on the composition of
the soil microbiota, which is the main reservoir of the aerial micro-
biota. In that case, we can hypothesize that the soil composition
has a major impact on the microbiota composition of the whole
grapevine [29,92,99]. Grapevine is a worldwide crop established
in diverse pedoclimatic conditions (soil characteristics like grain
size, moisture, salinity, nutritional qualities; locations at different
altitudes, air temperatures, under different irradiance levels).
Vine-growing regions have their own ‘‘terroirs”, which affect the
taste of wine by giving it unique organoleptic properties. The def-
inition of terroir also involves the characterization of the associ-
ated microorganisms, because the yeasts naturally present on
grapes in the vineyard, in the winery environment or inoculated
before the fermentation process significantly impact the final char-
acteristics of wines. The grape microbiota varies depending on
microclimate variations as well as available nutritional resources
[40,42,58,60]. Correlations between rainfall, temperature and the
phyllosphere microbiota have been established [98].

The sensitiveness of the microbiota to geographic factors differs
among compartments: we can assume that the impact of the ter-
roir is greater on the microbiota of perennial organs than on the
microbiotas of leaves or berries [42]. The identification of distinct
soil microbial communities in relation to the vineyard location
supports the idea that soil microbial communities are decisive in
the link between edaphic properties and terroir [92,100,101]. The
structure of soil microbial communities can be strongly deter-
mined by water stress [102] or altitude [54,86]. This can be
explained by variations in air temperature, but also soil character-
istics (moisture, clay content and mineral elements). Thus, the
physicochemical gradient has a strong impact on the soil micro-
biota [103]. Likewise, the soil pH, organic carbon content or even
phosphorus content have a significant impact on fungal and bacte-
rial communities [104]. A few studies are less assertive as to the
importance of the soil chemical characteristics [88] or geographic
location on microbial communities, with other factors appearing
to be more important (e.g., a stronger compartment effect [45]).
Ranking the factors that influence the composition of the micro-
biota seems to be difficult.

The microbial diversities of plants of different ages or varieties
combined with conventional or organic farming have been com-
pared with diverse outcomes. The most important differences
can be mainly explained by pest management (before the impact
of the cultivar) [94,95], or by the concerned tissue (before the
6

impact of the cultivar) [46]. Soil management can affect the rhizo-
sphere microbiota more strongly than plant age does [54]. The
main driver of the microbial community composition can also be
the organ, with edaphic factors explaining the community struc-
ture within organs [29].

The degree of influence of the various factors (e.g., vineyard age,
type of soil management, rootstock) also appears to be variable
depending on the microbes concerned: the impact of soil manage-
ment and vineyard age on the rhizosphere microbiota has been
found greater on bacteria than on fungi [89]. Unfortunately, most
of the comparative studies have tested several factors simultane-
ously, which complicates the task of confidently attributing
cause-effect relationships.

IV. Plant fitness depends on microbiota

Among the microorganisms found in grapevine tissues, some
are beneficial, others are pathogenic, and others are neutral, rela-
tive to their interactions within the host. Also, depending on their
status (i.e. beneficial vs detrimental) in the plant and the fact that
they colonize or not certain tissues/compartments, the repercus-
sions generated on the plant could be diverse. Considering the
holobiont concept described above, we can suppose that plant
health is intimately linked to the interactions between the plant
and its microbiota, as it is in the animal kingdom [105]. In other
words, the holobiont balance is likely to affect plant fitness [23,30].

IV.1. Beneficial and detrimental microorganisms

IV.1.1. Services provided by beneficial microbiota
The identification of beneficial properties has led to the emer-

gence of bioprotection strategies based on strains with bio-
fertilization (the ability to make mineral nutrients bioavailable to
the grapevine), biostimulation (the ability to synthesize a
growth-promoting compound) or biocontrol properties (the ability
to eliminate pathogens by predation, suppression of virulence fac-
tors or niche competition [106]). Among the microbial groups
mentioned above, arbuscular mycorrhizal fungi (AMF) and plant-
growth-promoting bacteria (PGPB) play such a positive role
[107,108].

