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A B S T R A C T

Despite appealing characteristics for the clinical trials setting, Bayesian inference methods remain scarcely
used, especially in randomized controlled clinical trials (RCT). This is particularly true when dealing with a
survival endpoint, likely due to the additional complexities to model specifications. We propose to use Bayesian
inference to estimate the treatment effect in this setting, using a proportional hazards (PH) model for right-
censored data. Implementation of such an estimation process is illustrated on two working examples from
cancer RCTs, the ALLOZITHRO and the CLL7-SA trials, both originally analyzed using a frequentist approach. In
these two different settings, we show that Bayesian sequential analyses can provide early insight on treatment
effect in RCTs. Relying on posterior distributions and predictive posterior probabilities, we find that Bayesian
sequential analyses of the ALLOZITHRO trial, which was terminated early due to an unanticipated deleterious
effect of the intervention on survival, allow quantifying early that the treatment effect was opposite to what
was expected. Then, incorporating historical data in the sequential analyses of the CLL7-SA trial would have
allowed the treatment effect to be closer to the protocol hypothesis. These post-hoc results give grounds to
advocate for a wider use of Bayesian approaches in RCTs, including those with right-censored endpoints, as
informative decision tools.
1. Introduction

Traditionally, randomized clinical trials (RCT) are designed and an-
alyzed from a frequentist perspective using classical hypothesis testing.
However, there is a growing awareness of the usefulness of
Bayesian methods in analyzing RCTs, following [1–4]. Indeed, the
Bayesian approach possesses a number of practical advantages over
the conventional approach that could be used in RCTs: (1) it allows
the explicit integration of previous knowledge with new empirical
data; (2) it avoids the inevitable misinterpretations of 𝑝-values [5,6];
(3) it replaces the misleading 𝑝-value with a summary statistic having
a natural and clinically relevant interpretation — the probability that
the study hypothesis is true conditioning on the observations; and
(4) it is tailored to the learning process: as information becomes
available, one updates what one knows, and this gives the Bayesian ap-
proach its flexibility and makes it ideal for clinical research. Therefore,
it is particularly suited to the sequential analyses of RCTs data.

∗ Corresponding author at: AP-HP Hôpital Saint Louis, Service de Biostatistique et Information Médicale, 1 avenue Claude Vellefaux, 75010, Paris, France.

Actually, Bayesian approach has gained popularity in medical, phar-
maceutical, and social science research because it allows researchers
to combine prior information with data to model data generating pro-
cesses; thus, it can incorporate previous knowledge on the likelihood
of an event into the interpretation of trial results [3,7].

When planning a RCT, previous data are often available, either in
the control group (placebo, standard of care) or in the experimental
group from slightly different populations (adult instead of pediatrics,
animal studies, etc.). For instance, accounting for historical or external
data can be part of the trial analysis and it can directly influence the
design of the trial itself, in choosing whether to include patients in a
control arm or use historical control data, or in estimating the required
sample size [8,9].

Nevertheless, Bayesian analyses are still mostly used in early phase
trials or for innovative adaptive designs, and often restricted to continu-
ous or binary endpoints [10]. We focused on phase 3 clinical trials with
a survival outcome measure, a frequent setting in hemato-oncology, to
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illustrate based on real data, two main interesting uses of the Bayesian
approach, as a simple tool for early stopping decisions and in borrowing
of external data. Indeed, though these developments are not new, they
are poorly used in practice, and Bayesian analyses of phase 3 trials,
even recently, mostly use posterior densities of outcomes [11], or only
historical controls data [12]. More specifically, the aim of this paper
was two-fold: (i) to assess how sequential Bayes analyses may allow
early decisions (termination) of the trial; (ii) to assess whether the
borrowing of external data (for both the control and the experimen-
tal groups) in the analysis would allow optimizing the current trial
design. The present work uses data from two example trials, both
originally analyzed using a frequentist approach: (i) the ALLOZITHRO
trial, which was terminated early due to an unanticipated deleterious
effect of the azithromycin over placebo, exemplified by an increased
cause-specific hazard of hematological relapse (HR, 1.7; 95%CI, 1.2–
2.4; P = 0.002) [13], and (ii) the CLL 2007 SA trial (CLL7-SA) that
demonstrated a benefit in progression-free survival of rituximab (RTX)
maintenance therapy over standard of care in elderly patients with
previously untreated chronic lymphocytic leukemia (HR, 0.55; 95%CI,
0.40–0.75, P = 0.0002) [14].

The paper is organized as follows: Section 1 presents the motivating
examples in detail and Section 2 introduces the notations 2.1, the
survival models used for the analyses 2.2 and specific methodological
aspects of the data (2.3 and 2.4 respectively). Results are reported in
Section 3 and some discussion is provided in Section 4.

