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In this work, the Co-Ni basic carbonate nanowires were in-situ grown on carbon nanotube
(CNT) network through a facile chemical bath deposition method, which could be further
converted into active hydroxide via cyclic voltammetry strategy. A series of carbonate
nanowire/nanotube with different Co/Ni ratio revealed the different growth status of the
nanowires on CNT network. The nanostructures of the as-synthesized samples were
examined via powder X-ray diffraction (XRD), scanning electron microscopy (SEM),
transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS)
techniques. The Co/Ni ratio of the carbonate largely affected the size of the nanowires,
that the low Co/Ni ratio was beneficial for thin nanowire formation and the nanowires
loading on CNT network. Subsequently, the electrochemical performance of the Co-Ni
basic hydroxides was studied in a three-electrode test system. The nanowires with lowCo/
Ni ratio 1/2 can form nanowire array on individual CNTs, which exhibited better
electrochemical capacitive performance than the composite network with high Co/Ni
ratio nanowires after electrochemical activation. The addition of Co enhanced the rate
performance of the hydroxide/CNT, especially improved the long cycle stability largely
compared to the rate performance of pure Ni converted hydroxide/CNT composite film
reported by our previous research. This result is valuable for the design of inorganic
electrochemical active composites based on conductive networks for energy conversion/
storage applications.

Keywords: Co-Ni carbonate nanowire, carbon nanotube network, supercapacitor, electrode, electrochemical
conversion

INTRODUCTION

In recent years, effective energy storage and utilization have attracted much attention for the fast
development of electronic devices and the increasing environmental problems (Liu et al., 2010; Zhou
et al., 2019a) Among various energy storage strategies, electrochemical energy storage usually plays a
key role in the individual electrical and electronic devices with the requirement of stable power
supplement (Mathis et al., 2019; Wang et al., 2020) As an important part of electrochemical energy
storage device, the electrode should match various requirements for effective energy storage and
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power supplement, such as high conductivity, high power and
energy density, long cycle stability, facile synthesis, high
utilization, low cost and environmental friendliness. In
different electrochemical energy storage devices, the metallic
compounds (usually hydroxide or oxide) with high energy
densities and capacities but poor conductivity are used as the
electrodes (Nguyen and Montemor 2017; Li et al., 2019) To
increase the power density and active the batteries materials,
the electrodes with high conductivity are necessary (Chen et al.,
2019; Kim and Moon 2020) In commercialized electrodes,
the simple mixing of electrochemical active materials and the
conductive fillers is a common method. However, the conductive
additive unavoidably sacrifices overall energy storage capacity
and the mixture with low ratio of conductive fillers could not
ensure the stable conductive network in the electrodes, which
limits the performance of the electrodes (Farzaneh and Hadi,
2019) To enhance the construction of the conductive network in
the electrodes, direct growth of electrochemical active materials
on the as-prepared conductive network is an effective approach.
(Hosseini and Shahrokhian 2018)