IV.1.1.1. Bio-fertilization. Some PGPB can solubilize forms of phos-
phorus that cannot be assimilated by the grapevine by transform-
ing organic phosphorus into soluble ionic phosphate [109]. This
bacteria type has been found in several compartments of grape-
vine: species of Pseudomonas, Enterobacter, Arthrobacter and Bacil-
lus in the rhizosphere [110,111], Bacillus and Pantoea in branches
[112], Pantoea in the endocaulosphere [70]. AMF associated with
roots, greatly increase the exploitation of the soil and supply addi-
tional water and nutrients [22]. This colonization results in a better
fitness of the plant, whose aerial and root biomass values increase
[21,113,114]. The increased water uptake capacities and the for-
mation of soil micro-aggregates near the roots that promote water
retention enhance the water stress tolerance of mycorrhizal grape-
vines. Mycorrhizal grapevines also better tolerate iron deficiency,
the presence of heavy metals, or soil salinity [22,108].

IV.1.1.2. Biostimulation. Other PGPB can synthesize phytohormones
that promote plant growth and help plants face stresses. For exam-
ple, Bacillus licheniformis and Pseudomonas fluorescens produce
abscisic acid and limit water stress on the roots of in vitro-grown
plantlets [115,116].

IV.1.1.3. Biocontrol. The rhizosphere bacteria and endosphere
bacteria of shoots and branches, like Achromobacter xylosoxidans,
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Bacillus subtilis or Pseudomonas fluorescens, can produce sidero-
phores that limit iron availability and deprive other (pathogenic)
microorganisms of it [70,110,112]. Some bacteria also degrade cer-
tain virulence factors produced by phytopathogens (e.g., oxalic acid
produced by Botrytis cinerea on leaves [117]). The last type of inter-
action between a biocontrol agent and a pathogen is parasitism.
For instance, oomycetes can parasitize the mycelial structures of
pathogenic fungi (e.g., Pythium oligandrum against Phaeomoniella
chlamydospora [118]).

Mycorrhiza-induced resistance (MIR) promotes a better toler-
ance of mycorrhized plants to abiotic and biotic stresses, namely
biotrophic and necrotrophic pathogens and nematodes [119]. For
example, the AMF Rhizophagus intraradices can reduce the number
of root galls formed by the nematode Xiphinema index (responsible
for the transmission of the grapevine fanleaf virus [120,121]) and
could reduce the detrimental effects of the fungus Armillaria mellea
(responsible for Armillaria root rot disease [122]).

The number of services that microorganisms can render to
grapevines is large. The presence of these microorganisms (PGPB
or AMF) within microbial communities seems essential to the
health of the holobiont. We can suppose that an imbalance of the
specific richness or abundance of these species compared to others
could be the cause or at least an aggravating factor of the develop-
ment of certain declines of grapevine.

IV.1.2. Grapevine declines caused by the presence of pathogenic
microorganisms

Like any perennial crop, grapevine is subject to many biotic
stresses during its life cycle. Among them and in the context of sus-
tainable viticulture, microbial agents (viruses, bacteria and fungi)
are undoubtedly the most problematic since they require constant
phytosanitary control [123]. If the literature is particularly rich
concerning grapevine fungal diseases (the most consuming of pes-
ticides), the fact remains that viral and bacterial diseases also have
a strong impact on the crop production and sustainability of the
vineyard.

IV.1.2.1. Fungal actors. Many declines are directly linked to the
presence of a fungal pathogen [124–126]. For some fungal species,
pest control strategies exist, are effective and the resulting declines
could remain limited. This is the case with Plasmopara viticola, Ery-
siphe necator or Botrytis cinerea (e.g. [127–130]). On the other hand,
such strategies are very limited and often not effective enough for
other species. This is particularly the case for pathogens involved
in grapevine trunk diseases (GTD). Indeed, esca, eutypa dieback
and Botryosphaeria dieback are major declines affecting young
and old vineyards, while others like black-foot or Petri disease
(one of the five syndromes composing esca complex) are com-
monly found only in young vineyards [131,132].