1.1. ALLOZITHRO trial: Bayesian sequential analyses

The ALLOZITHRO trial (NCT01959100) was a multicenter double-
blind placebo-controlled randomized phase 3 trial, which aimed to
evaluate the efficacy of azithromycin in the prevention of airflow de-
cline in patients after hematopoietic stem cell transplant (HSCT) [13].
Bronchiolitis obliterans syndrome, which results in airflow decline and
respiratory function impairment is a known complication of HSCT, re-
lated to chronic graft-versus-host disease (GvHD). The trial randomized
65 patients, 231 in the azithromycin arm and 234 in the placebo arm,
etween February 2014 and August 2015.

The primary endpoint was airflow-decline free (AFD-free) survival
t 24 months after randomization as the time from randomization to
ecline in the respiratory function or death of any cause. Respiratory
unction was assessed every 6 months, by plethysmography (with pre-
nd post-bronchodilator spirometry). Observations were censored at
he date of last follow-up, in patients without events. It was expected
hat azithromycin would have a protective effect on the respiratory
unction and therefore an improved AFD-free survival, resulting in

postulated log (𝐻𝑅) = log (0.64) under the alternative, assuming a
onstant effect over the follow-up (that is, proportional hazards (PH)).

Unexpectedly, the trial was terminated prematurely on December
6, 2016 after the trial Data Safety Monitoring Board (DSMB) alerted
n an imbalance in the number of hematological relapses across ran-
omization arms [13]. At that time, enrollment was complete but
reatment and follow-up were still on-going for 122 patients.

The statistical analysis plan for the ALLOZITHRO trial relied on fre-
uentist methods, without any planned interim analyses. In the present
ost-hoc re-analysis of the trial, we aimed to illustrate how Bayesian
equential analyses of the AFD-free survival could have informed early
n the unexpected adverse outcome of this phase 3 trial.

.2. CLL7-SA trial: Incorporating historical data

The CLL7-SA trial (NCT00645606) was a multicenter randomized
pen-label phase 3 trial that was conducted to evaluate the efficacy of
-year rituximab (RTX) maintenance therapy in elderly patients with
reviously untreated chronic lymphocytic leukemia (CLL), compared
o standard of care (SoC) observation (watchful waiting) [14]. The
rimary endpoint was progression free survival (PFS). Assuming a 32%
2

relative improvement with RTX in the 36-month PFS (66% vs. 50%,
𝐻𝑅 = 0.6), a sample size of 161 events from 542 patients, accounting
for 25% drop-out rate during the induction part of the CLL therapy, was
computed according to the O’Brien and Fleming design. One interim
analysis was planned, after 121 events (75% of 161) had been observed.
The inclusion period started on June 10, 2008, and ended on August 14,
2014. Eventually, the interim analysis was performed after 150 events:
the efficacy boundary was crossed (𝑃 = 0.0009) and the trial stopped.
Overall, 409 patients were randomized, 202 to RTX maintenance and
207 to standard of care.

At the time of the planning of this trial in 2007, information on RTX
maintenance therapy in CLL was scarce. Nevertheless, at the beginning
of the inclusion period in December 2010, results of the PRIMA trial
(NCT00140582) were published, demonstrating the benefit of 2-year
RTX maintenance in patients with follicular lymphoma (FL) receiving
a RTX plus chemotherapy regimen as first-line treatment (progression
free survival: HR=0.55, 95% CI 0.44–0.68) [15]. Although FL is a
different population from CLL, these hematologic malignancies share
some characteristics and evolution profiles. They both are indolent B-
cell lymphoid malignancies, which progress slowly by acute phases.
They both develop similar complications related to the immune sys-
tem, notably infections. In both cases, there was no curative therapy
currently available. Last, in both trials, eligible patients had to be
treatment-naive. In that sense, it appeared relevant to consider the FL
population from the PRIMA trial, though non perfectly, similar and
exchangeable to the CLL population from the CLL7-SA trial. Therefore,
results from the PRIMA trial on the effect of RTX in FL patients could
provide clinically relevant information on the effect of RTX mainte-
nance in CLL patients. Moreover, we also considered the acceptability
of this historical dataset for the combination to the current data [16].
Both trials were large European multicenter randomized phase 3 trials.
More precisely, following Pocock’s criteria [16]: (i) Treatment regimens
were comparable in both the control and treatment groups, between
the two trials: both experimental arms consisted in RTX maintenance,
with intravenous infusion every 8 weeks for 2 years, with close dosages
(375mg/m2 in the historical trial and 500mg/m2 in the CLL7-SA trial);
both control arms consisted in SoC watchful observation; (ii) The
historical study was recent compared to the present trial, with online
publication available in December 2010, about 2.5 years after the start
of inclusion in the CLL7-SA trial; as described above, the two treatment-
naive populations appeared exchangeable, (iii) The main endpoint
in our post-hoc analysis, was progression-free survival, assessed using
international standard criteria in both trials, (iv) Differences between
the two trials materialized in patient characteristics: the CLL7-SA trial
focused on older patients (above 65 years old), but with good perfor-
mance status and adequate renal and hepatic function for eligibility,
(v) Both studies were conducted in similar settings: they were both
large multicenter 1:1 randomized open-label parallel controlled trials
sponsored by French collaborative groups specific to the disease of
interest: the Groupe d’Étude des Lymphomes de l’Adulte (GELA) for
the PRIMA trial and the French Innovative Leukemia Organization
(FILO) for CLL7-SA trial, with participating centers belonging to these
networks, respectively, and sharing common practice and standards of
care, and (vi) There were no further indications to anticipate differing
results between the two trials.