Among many kinds of transition group metal (such as Fe, Co,
Ni, V, Mn) oxides/hydroxides, Ni(OH)2 and Co(OH)2 have been
widely explored as electrode materials for supercapacitors due to
their high theoretical specific capacities and energy densities
originated from their reversible faradic redox reactions, but
their low electrical conductivity leads to poor rate
characteristic. (Zhu et al., 2013; Hosseini and Roushani 2020;
Munde et al., 2020a; Munde et al., 2020b; Hekmat et al., 2020;
Shobhnath, et al., 2020) Besides, the pristine grown Ni or Co
hydroxide were thick with small specific area, which may reduce
their contact area with electrolyte and result in a low parctical
capacitance. To solve the problems of these Ni/Co hydroxide
using as supercapacitor electrode materials, many conductive
substrates were employed to improve the conductivity in the
practical capacitance and rate performance. Carbon materials
including graphene, carbon nanotubes, carbon fibers, Fullerene
C60 and conducting polymers like polyaniline, are usually used as
conductive substrates on which metal nanoparticles are anchored
and grown (Hadi and Saeed 2018; Hosseini and Shahrokhian
2018; Jokar et al., 2018) Among these materials, carbon nanotube
(CNT) could be easily assembled to film and/or paper with open
pore structures while keep the large specific area, which is
beneficial for the loading of active materials for electrodes of
electrochemical energy devices (Chen et al., 2015a; Zhao et al.,
2019; Zhou et al, 2019b; Dighole et al., 2020) Till now, various
metallic compounds have been effectively grown on individual
CNTs, including sulfides, (Hou et al., 2017; Paquin et al., 2015;
Yang et al, 2017a) hydroxides(Zhao et al., 2014) and oxides (Cai
et al., 2014; Dong et al., 2015) The metallic compounds with
different kinds of nanostructures (usually nanosheets) can be
easily grown on individual CNTs when the latter is used as
powder, and the better contact between CNTs and active
materials could still exhibit better performance comparing
with those composites prepared by simple mixing. (Raviraj
et al., 2020) However, their applied status is still in form of
powder rather than films or papers, which limits its further
effective use as electrode. How to in-situ grow these inorganic

active materials on CNT films or papers with high loading mass is
still need more efforts. In order to address these issues,
researchers have carred out various methods to grow metallic
oxides on CNT papers or films, such as chemical bath deposition
(Patil et al., 2018; Yusof et al., 2020) and electrochemical
deposition. (Chen et al., 2016a; Sun et al., 2018; Yang et al.,
2017b) However, these active materials are still not effectively
grown on CNT films with high stability and cost effectiveness. In
our previous work, the ultra-thin amorphous Ni2(OH)2CO3

nanowire arrays were grown on individial CNTs in CNT
paper with large mass loading and then these nanowires were
in-situ converted into Ni(OH)2 nano sheets by electrochemical
cyclic reaction. The hybrid CNTs paper/Ni(OH)2 shows high
specific capacitance up to 1400 F•g−1 in the first tens of cycles, but
decreased to 1000 F•g−1 after 1,000 cycles at 2A•g−1, which may
lead by the structural instability of pure Ni(OH)2. (Chen et al.,
2015b)

In this research, to further improve the specific capacity and
stability, binary Co-Ni hydroxides have been fabricated as
supercapacitor electrode by a two-step procedure. The in-situ
growth of Co-Ni basic carbonates on as-prepared CNT film is
achieved by a modified chemical bath deposition method. Binary
Co-Ni carbonates with different Co/Ni ratio were fabricated on
CNT paper, which reavealed the diameter of the nanowires was
increased with the decreasing Ni content ratio in the basic
carbonates, while the Co-Ni basic carbonates Co2Ni with high
Ni content could form nanowires with thin diameters. When the
decreased carbonate nanostructure size match the diameter of
individual CNTs, core-shell structures based on individial CNT
backbones can be formed. Compared to the rate performance of
pure Ni converted hydroxide/CNT composite film reported by
our previous research, the introduce of Co enhanced the rate
performance of the hydroxide, and largely improved the long
cycle stability. The binary Ni/Co hydroxides revealed better
electrochemical energy storage performance because of the
synergistic contributions of cobalt ions in the redox reactions
improved the single nickel hydroxide. Furthermore,
electrochemical activation can largely increase the
electrochemical capacitance of the composite films with low
Co/Ni ratio, suggesting that the scalable, robust and
conductive activated CNT composition may serve as a
promising candidate for the electrodes of high-performance
electrochemical energy storage devices.