Symptoms common to most GTDs are rotting of the wood (vis-
ible through cankers that affect part of or all the trunk section) as
well as discoloration and drying out of the shoots and leaves,
which can sometimes occur suddenly and late in relation to the
primary infection [131,133]. Eutypa dieback is currently found in
France, Australia and California [132]. Several Diatrypaceae species
are responsible for this decline, but the most important one seems
to be Eutypa lata [133–135].

In Botryosphaeria, dieback is caused by a complex of around 30
taxa belonging to different Botryosphaeriaceae species (Botryo-
sphaeria, Diplodia, Dothiorella, Lasiodiplodia, Neofusicoccum, Neoscy-
talidium, Phaeobotryosphaeria, Spencermartinsia), which cause
trunk wood cankers or shoot dieback [133,134,136]. The fungal list
involved in the esca decline complex is slightly shorter, but the
number of candidates remains substantial (i.e., Phaemoniella
chlamydospora, different Phaeoacremonium and Fomitiporia species,
Eutypa lata and Stereum hirsutum [131,133]).
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IV.1.2.2. Viral actors. Grapevine is probably the crop that harbors
the greatest number of viruses, which live as a parasite/pathogen
inside its cells. The recent expansion of high-throughput sequenc-
ing technologies has given acceleration to the discovery of
unknown grapevine infecting viruses. To date, more than 70
viruses and five viroids have been identified on Vitis vinifera
[137]. Although the pathogenicity of all these viruses has not been
established, a number of them are responsible for severe grapevine
diseases [138]. Such viruses affect several compartments of the
grapevine: mainly the leaves (e.g., grapevine fanleaf virus, Arabis
mosaic virus, grapevine leafroll associated viruses, grapevine fleck
virus), but also the wood (e.g., rupestris stem pitting, corky bark,
Kober stem grooving). The causal agents belong to the Nepovirus,
Ampelovirus, Vitivirus, Foveavirus, Marafivirus or Maculavirus gen-
era. Viruses are most of the time transported by biotic vectors (ne-
matodes, cochineals), but transmission can also occur through
pruning or grafting [139,140]. Infection is systemic (the virus is
present in all the grapevine compartments).

IV.1.2.3. Bacterial actors. All grapevine tissues can be affected by
three major bacterial declines caused by pathogenic bacteria grow-
ing and circulating in the vascular system [141]. Bacterial necrosis,
whose symptoms are often confused with those of frost or hail
(drying out of the leaves and inflorescences and presence of
lesions, bursts and cankers on the bunches and the shoots), is
caused by Xylophilus ampelinus. The European grapevine (V. vini-
fera) is the only known host [142] and this bacterium can grow
on grapevine in a latent state without expressing symptoms.

Pierce’s disease is characterized by the degradation of xylem
vessels and the disturbance of the trunk water flux due to the pres-
ence of Xylella fastidiosa. Consequently, the leaves dry out, become
necrotic and drop [143]. The shoots are also affected, with later
bud break and diminished chlorotic growth. However, since the
optimum growth conditions for X. fastidiosa are warmer environ-
ments (i.e., close to 28 �C), that explain why this pathogen is not
prevalent in areas where winter temperature drops under 0 �C
[144]. Finally, crown gall is caused by Agrobacterium vitis, a bac-
terium that lives quite frequently in the vascular system of the
grapevine without causing apparent damage [145]. Nevertheless,
tumors of variable sizes can develop following wounds.

IV.2. Appearance of symptoms: An imbalance of the microbial
diversity?

The appearance of symptoms, characteristic of a given pathol-
ogy, is conditioned by the presence of a plant pathogen or of a com-
plex of pathogenic agents whose virulence will be expressed.
Decline symptoms are commonly visible only in certain tissues,
even if the plant is completely colonized [146]. In addition, patho-
gens can be present in a latent, harmless form in the plant tissues
for years before the decline becomes visible [147,148]. These find-
ings raise the question of the nature of the triggering event.