In the present post-hoc re-analysis, we propose to use Bayesian
methods to incorporate information from the PRIMA trial as soon as it
was published to the analysis of the CLL7-SA trial, a phase 3 trial with
a survival endpoint. In particular, we propose using the power prior
approach which allows leveraging the external data [17], accounting
for the disease heterogeneity between the current trial (CLL patients)

and external information (FL patients).
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2. Methods

Both motivating examples used a survival endpoint for the primary
efficacy assessment, airflow decline (AFD)-free survival and
progression-free survival (PFS) respectively. We assumed a proportional
hazards setting to estimate the effect of the treatment, following the
original analyses of both trials. Sections 2.1 and 2.2 first present the
notations and models used for the Bayesian analyses, while specific
aspects are developed thereafter, namely sequential Bayesian analyses
in Section 2.3 and incorporation of external individual survival data
with the power prior approach in Section 2.4.

2.1. Notations

Let 𝑛 be the number of observations in the dataset, and let 𝑋1,… ,
𝑋𝑛, denote the right-censored times, i.e., 𝑋𝑖 = 𝑚𝑖𝑛(𝑇𝑖, 𝐶𝑖) and 𝛿𝑖 = 𝐼(𝑇𝑖 ≤
𝐶𝑖) with 𝑇𝑖 the failure time and 𝐶𝑖 the censoring time of individuals 𝑖,
𝑖 = 1,… , 𝑛. Data are given by (𝑋1, 𝛿1, 𝑍1),… , (𝑋𝑛, 𝛿𝑛, 𝑍𝑛), where 𝑋 is the
observation time and 𝑍 the indicator variable for randomization group
(𝑍𝑖 = 0 if the patients is allocated to the control group and 𝑍 = 1 for
the intervention group). We consider the proportional hazards model:

𝑇𝑖|𝑍𝑖 ∼ 𝐹 (𝑡|𝑍𝑖) = 1 − (1 − 𝐹0(𝑡))
𝑒𝑥𝑝(𝑍′

𝑖 𝛽) (1)

or, equivalently,

𝐻(𝑡|𝑍𝑖) = 𝑒𝑥𝑝(𝑍′
𝑖 𝛽)𝐻0(𝑡)

where 𝐹0(𝑡) = 1 − 𝑆0(𝑡) is the baseline distribution function of the
right-censored time (either time to airflow decline or death, whatever
occurred first, and time to progression or death, for the ALLOZITHRO
and CLL7-SA trials, respectively), 𝐻0(𝑡) = ∫ 𝑡

0 ℎ0(𝑢)𝑑𝑢 is the cumulative
baseline hazard function, and 𝛽 the log hazard ratio (𝐻𝑅).

2.2. Survival model

Using Bayesian inference, the above model (1) includes two param-
eters: the treatment effect (𝛽) and the baseline survival (equivalently
defined by 𝐹0, 𝑆0, ℎ0, or 𝐻0). Both must be associated with priors,
summarizing, before the trial onset, all external evidence in the effect
size and the baseline survival, respectively.

First, the log (𝐻𝑅) was assumed normally distributed, with mean 𝜇0
and standard deviation 𝜎0 [18]:

𝛽 ∼  (𝛽0, 𝜎0)

with prior mean 𝛽0 set at zero, resulting in a reference prior centered
on the null hypothesis; such a skeptical prior may be thought of as
a handicap that the trial data must overcome in order to provide
convincing evidence of benefit [19]. The standard deviation 𝜎0 can
be initially set at a large value to insure weakly informative prior
regarding the treatment effect, and thus let the observations drive the
analyses (which can be evaluated by comparing results with estimates
from likelihood approaches).

Then, for the baseline survival, many modeling options have been
proposed in Bayesian survival proportional hazards models, either para-
metric (exponential or Weibull models) or not (using mixtures of Polya
trees or transformed Bernstein polynomials, for instance) [20–23]. We
considered two approaches for the prior on the baseline hazard ℎ0(𝑡):
a parametric exponential distribution (constant baseline hazard ℎ0(𝑡) =
ℎ0), or a piecewise constant hazard, sometimes referred to as piecewise
exponential model (PEM), to allow more flexibility in the baseline
hazard. Of note, more complex piecewise hazards models have been
proposed, including spline-based models [23–25].