METHODS

Materials
The CNT papers were prepared by a vacuum filtrationmethod. In
a typical process, the pristine CNTs were sheared into CNT
cotton by high-speed shearing, and then immersed into the
solution of hydrochloric acid (5 mol/L) for 48 h to remove
catalyst particles. The purified CNTs were sheared into CNT
cotton again and dispersed into deionized water by ultrasonic
treatment with the help of Tween-80 (as the dispersant). Then,
the dispersed CNT solutions were filtered through a microporous
cellulose filter membrane using vacuum filtration and washed by
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deionized water repeatedly to remove remnant dispersants. After
dissolving the cellulose filter membrane by acetone, a
freestanding CNT paper with a diameter of 40 mm was
obtained. All of the chemical reagents were purchased from
Sinopharm Chemical reagent Co., Ltd with analytical reagent
grade (AR).

Synthesis
NixCo2-x(OH)2CO3 was grown on CNT paper by a modified
chemical bath deposition method. Typically, NiCl2 and CoCl2
were dissolved in 20 ml water with Co/Ni ratio 1/0, 2/1, 1/1 and
1/2, are denoted as Co, Co2Ni, CoNi and CoNi2, respectively.
The total concentration of NiCl2 and CoCl2 were kept at 1 M.
Then, a piece of CNT paper (20 mg) was immersed into the
solution, respectively. At last, 0.62 g urea was solved into the
solution. The mixed solution was put into a glass bottle and its
top was screwed. The bottle was put into an oven with the
temperature of 80°C for 24 h. After that, the CNT paper was
taken out and washed by water. The washed paper was dried at
60°C in air.

Characterization and Tests
The morphology and microstructure of the samples were
systematically investigated by field emission scanning electron
microscopy (FE-SEM, Quanta 400 FEG, FEI), high resolution
transmission electron microscopy (HRTEM, Tecnai G2 F20S-
Twin, FEI), and X-ray diffraction (XRD, D8 Advance Powder
X-ray diffractometer, Bruker AXS), X-ray photoelectron
spectroscopy (XPS, EscaLab 250Xi). The prepared CNT paper
was weighed of 10 mg for each and pressed onto the Ni-foam of
1.0 ⅹ 1.0 cm2 as the electrode. Electrochemical experiments were
carried out in CHI-660C electrochemical workstation and
LANHE CT 2001A electrochemical cell test equipment. A
three-electrode system was chosen to test the electrochemical
performance of the materials. A platinum wire was used as the
counter electrode, and a calomel electrode was used as the
reference electrode. A 6 M KOH aqueous solution was chosen
as the electrolyte. CV performances were tested in a potential

range of 0 V up to 0.8 V under scan rates of 5 mV/s. The cycling
stability was tested in LANHE 2001A (5V 50 mA) battery
station.

RESULTS AND DISCUSSION

The Effect of the Different Co/Ni Ratios on
the Morphologies of Carbonate Nanowires
As shown in Figure 1A, for the carbonate nanowires with Co/Ni
ratio 1/0, 2/1, 1/1 and 1/2 denoted as Co, Co2Ni, CoNi and
CoNi2, the loading mass of Co/Ni basic carbonate nanowires on
CNT network increases along with the decreasing Co/Ni mol
ratio. After the deposition of Co/Ni basic carbonate nanowires,
the masses of CNT network become 244%, 254%, 331% and
375% of the pristine mass for Co, Co2Ni, CoNi and CoNi2,
respectively. It means that the loading ratios of basic carbonate
in the composite network are 59, 61, 70 and 73% for Co, Co2Ni,
CoNi and CoNi2, respectively. To enhance the performance of
the composite network, high loading of active materials is
beneficial. However, the formation mechanism of the loading
mass under different Co/Ni ratios should be further
investigated. The thermal decomposition of Co/Ni carbonate
compounds was monitored by TGA, which indicated that Co/Ni
carbonate with different Co/Ni ratio exhibit quite similar
thermal evolution as shown in Supplementary Figure S1A.
As it can be seen in Supplementary Figure S1B, the CoNi2
carbonate sample experience three weight losses : CNT paper
caused the first 20% mass loss in the interval [250–550]°C ; a
second 12% weigh loss at [550–700]°C is attributed to the
decomposition of OH in the composition; a third 6%
progressive weight loss at [700–900]°C caused by the
degradation of CO3.