IV.2.1. Microbial balance is sensitive to abiotic and biotic stresses
IV.2.1.1. Impacts of abiotic stresses. The impact of certain abiotic
stresses (e.g., heat, water) on triggering or worsening symptoms
has been studied and confirmed [148–150] even if it seems that
these stresses are not related to the early phase of infection
[151]. The fact that cultural practices or abiotic stresses also influ-
ence the composition and structure of the microbiota enlightens
the hypothesis of a microbial shift associated with certain grape-
vine declines. Note, however, that the microbial shift could either
be the direct cause of the decline or the consequence of the impact
of another stress (with an indirect cause and effect relationship).
This hypothesis was confirmed by studies mainly carried out on
annual plants [152–154] as well as on some perennial plants too
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(shifts in the microbiota linked to horse chestnut bleeding canker
disease in [155], to olive knot disease in [156], to huanglongbing
in citrus in [157] or to acute oak decline in [158]).

IV.2.2.2. Impacts of biotic stresses
IV.2.2.2.1. Human interventions. The expression of some decays has
been linked to human intervention, e.g., in the case of crown gall.
Both the soil and contaminated plant material used in nurseries
(in spite of hot water treatments) are sources of Agrobacterium
vitis. Once the bacterium is inside the vascular system, any kind
of stress that requires cell multiplication can cause the appearance
of crown galls: grafting procedures, wounding due to the passage
of farming devices, pruning or removing suckers are plausible
human activities causing the development of this illness
[145,159,160]. Therefore, we can easily relate human intervention
to the development of this decline as such.
IV.2.2.2.2. Microbial pathogens. Despite technological advances in
metagenomics and the significant reduction in costs associated
with these techniques, there are only few studies to date that focus
on the comparison of the microbiota in symptomatic (i.e., declined)
and asymptomatic grapevines, especially for bacterial dieback. In
the case of crown gall disease, A. vitis has been found significantly
present only on the graft point of ill plants compared to healthy
ones [159]. Interestingly, specific richness was higher in the graft
union of infected plants than in the graft union of healthy grape-
vines. Moreover, the dominating microbiota varied throughout
the year in healthy samples, while in symptomatic ones, the same
three species (Pseudomonas sp., Enterobacteriaceae sp. and Agrobac-
terium vitis) prevailed year-round. In Pierce disease, the absence or
presence of the disease impacts the endophytic communities pre-
sent in the canes. A positive correlation between has been found
between this decay and four taxa with very low relative abun-
dances: Bacillus, Pediococcus, Caulobacter and Dialister [161].

The existing work on fungal declines has mostly been carried
out in relation to wood declines, especially esca. In their study,
Bruez et al. analyzed the fungal microbiota of wood tissues of
grapevines with no foliar symptoms of esca or eutypa dieback
[80]. Despite the absence of visible symptoms, they found many
GTD pathogens among the community and concluded that a bal-
ance via competition was maintained between pathogenic fungi,
mycoparasites and saprobes and prevented the development of
symptoms. These results are supported by another study in which
it is shown that the differences in fungal composition between
symptomatic and asymptomatic plants are less important than dif-
ferences between organs within a same plant [99]. The factors that
trigger the imbalance allowing pathogens to express themselves
still remain to be identified.