In the exponential model, the prior for the constant baseline hazard
2

3

was normal ℎ0 ∼  (0, 20 ) [26]. In the PEM, the baseline hazard takes e
constant values ℎ𝑘 in each time interval 𝐼𝑘 defined over the observation
period:

ℎ0(𝑡) =
𝐾
∑

𝑘=1
ℎ𝑘𝐼{𝑡 ∈ 𝐼𝑘}

where 𝐼𝑘 = (𝑑𝑘−1, 𝑑𝑘], 𝑘 = 1,… , 𝐾, is an interval resulting from the
partition in 𝐾 intervals of the observation period, with 𝑑0 = 0 and
𝑑𝐾 = ∞. The time partition was defined following Murray et al.’s
approach [27], with 𝐾 = max{5,min( 𝑟8 , 20)} intervals, where 𝑟 is the
observed number of events in the current trial dataset, and the left
bounds 𝑑𝑘−1 of the intervals 𝐼𝑘 correspond to the (100× 𝑘

𝐾 )th percentiles
of the event times in the current trial dataset.

Specifically, since we assumed a time-invariant effect of the treat-
ment arm, therefore, it resulted that the count of events 𝛥𝑘 per interval
𝐼𝑘 = (𝑑𝑘−1, 𝑑𝑘], conditionally on treatment, is Poisson-distributed:

𝑘 ∼ Poisson(𝜆𝑘)

ith rate 𝜆𝑘 = (𝑑𝑘 − 𝑑𝑘−1) exp(𝛼𝑘 +𝑍′𝛽) for the whole time interval.
A correlated random-walk process was used as the prior for the

aseline hazard: 𝛼1 ∼  (𝛼0, 𝜎2𝛼0), 𝛼𝑘 ∼  (𝛼𝑘−1, 𝜎2𝛼), with 𝛼0 = 0,
𝛼0 = 10, and 𝜎𝛼 ∼ Uniform(0.01, 100) [9,27]. We chose a random-
alk process to allow smoothing of the baseline hazard function over

ime. Indeed, the vague prior on the first interval initiates the random
alk, and then subsequent interval parameters are shrunk toward the
revious one, given the random walk process.

The models were estimated with Hamiltonian Monte Carlo (HMC)
imulations in Stan on R statistical platform, using the rstan and
stanarm packages [26,28]. We used 4 chains of each 5000 iterations
fter warm-up, thinning of 5, yielding 4000 iterations overall to include
or the analyses. R code is available on GitHub platform at https://
ithub.com/luciebiard/Bayesian_survival_analysis_phase_3_trials.

.3. Motivating example 1: Sequential analyses

Given the Bayes approach provides a natural framework for sequen-
ial learning, the model described above was fitted to the current data
equentially every six months, monitoring the ALLOZITHRO trial on
he basis of the posterior distribution of the log (𝐻𝑅) of azithromycin
n AFD-free survival.

Various normal priors were used for the log (𝐻𝑅) [18]: (i) reference
rior, 𝛽0 = 0, (ii) enthusiastic or clinical prior 𝛽0 = log (0.64). The
atter was chosen consistently with the information available to the
nvestigators at the time of trial planning, and used for sample size cal-
ulation [13]. It corresponds to the expected effect of azithromycin on
4-month AFD-survival when the trial was planned [13]. Specifically,
he anticipated AFD-free survival at 2 years was 45% in the control
roup, based on literature reporting the prevalence of AFD in allogeneic
SCT recipients [29], and on the French national registry (Agency for
iomedicine) for the post-transplantation survival estimates (66% after
ne year and 54% after 2 years at the time of study planning). Moreover
15% benefit with the experimental treatment on 2-year AFD-free

urvival was deemed clinically relevant, corresponding to a 0.64 hazard
atio. Furthermore, regarding the variance, it has been shown that, for
arge balanced trials, the estimated log (𝐻𝑅) has approximate variance

divided by the observed number of events [18,30]. We therefore set
0 = 4∕10 to account for very limited pre-existing information on this
og (𝐻𝑅) [1,18,30,31].

.4. Motivating example 2: Incorporating individual external information

Incorporating historical data to a current analysis relies on the
ssumption that the different datasets are relevant to the popula-
ion of interest. Depending on the assumption about the homogeneity
cross the datasets and populations (identity, exchangeability, bias,

tc.), different modeling strategies are available [18].

https://github.com/luciebiard/Bayesian_survival_analysis_phase_3_trials
https://github.com/luciebiard/Bayesian_survival_analysis_phase_3_trials
https://github.com/luciebiard/Bayesian_survival_analysis_phase_3_trials
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In the present setting of the CLL7-SA trial, we wished to incorporate
results from a single external phase 3 trial clinically relevant to the
CLL7-SA objective but in a slightly different population. To account
for such external data in a discounted manner, we chose to use the
power prior approach proposed by [17]. Although the true parameter
𝛽, modeling the effect of the treatment RTX, is assumed the same across
the datasets, the information borrowed from historical external data
is discounted compared to the current data in the estimation model.
Briefly, the method is equivalent to shrinking the external sample size
by a factor 𝑎0 [8].