XRD patterns of the four Co/Ni basic carbonate/CNT
composites are shown in Figure 1B. Different from Ni basic
carbonate nanowires with typical Ni2(OH)2CO3 structure in our
previous discussion,[31] the four samples of Co basic carbonate
with Ni doping exhibits typical Co2(OH)2CO3 crystal structure

FIGURE 1 | (A) The loading mass of Co basic carbonates with different Ni doping degrees. (B) XRD patterns of pristine Co/Ni basic carbonate/CNT network.
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(PDF: 48-0083). It means that even the Ni doping degree is high
to 67%, the existence of Co can still keep the crystal structure of
the basic carbonate as pure Co basic carbonate. Furthermore, the

shapes of Co, Co2Ni, CoNi and CoNi2 are similar as shown in
Figure 2, which also indicates the similar crystal structure and
consistent with TGA results.

FIGURE 2 | The morphologies of Co/Ni basic carbonate nanowires on CNT network: Co (A, B); Co2Ni (C, D); CoNi (E, F); CoNi2 (G, H).
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According to our previous research, the Ni2(OH)2CO3 formed
a nanowire array with thin diameter on individual CNTs (Chen
et al., 2015a) Figure 2 shows the micro morphologies of Co/Ni
basic carbonates with different Co/Ni ratios on CNT network.
The pure Co2(OH)2CO3 nanowire has larger diameter with large
particles as the center as shown in Figures 2A,B. Only large
particles (1–5 μm) with large-diameter nanowires (100–200 nm)
were grown on CNT paper without close contact to individual
CNTs on it. When doping the basic carbonate with Ni to achieve
Co2Ni, as shown in Figures 2C,D Co2Ni basic carbonate forms
dense nanowires on CNT paper, largely different from pure Co
basic carbonate with low growth density on CNT paper (see
Figure 2A). It means that the main loading form of pure Co basic
carbonate on CNT paper may be the particles. However, the
diameters of pure Co and Co2Ni basic carbonate nanowires
exhibit no obvious difference. The increasing content of Ni
will induce thinner basic carbonate nanowire formation as
shown in Figures 2E,F (Co/Ni � 1/1). The CoNi nanowire
with small diameter can form sea-urchinlike structures on
individual CNTs. With higher Ni doping degree, Figures
2G,H reveal that the CoNi2 basic carbonate nanowire forms a

mace-like structure on individual CNTs in the network. The
nanowires can still be nucleated on CNTs, which should be
attributed to their thin diameter. However, the diameter of
CoNi2 basic carbonate nanowire is obviously larger than
Ni2(OH)2CO3 (Chen et al., 2015b) Generally speaking, the
diameter of the Co/Ni basic carbonate nanowires decreases
along with the increasing Ni doping, and only high Ni content
could ensure the nanowires growth on individual CNTs to form
hierarchical core/shell nanowires as shown in Figure 2. TEM
images in Figures 3A,B prove that the CoNi2 basic carbonate
nanowires are grown on individual CNTs. However, the
nanowire is instable under electron beam, and is separated
into particles as shown in Figures 3C,D.

The electrochemical Performance of Co/Ni
Basic Carbonate Nanowire/CNT Paper
Composite Electrodes With different Co/Ni
Ratios
Co/Ni basic carbonates can be electrochemically activated
from charge/discharge cycles, especially in conductive