Earlier, Bruez et al. compared the wood fungal communities of
plants with and without visible leaf symptoms of esca. No signifi-
cant differences in the composition of the communities were
demonstrated. In addition, the necrotic areas of the wood were
not richer in pathogenic fungi than the others [162]. Similar results
were highlighted by [47] and [146] (see Fig. 3). It seems that the
onset of symptoms cannot be correlated with the mere presence
of the fungus responsible for the decline inside the wood or with
its greater or lesser abundance [38] (this is also the case for other
fungal diseases such as hoja de malvón [126]). A recent study even
supposes that Fomitiporia mediterranea virulence (one of the patho-
genic fungi responsible for esca) and in particular its capacity to
degrade wood is due to an interaction with certain bacteria present
in the wood [163]. Nevertheless, significant differences in endo-
phytic bacterial composition have been found between the wood
of symptomatic grapevines and the wood of asymptomatic
grapevines, whether they were necrotic or not: important
differences for Bacillales - more abundant in asymptomatic plant
-, Xanthomonadales, Rhizobiales, Enterobacteriales and unidentified
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taxa - more abundant in symptomatic grapevines - [162]. More-
over, rhizosphere bacteria are more numerous at the base of
asymptomatic plants than at the base of plants whose leaves show
symptoms of esca [140].

The community composition does not vary [164]. Differences in
microbial communities between symptomatic and asymptomatic
plants, when they exist, seem to be localized at the level of the
grapevine rhizosphere, not in the wood or the leaves (see Fig. 3;
[146,165,166]. The abundance of the genera Phaeoacremonium
and Phaeomoniella has been found higher in soils associated with
symptomatic grapevines compared to asymptomatic ones [55].
Therefore, the source of pathogenic inoculum would be located
in the soil and could be neutralized by the presence of other bacte-
ria, hence a balance in the soils associated with asymptomatic
plants (like Curvularia or Coprinopsis, more abundant in asymp-
tomatic samples).

These results bring into question the differential sensitivity of
some fungal or bacterial taxa to biotic or abiotic variations. This
is key because answering it could explain the appearance of micro-
bial imbalances in decline situations.
IV.2.2. What happens in the rhizosphere microbiota of declined
grapevines?

Given how plants recruit microorganisms, especially rhizo-
sphere ones, we can hypothesize that the appearance of symptoms
in declining plants is a consequence of a disruption of this recruit-
ment. It is essential for the plant to maintain a permanent balance
between recruiting beneficial microorganisms and restricting
pathogens. This is not easy because the entry routes are the same
[31]. On the one hand, some studies, essentially conducted with
annual plants, have shown important active recruitment of benefi-
cial microorganisms in response to the decline, through the secre-
tion of metabolites that stimulate specific microbes in the
community [167]. On the other hand, the location of microbes
could change (epiphytes become endophytes [13]), raising the
question of the determining factors of this change, and its potential
modification in case of disease.

As explained previously, anthropogenic activities (e.g. fertiliza-
tion through nitrogen or sulfur deposition) can also modify rhizo-
spheric microbiota, demonstrating the importance of the chemical
composition of soils in the establishment of microbial communi-
ties. Thus, when studying plant decline, the hypothesis that the
microbial imbalance observed in the rhizosphere is due to disrup-
tions of rhizodeposition is plausible. We already know that the
composition of root exudates varies according to plant age [168–
170] and genotype [72,171,172]. Abiotic stresses like drought or
heat can modify rhizodeposition too [173,174].

On the other hand, changes in rhizodeposition have been linked
to biotic interactions. For example, the presence of fungal endo-
phytes in Poaceae has been correlated to changes in rhizodeposi-
tion [175]. The presence of nematodes or other pathogens has an
impact on the quality and the quantity of exudates [176,177]. Myc-
orrhization has a significant impact on the nature of root exudates
[178,179]. Thus, the influence of microorganisms (whether patho-
genic or not) external to the plant on exuded metabolites seems to
be proven, essentially in annual plants.
IV.2.3. Altered functions of the root microbiota may be related to the
onset of symptoms

In the case of woody plants, the symptoms of decline can often
be linked to problems with the storage and the management of
reserves – e.g., a lower photosynthesis rate or vascular system
degradation [23,180]. The quality and quantity of root exudates
are directly linked to the physiological state of the plant (including
the quality and quantity of its reserves; Fig. 4). The appearance of