Let 𝐷 = (𝑛,𝑋, 𝛿,𝑍) be the current available data, as defined in 2.1,
on the time-to-event endpoint according to the randomization arm. Let
𝐷0 = (𝑛0, 𝑋0, 𝛿0, 𝑍0) be the historical data available, where 𝑛0 denotes
he sample size, 𝑋0 the 𝑛0-vector of observed times, 𝛿0 the 𝑛0-vector
f censoring indicator and 𝑍0 the 𝑛0-vector for the randomization arm

indicator.
Let 𝐿(𝜃|𝐷) be the likelihood for a regression model of the endpoint

as a function of 𝑍, with 𝜃 the vector of model parameters. In the model
described above (Section 2.2), 𝜃 is the vector (𝛽, 𝜎, 𝛼1,… , 𝛼𝐾 , 𝜎𝛼). Let
𝜋0(𝜃|.) denote the joint density of the initial prior distribution for 𝜃.
Given the historical data 𝐷0, the power prior, to be used for the current
analysis, is given by [32]:

𝜋(𝜃|𝐷0, 𝑎0) =
𝐿(𝜃|𝐷0)𝑎0𝜋0(𝜃|𝑐0)

∫𝛩 𝐿(𝜃|𝐷0)𝑎0𝜋0(𝜃|𝑐0)𝑑𝜃
(2)

where 𝑐0 is a specified vector of hyperparameters for the initial prior
𝜋0(𝜃|.), and 0 ≤ 𝑎0 ≤ 1 a scalar parameter that represents the

eight of the historical data in estimating the prior for 𝜃. It ranges
rom 0 (ignoring any previous information from dataset 𝐷0) up to 1
where the historical data is pooled to the current without leveraging).
onditionally on the value of 𝑎0, the posterior distribution for 𝜃 after
bserving the current data 𝐷 is given by:

(𝜃|𝐷,𝐷0, 𝑎0) =
𝐿(𝐷|𝜃)𝜋(𝜃|𝐷0, 𝑎0)

∫𝛩 𝐿(𝐷|𝜃)𝜋(𝜃|𝐷0, 𝑎0)𝑑𝜃
(3)

The parameter 𝑎0 can be also considered as an unknown param-
eter. In that case, 𝑎0 is to be estimated from the datasets (current
and historical) and the model includes an hyperprior for 𝑎0, 𝜋(𝑎0|𝛾0),
with hyperparameter 𝛾0. As explained by Ibrahim & Chen [32], it is
reasonable to set a beta prior for 𝑎0, such as 0 ≤ 𝑎0 ≤ 1, although
other choices such as truncated gamma or normal prior distributions
are possible. When considering a beta prior for 𝑎0, they argued that it
is easier to elicit a mean 𝜇𝑎0 and standard deviation 𝜎𝑎0 for 𝑎0 from
physicians, rather than directly setting the hyperparameters vector for
the beta distribution 𝛾0 = (𝑝0, 𝑞0); then, hyperparameters can be derived
by back substitution using the equations for a beta distribution, as
follows [32]:

𝜇𝑎0 =
𝑝0

𝑝0 + 𝑞0
; 𝜎2𝑎0 =

𝜇𝑎0 (1 − 𝜇𝑎0 )
𝑝0 + 𝑞0 + 1

.

Nevertheless, one should note that, in the case of a random 𝑎0, we
obtain a joint posterior distribution, 𝜋(𝜃, 𝑎0|𝐷0), which must include the
normalizing constant [33]:

𝐶(𝑎0) = 1∕∫ 𝐿(𝐷0|𝜃)𝑎0𝜋(𝜃|𝑐0)d𝜃.

In the present study, we chose to set 𝑎0 fixed instead of random,
given the single historical dataset used to enrich the CLL7-SA analysis,
thus the rather limited information to estimate between-trial informa-
tion via 𝑎0. Nevertheless, sensitivity analyses with several values for 𝑎0
1, 0.75, 0.5, 0.25, 0) were performed, to assess the robustness of the
esults to the choice of 𝑎0, that is, to the influence of the historical data
n the estimation.