FIGURE 3 | TEM morphologies of CoNi2 basic carbonate nanowire/CNT paper composites (A, B) and the CoNi2 basic carbonate nanowire structures (C, D).
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network such as graphene foam and CNT film. (Chen et al.,
2015a; Chen et al., 2016b) The four samples of Co-Ni basic
carbonates could be also activated by electrochemical cycles as
shown in Figure 4. However, the cyclic voltammetry tests of
the four samples exhibit different active extents after 50 cycles,
though the loading ratio of basic carbonates in the four
composites has no large difference (59% for Co, 61% for
Co2Ni, 70% for CoNi, 73% for CoNi2). The Co and Co2Ni
with low Ni doping degree have no obvious enlargement after
50 cycles of CV scanning (see Figures 4A,B). However, CoNi2
and CoNi hybrids exhibit effective activation in 50 cycles of CV
scanning with enlarged cyclic areas (see Figures 4C,D). This
difference cannot be simply explained from the increase of
basic carbonate loading on CNT films. It means that the
chemical composition or the morphology of the nanowires
have large influence on the electrochemical activation of the
basic carbonates.

Different from chemical conversion (Zhu et al., 2013) , the
electrochemical conversion mechanism can be demonstrated as
the equations below, which has also been discussed in our
previous reports (Chen et al., 2015a; Chen et al, 2016a). The
NixCo2-x(OH)2CO3 crystal has its pseudocapacitive core Ni

2+ and
Co2+, which could be converted to Ni3+ and Co3+ in

electrochemical charge process, and the latter ion exited as
Nix/2Co1-x/2OOH, which was converted by NixCo2-x(OH)2CO3.
CO3− was resolved into the electrolyte and Nix/2Co1-x/2(OH)2
kept as a solid on the CNT paper. After that, in the discharge
process, Nix/2Co1-x/2OOH converted to Nix/2Co1-x/2(OH)2 and
CO3

2− was not existed in the solid phase on the CNT papers Eqs
(1), (2)

NixCo2−x(OH)2CO3 + 4OH− → 2Nix/2Co1−x/2OOH + CO2−
3

+2H2O + 2e− (1)

Nix/2Co1−x/2OOH +H2O + e− →Nix/2Co1−x/2(OH)2 + OH−

(2)

X-ray photoelectron spectroscopy (XPS) was utilized to
evaluate the surface chemical state of the converted Co/Ni
hydroxide materials in the range of 0–1000 eV. As presented in
Figure 5A, the diffraction peaks located at 284.3, 529.9, 779.1
and 856.5 eV correspond to C, O, Co and Ni elements in the
converted CoNi2 hydroxide materials. The results further
indicate that Co/Ni hydroxide were successfully prepared.
In the high-resolution O 1 s spectrum in Figure 5B, the
peaks at 529.6,531.5 and 532.8 indicate the presence of
metal-oxygen bond, O-C-O, and the O-H groups,

FIGURE 4 | Initial 50 cycles of CV cyclic curves of Co/Ni basic carbonate nanowire/CNT paper composite electrodes with different Co/Ni ratios at 5 mV s−1: Co (A);
Co2Ni (B); CoNi (C); CoNi2 (D).
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respectively. The Co 2p and Ni 2p XPS peak spectra were
computer fitted using a Gaussian fitting method considering
two spin-orbit doublets and two shakeup satellites (marked as
“Sat.”). The high-resolution XPS spectrum of Ni 2p
(Figure 5C.) reveals that two obvious shakeup satellites
(indicated as “Sat”) close to two spin-orbit doublets at 855.7
and 873.1 eV, that can be assigned to Ni 2p3/2 and Ni 2p1/2
signals, respectively. It suggests the existence of both Ni2+ and
Ni3+. The intense satellite peaks indicate that Ni3+ is the
majority. In the case of Co 2p XPS spectrum (Figure 5D),
the spin-orbit splitting value of Co 2p1/2(796.1 eV) and Co 2p3/
2(781.2 eV) indicated both Co3+ and Co2+ in the Co/Ni
carbonate sample. The weak satellite peaks indicate that the
majority of cobalt is Co3+. The XPS further demonstrated Ni2+

and Co2+ could be converted to Ni3+ and Co3+ in
electrochemical charge process, that consistent with our
proposed mechanism.