Fig. 3. Meta-barcoding analysis of fungal (A) and bacterial (B) microbiota colonizing non-necrotic woody tissues from healthy and esca-diseased young grapevines. DNAs
were extracted from different organs: rootstock, trunk and cordon. Only the 10 most abundant orders are displayed. In this experimental context, fungal and bacterial
microbiota varied according to organs but not diseased plant status (according to Bruez et al., 2020 [146]).
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decline symptoms can be explained by two interrelated
hypotheses:

– The presence of a pathogen in the aerial parts disturbs certain
metabolic processes, like storage [181]. In consequence, rhi-
zodeposition can be modified, and so can the composition of
the rhizosphere microbiota [182–184]. This leads to an alter-
ation of the functions performed by this microbiota ([157];
see Fig. 4), and can contribute to weakening the plant.
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– An imbalance in the rhizosphere microbiota leads to a modifica-
tion of the elements taken up by the plant. As a result, storage is
altered and the plant is weakened and more susceptible to the
pathogens present in its tissues in a latent manner.

To verify these hypotheses in the case of diebacks impacting
grapevine, clues can be provided by the small number of studies
exploring the relationships between the rhizosphere microbiota
and declines due to nutritional dysfunctioning. D’Amico et al.



Fig. 4. Grapevine-microorganism and microorganism-microorganism relationships in the soil. Such types of interactions are multiple and complex: 1 Root exudates recruit
and feed microorganisms. 2 Some microorganisms are nitrogen or phosphorus fixators and mineralize organic matter. Arbuscular mycorrhizal fungi (AMF) supply the host
with nutrient resources that are inaccessible to the roots because of their location (biofertilization). 3 Some pathogenic agents can induce declines. 4 In addition to their
ability to induce the production of phytohormones by plants, certain plant-growth-promoting bacteria (PGPB) can synthesize them directly. Certain phytohormones regulate
plant growth and increase plant tolerance to biotic and abiotic stresses (biostimulation). 5 Some PGPB and AMF participate in the inhibition or suppression of pathogens via
competition for ecological niches or for resources through antagonism, by inducing plant resistance, by interfering with the pathogen signaling systems or by suppressing
pathogen virulence factors (biocontrol/bioprotection). 6 The mycelium and the mucilage of certain microorganisms enhance the cohesion between soil particles and create
microaggregates; as a result, the soil structure is improved (inspired from [161]).
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compared the rhizosphere microbiota of two different rootstocks –
1103P, known in Italy to give potassium deficits, and 5BB, which
provides good K levels – to see if the differences in potassium
uptake were attributable to the root microbiota [185]. The micro-
biota of 1103P had a reduced diversity compared to 5BB, particu-
larly for microorganisms solubilizing potassium. In a study
focused on the relation between microbiota and ferric chlorosis,
the magnesium and chlorosis levels of the leaves were significantly
correlated with the composition of the soil bacterial community:
the bacterial microbiota of the grapevines displaying ferric chloro-
sis was significantly different from the microbiota of the healthy
grapevines [101].
V. Conclusion and perspectives

Like all plants or other macroorganisms, the grapevine closely
interacts with a large number of microorganisms that can modu-
late its physiology throughout its life cycle, keeping the grapevine
holobiont healthy or not. The -omics sciences have marked a turn-
ing point in the history of biology, especially in the description of
the taxonomic composition of the microbial communities of iso-
lated compartments of healthy-looking and decaying grapevine.

To face the numerous diebacks that affect the grapevine, we
need to better understand plant microorganism and
microorganism-microorganism relationships, the functional con-
tributions of microbes to the grapevine holobiont, and the changes
within communities in a decaying context. Up to date, only few
studies addressed the functional characteristics of the microbiota
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through metabolomic and transcriptomic approaches in the grape-
vine holobiont.

Understanding the complexity of the grapevine holobiont is a
crucial issue for the future of the wine industry. The study of
microbiota in a holobiont context opens large windows onto
reduced pesticide and chemical fertilizer inputs through biocon-
trol, biostimulation and bio-fertilization, which are key levers for
the sustainable development of viticulture.
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