In this example, we used a weakly informative reference prior
istribution 𝜋 (𝛽) for the historical PRIMA data  (𝛽 = 0, 𝜎 = 10).
4
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3. Results

3.1. ALLOZITHRO example

We performed post-hoc sequential analyses on the AFD-free sur-
ival probability estimated on all available data truncated every 6
onths starting from the beginning of enrollment in the trial. Given

he time-to-event endpoint, we applied non-informative administrative
ight-censoring at the cut-off sequential dates. Table 1 reports the time-
oints and the corresponding available data of each resulting interim
nalysis. Inclusions were completed by 15 August 2015. In December
016, when the intervention was terminated early, 218 patients had
een randomized less than 24 months before (primary endpoint obser-
ation window), of whom 96 had already experienced a primary event,
nd 122 had not.

At the first (Aug, 2014) and second (Feb, 2015) interim timepoints,
ew data on the primary endpoint were available: only 6 and 43
atients had experienced an event at these cut-off dates, respectively
Table 1). For the purpose of the present re-analyses, due to the small
umber of events, the parametric exponential model was used for these
imepoints. The 4 remaining analyses used the more flexible PEM model
s described in Section 2.2.

Posterior estimates of the log (𝐻𝑅) with reference and enthusiastic
riors are reported in Table 2. Since the second interim analysis, in
ebruary 2015, the mean and median posterior log (𝐻𝑅) estimates
ere consistently above 0, whatever the prior. Moreover, the 10th

percentile of the posterior log (𝐻𝑅) distribution was consistently above
0, starting from the fourth analysis (February 2016), pointing toward a
probable increased risk of event in patients treated with azithromycin.
In other words, starting from this date, based on the log (𝐻𝑅) credibility
intervals, there was a probability lower than 5% that azithromycin was
beneficial in terms of AFD-free survival (with the lower bound of the
log (𝐻𝑅) 95% credibility interval close to 0); conversely, if we consider
the similitude with a one-sided hypothesis, there was a probability close
to 95% that azithromycin was harmful.

3.2. CLL7-SA example

We examined how published results of the PRIMA trial could have
been used, right away after its publication, on December, 2010, to
provide information on the effect of RTX in the CLL7-SA trial. More
specifically, we aim to illustrate how this information may have been
incorporated in an interim Bayesian analysis. At that time, 216 patients
had been randomized, with an actual median follow-up 19.1 months,
and 20 and 11 observed failures in the SoC and RTX arms, respectively.
Kaplan–Meier estimates of the 24-month PFS were 75% (95%CI 65;86)
for the SoC group, and 87% (78;96) for the RTX group.

Since we did not have access to the original individual data from
the PRIMA trial, we used reconstructed observations from the initial
publication of the PRIMA trial. Specifically, based on the published
Kaplan–Meier curves and numbers of patients at risk, using DigitizeIt
software and iterative numerical methods solving the inverted Kaplan–
Meier equations, we obtained a reconstructed dataset mimicking the
PRIMA trial results [34]. Briefly, for each time interval reported on
the publication, the algorithm combines published numbers of at-risk
patients, Kaplan–Meier curve coordinates, and iterative calculations
using the Kaplan–Meier estimator. We refer the reader to the original
publication for a detailed presentation of this algorithm and the cor-
responding R code [34]. The reconstructed data was consistent with
the published results, yielding a HR=0.54 (95%CI 0.44;0.68) versus
HR=0.55 (95%CI 0.44;0.68) in the original publication [15].

Fig. 1 presents the Kaplan–Meier estimates of the December 2010 in-
terim CLL7-SA data, with the reconstructed PRIMA estimates superim-
posed, for progression-free survival in patients with RTX maintenance
or SoC observation.



Contemporary Clinical Trials Communications 21 (2021) 100709L. Biard et al.

i
S
f
s

t
a
S
h
w

Table 1
ALLOZITHRO example: Sequential timepoints and corresponding samples.

Interim Date cut-off Placebo:Azithromycin

No. of inclusions No. of completed follow-up No. of events

1 August 13, 2014 70:65 3:3 3:3
2 February 13, 2015 149:143 20:23 20:23
3 August 13, 2015 231:234 53:57 53:57
4 February 13, 2016 231:234 70:94 70:94
5 August 13, 2016 231:234 113:138 90:118
6 February 13, 2017 231:234 154:162 110:131
Table 2
ALLOZITHRO example: Sequential posterior estimates of the log (𝐻𝑅) on AFD-free survival for azithromycin compared to placebo, with either the reference prior (Ref.):
𝛽 ∼  (0, 4∕10), or the enthusiastic clinical prior (Enthu.): 𝛽 ∼  (log (0.64), 4∕10).