The morphologies of the activated composite films are
shown in Figure 6. It reveals that the converted hydroxides
have different shapes. The pure Co hydroxide has hexagonal
shape with large thickness as shown in Figures 6A,B.
Furthermore, such nanosheet has no contact with CNT
network. For Co2Ni, the converted hydroxide has a

particle-like shape and poor contact with CNT network (see
Figures 6C,D). Furthermore, CoNi with the increasing Ni
doping degree, the converted hydroxide nanosheets form small
porous balls as shown in Figures 6E,F, but the thickness of the
nanosheets seems still large. At last, CoNi2 hydroxide has thin
nanosheet structures with flower-like structures as shown in
Figures 6G,H which could largely utilize the active areas of the
hydroxides. Figure 7A indicates the electrochemical
conversion from CoNi2 basic carbonate to relative
hydroxide, that thin nanowires on the CNTs results in tied
contact on individual CNTs. Combining the morphologies in
Figure 6 and the activation effects in Figure 4, it reveals that
the tied contact between Co-Ni and individual CNTs can
ensure basic carbonate being converted to thin nanosheets
with high electrochemical performance. Although the basic
carbonate with low Ni doping degree can also be
electrochemically converted to hydroxide, the relative
increase of electrochemical performance is not definite.

As shown in Figure 7B, the electrochemical capacitive
performance of the converted hydroxides/CNT composites
exhibit large difference from the pristine basic carbonates
with similar loading ratio. It reveals that the cyclic area of
CoNi2 hybrid is larger than other three samples. The area of

FIGURE 5 | The XPS bands for converted CoNi2 hydroxide/CNT paper composite electrode full serve (A) and high resolution data for O 1s (B), Ni 2p (C), Co 2p (D).
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FIGURE 6 | The SEMmorphologies of converted Co/Ni hydroxide/CNT paper composite electrodes with different Co/Ni ratios: Co (A,B); Co2Ni (C,D); CoNi (E,F);
CoNi2 (G,H).
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CoNi hybrid is a little smaller than CoNi2. Two other samples,
Co and Co2Ni with low Ni doping degree exhibit much smaller
area than the samples of CoNi and CoNi2. This result is
consistent with the activation CV curves in Figure 4. From
the charge/discharge curves under different current densities
in three-electrode system, the rate performance of the four
samples can be evaluated and shown in Figure 7C. The
introducing of CNT network could effectively ensure the
good rate performance of the four samples. All of the four
samples have a capacitance decrease of about 20% from
current density of 0.5–10 A g−1. For the composite film with
converted CoNi2 hydroxide, the electrochemical capacitance
decreases from 1497 F g−1 at 0.5A·g−1–1192 F g−1 at 10 A g−1.
For the converted CoNi hybrid, the relative electrochemical
capacitances are 921 F g−1 at 0.5 A g−1 and 762 F g−1 at
10 A g−1. For the other two samples with low Ni doping
degrees in the hydroxide, the practical capacitance of their
composites is lower than 300 F g−1, which is much lower than

the samples with high Ni ratio (Co2Ni and CoNi). It means
that high Ni doping degree in Co/Ni basic carbonates can
ensure the high practical capacitance of the converted
hydroxide. However, comparing with the rate performance
of pure Ni converted hydroxide/CNT composite film reported
by our previous research, the introduce of Co enhances the rate
performance of the hydroxide. For both directly grown Co-Ni
hydroxides and converted hydroxides from basic carbonates
(Chen et al., 2015b) a core-shell structure with suitable-density
arrays of hydroxide/basic carbonate nanosheets or nanowires
on individual CNTs in the CNT network usually exhibited
higher specific capacitance comparing with other samples. We
have summarized electrochemical performance data of related
Co/Ni based electrode materials for supercapacitors in Table 1.
Even at an ultrahigh current density of 10 A g−1, the electrode
exhibited a high capacitance of 1192 F g−1, which is
comparatively higher than those reported earlier in
literature using Co/Ni/carbon system (Liu et al., 2020;

FIGURE 7 | (A) Sketch map of the electrochemical conversion from CoNi2 basic carbonate to relative hydroxide; The electrochemical performance of converted
Co/Ni hydroxide/CNT paper composite electrodes with different Co/Ni ratios: CV curves at 5 mV s−1(B); rate performance (C); discharging curves at 0.5 A g−1 (D) and
10 A g−1 (E).

TABLE 1 | Summarized electrochemical performance data of related Co/Ni hydroxide/CNT paper based electrode materials for supercapacitors.

Composite Electrolyte Potential Window
(Volts)

Current Density
(A g−1)

Capacitance (A g−1) Ref.

N-CNTs@Co2Ni1-LDH 6M KOH −0.1–0.5 10 340 Liu et al. (2020)
ZnNi0.5Co0.5Se2/Cu1.8Se@CC 3M KOH −0.2–0.6 10 770 Hosseini and Shahrokhian (2019)
Ni-Co-Fe-S@NCAs-NP 3M KOH −0.2–0.6 10 28 Rahimi et al. (2018)
Ni(OH)2CO3/MWCNT 6M KOH −0.1–0.6 10 913 Chen et al. (2015a)
Co/Ni hydroxide/CNT paper 6M KOH −0.1–0.6 10 1192 This work
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Hosseini and Shahrokhian 2019; Rahimi et al., 2018; Chen
et al., 2015a) It indicates the importance of high-conductive
CNT network in the composites. Only close contact between
nanostructures with suitable porous structures and individual
CNTs can ensure the high electrochemical performance of the
composites.

Figures 7D,E compare the discharge curve of the four
samples under low (0.5 A g−1) and high (10 A g−1) current
densities. The CoNi2, Co2Ni and Co converted hydroxides
display the sole discharge plateau potential, but Co/Ni 1/1
converted hydroxide has two plateau potentials, which
agrees with two pairs of oxidation/reduction peaks in CV
curves (Figure 4 and Figure 7B). It might be attributed to the
special oxidation/reduction pair of Co ion in such Co/Ni
ration hydroxide. Although Co has more oxidation/
reduction pairs than Ni, it cannot be exhibited in many
composites. In the CoNi 1/1 hybrid, the combination of Ni
and Co with such ratio 1/1 can largely utilize the oxidation/
reduction pairs. When increasing or decreasing the Ni ratio in
the hydroxide, only one oxidation/reduction pair appears.
The full charge/discharge curves of pure Co, Co2Ni, CoNi,
CoNi2 hybrids and pure Ni are shown in Supplementary
Figure S2. For the CoNi hybrid, which seems a triangle, just
similar as electrochemical double-layer capacitor electrodes,
shows typical platforms for Ni2+/Ni3+ conversion. Thus,
although the practical capacitance of CoNi hybird is not as
high as that of CoNi2 hybrid, it is still valuable to be
combined with carbonous materials to assemble asymmetric
supercapacitors.

Figure 8 shows the cyclic performance of pristine CoNi2
carbonate/CNT hybird at the current density of 2 A g−1. It
reveals a slow activation process comparing with pure Ni
carbonate/CNT hybrid. After 700 cycles of charge/discharge,
the specific capacitance of the sample increases to a maximum
value and still kept around 1600 F g−1 after 5,000 cycles with a
stable Coulombic efficiency.

CONCLUSION

In the present work, for the Co-Ni basic carbonate nanowires
grown on CNT network, the size-matching effect is revealed to
be a key factor that affects the morphologies and the relative
electrochemical capacitive performance of the composites.
The basic carbonate with high Ni doping degree will form
thin nanowires with array morphology on individual CNTs,
which ensures the high performance of the converted
hydroxide from basic carbonate and the relative
composites. Meanwhile, the addition of Co improved the
long cycle stability largely compared to the rate
performance of pure Ni converted hydroxide/CNT
composite film. This result is valuable for the design of
CNT or other nanowires-based network that have
electrochemical active materials in-situ growth with large
loading ratio and high performance.
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