Interim Date Prior Mean log (𝐻𝑅) Median log (𝐻𝑅) 95% CrI 10th percentile 𝑃𝑟(𝐻𝑅 > 1)

1 Aug, 2014 Ref. −0.019 −0.027 −0.974 ; 0.946 −0.642 0.483
Enthu −0.285 −0.288 −1.290; 0.715 −0.938 0.288

2 Feb, 2015 Ref. 0.138 0.141 −0.392 ; 0.679 −0.219 0.688
Enthu 0.046 0.048 −0.504 ; 0.572 −0.302 0.560

3 Aug, 2015 Ref. 0.118 0.117 −0.243; 0.482 −0.121 0.726
Enthu 0.077 0.074 −0.278; 0.436 −0.152 0.662

4 Feb, 2016 Ref. 0.317 0.317 0.025; 0.615 0.124 0.982
Enthu 0.290 0.290 −0.002; 0.581 0.092 0.974

5 Aug, 2016 Ref. 0.318 0.319 0.047; 0.591 0.140 0.989
Enthu 0.292 0.292 0.018; 0.560 0.118 0.983

6 Feb, 2017 Ref. 0.229 0.228 −0.022; 0.475 0.069 0.964
Enthu 0.207 0.207 −0.039; 0.460 0.042 0.948
Fig. 1. CLL7-SA example: Kaplan–Meier estimates of progression free survival with
nterim CLL7-SA data censored on 31 December 2010 (observation standard of care
oC: solid black line; RTX maintenance: dashed black line) and reconstructed data
rom the PRIMA trial published in January 2011 (observation standard of care SoC:
olid gray line; RTX maintenance: dashed gray line).

Results are reported in Table 3. Combined with a weakly informa-
ive prior on the effect of RTX (with 𝑎0 = 0 and  (𝛽0 = 0, 𝜎0 = 10)
s aggregate weakly informative prior on the treatment coefficient, see
ection 2.4), available data in January 2011 pointed toward a reduced
azard of event with RTX maintenance compared to SoC watchful
aiting, with mean log (𝐻𝑅) < 0 and 90th percentile < 0. Incorporating

information from the PRIMA trial, enriching the prior for analysis of the
current data, resulted in a posterior probability of the log (𝐻𝑅) being
lower than 0 greater than 97.5%, even when largely down-weighting
the external data (𝑎0 = 0.1). The upper bound of the 95% log (𝐻𝑅)
credibility interval remained consistently lower than 0 as soon as we
incorporated some degree of historical data, corresponding to a poste-
rior probability that RTX was harmful lower than 2.5%. Considering
an equivalence region, for instance −0.1 < log (𝐻𝑅) < 0.1, there was a
5

posterior probability lower than 1% that RTX was equivalent to SoC,
with 𝑎0 ≥ 0.1 (7% with 𝑎0 = 0). Furthermore, with power parameter
𝑎0 = 0.5, there was a posterior 70% probability that the 𝐻𝑅 was lower
than 0.6 which was the desired efficacy level used in the frequentist
trial planning.

4. Discussion

In this article, we presented how Bayesian inference may inform
on time-to-event endpoints in phase 3 clinical trials. Compared to the
frequentist approach, which remains widely used in large confirmatory
trials, Bayesian methods have been advocated for the straightforward
and intuitive interpretation of results, in the form of the posterior
estimates of the treatment effect, and their flexibility, in particular for
the design of complex trials, such as adaptive designs and borrowing
of external data [2–4,7]. Nevertheless, their use requires precautions
as issued in guidelines and guidance to prevent misuse and erroneous
conclusions by regulatory agencies [35].

We used two different RCTs to illustrate several of the advantages
of the Bayes approaches in specific but non rare settings. First, the
ALLOZITHRO trial illustrates the contribution of Bayesian inference
for sequential analyses of a right-censored endpoint. Moreover, it pro-
vides a flexible framework to detect early departures of the treatment
effect from the expected direction. Using different prior distributions
for the log (𝐻𝑅), we found consistent results indicating a deleterious
outcome for treated patients, more than 6 months before the trial was
stopped. Otherwise, the CLL7-SA trial illustrated how the power prior
method, borrowing external information, can increase the informa-
tion on the right-censored endpoint. In both examples, implementing
decision rules based on these Bayesian analyses might have had a
direct clinical benefit for patients by shortening the trial duration: by
discontinuing treatment earlier and preventing prolonged exposure,
and by concluding to efficacy earlier and accelerating access to the
drug, respectively.

We chose proportional hazards (PH) models, which were used orig-
inally in both trials and are the most common in large clinical trials
with survival endpoints. The piecewise constant baseline hazard allows
more flexibility than the constant hazard exponential model, though
it could fail to adequately fit the data in sparse settings. Indeed, the
model relies on a partition of the time scale into intervals based
on the distribution of failure times. At early interim analyses, there
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Table 3
CLL example: posterior distribution of the effect of RTX on PFS (log (𝐻𝑅)) compared to SoC at December 2010 interim analysis of
CLL7-SA trial, with reconstructed data from the PRIMA trial results as historical prior information, using the power prior approach
with fixed power parameter, ranging from 0 (equivalent to non including historical data) to 1 (equivalent to pooling historical to
current data).

Power prior Mean log (𝐻𝑅) Median log (𝐻𝑅) 95% CrI 90th percentile 𝑃𝑟(𝐻𝑅 < 0.6)

𝑎0 = 0 −0.562 −0.562 −1.322 ; 0.151 −0.094 0.546
𝑎0 = 0.10 −0.586 −0.586 −0.996 ; −0.191 −0.320 0.647
𝑎0 = 0.25 −0.590 −0.590 −0.979 ; −0.221 −0.344 0.665
𝑎0 = 0.50 −0.604 −0.604 −0.883 ; −0.320 −0.421 0.741
𝑎0 = 0.75 −0.604 −0.604 −0.848 ; −0.362 −0.441 0.774
𝑎0 = 1 −0.608 −0.608 −0.815 ; −0.405 −0.472 0.825
might be a limited number of observed failures, which may result in
problematic estimations. For instance in our examples, there were 6
and 43 events in the first two interim analyses in the ALLOZITHRO
example. Furthermore, in the CLL7-SA trial they were 31 observed
events, and the incorporation of external individual data did not allow
to reach convergence. Using the partition rule proposed by Murray
et al. [27], the PEM model for these analyses could not be estimated
without convergence issues, using the Hamiltonian Monte Carlo (HMC)
algorithm; this explains why we used the exponential model with a
one-parameter baseline hazard. The model could nevertheless be esti-
mated with another MCMC sampler, namely a random-walk Metropolis
algorithm (using MCMCpack R library [36]), yielding consistent results
with those of the exponential model. This limitation could be also
tempered by planning the interim analyses according to the expected
rate of events. Otherwise, whether reparameterization of the model or
other time partition rules could allow convergence of the PEM model
in sparse settings, requires further investigations.

Note that the PEM random-walk model can be implemented for es-
timation in any Bayesian software, on various platforms, as mentioned
above: in the present work, we used Stan via the rstan package on R
platform. Several tools are notably available for convergence diagnosis
of Stan HMC estimated models (e.g. package shinystan [37]). In
our setting of time-to-event endpoints, we specifically implemented
predicted survival for model checking (see Supplementary material).

More complex survival models, adapted to specific situations, are
available and could be applied for these Bayesian analyses allowing
non proportional hazards (PH) and time-dependent treatment effect,
as well as interval censoring [38–40]. Of note, in the context of non
PH issues, [41] proposed to combine current and external data using
Bayesian methods, to infer on restricted mean survival.

In the second example, we illustrated how external information can
be borrowed to enrich the current data. To that aim, various Bayesian
approaches have been proposed which mainly differ in the assumptions
about the relevance and exchangeability of the external data with the
current trial [18,42,43]. We chose the power prior approach to down-
weight the reconstructed data from the PRIMA trial published results,
to account for the similar but different disease population (chronic
lymphocytic leukemia versus follicular lymphoma). Alternatively, we
could have used an informative Gaussian prior for the log (𝐻𝑅) defined
based on the PRIMA results, rather than the reconstructed individual
data, and discounted this external information by increasing the prior
variance on the log (𝐻𝑅) [3]. In the case several external sources are
available, more complex models with hyperparameterization for the
between-source variability, can be considered: Bayesian hierarchical
modeling and meta-analytical approaches, power priors with random
power parameter 𝑎0 [8,9,41,44].

We presented post-hoc analyses of two trials to advocate the use of
Bayesian methods in phase 3 trials with survival endpoints. Bayesian
posterior estimates are particularly adapted for decision rules. Simi-
larly, posterior predictive estimates can also be used to base decision
rules on predictions of interest [45]. Formal assessment of the resulting
operating characteristics, similarly to the sample size calculation in the
frequentist setting, may appear necessary to implement these tools in
practice, to comply with the regulatory agencies requirements; guid-
ance to prevent misuse and erroneous conclusions have been issued to
6

this aim [35,46,47]. Indeed, defining rules for efficacy based on con-
ciliatory thresholds, such as the posterior probability of the HR being
greater than 1 for instance, often result in unacceptable type I error
rates. Last, using predictive probabilities, methods have been developed
to estimate the probability of success of a trial at the planning stage,
but also during the trial, in a sequential manner using both current and
external information [31,48], that could apply in this setting.

In summary, we exemplified throughout two main examples, the
informativeness of Bayesian methods in sequential analysis of RCTs
with right-censored endpoints. We showed that the Bayesian approach
can be applied to proportional hazards survival models with estimation
tools available on software platforms and should not be restricted to
binary endpoints. Furthermore, we illustrated two aspects of Bayesian
methods for phase 3 clinical trials, namely flexible sequential analyses
and incorporation of external or historical data. Overall, Bayesian
methods provide straightforward interpretation of results, accounting
for uncertainty, and allows borrowing information, summarizing all the
evidence available at the current time.
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