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Resistin (RETN) is a gene coding for proinflammatory adipokine called resistin secreted by macrophages in humans. Single
nucleotide polymorphisms (SNPs) in RETN are linked to obesity and insulin resistance in various populations. Using dbSNP, 78
nonsynonymous SNPs (nsSNPs) were retrieved and tested on a PredictSNP 1.0 megaserver. Among these, 15 nsSNPs were
predicted as highly deleterious and thus subjected to further analyses, such as conservation, posttranscriptional modifications,
and stability. The 3D structure of human resistin was generated by homology modeling using Swiss model. Root-mean-square
deviation (RMSD), hydrogen bonds (h-bonds), and interactions were estimated. Furthermore, UTRscan served to identify UTR
functional SNPs. Among the 15 most deleterious nsSNPs, 13 were predicted to be highly conserved including variants in
posttranslational modification sites. Stability analysis predicted 9 nsSNPs (I32S, C51Y, G58E, G58R, C78S, G79C, W98C,
C103G, and C104Y) which can decrease protein stability with at least three out of the four algorithms used in this study. These
nsSNPs were chosen for structural analysis. Both variants C51Y and C104Y showed the highest RMS deviations (1.137 Å and
1.308 Å, respectively) which were confirmed by the important decrease in total h-bonds. The analysis of hydrophobic and
hydrophilic interactions showed important differences between the native protein and the 9 mutants, particularly I32S, G79C,
and C104Y. Six SNPs in the 3′UTR (rs920569876, rs74176247, rs1447199134, rs943234785, rs76346269, and rs78048640) were
predicted to be implicated in polyadenylation signal. This study revealed 9 highly deleterious SNPs located in the human RETN
gene coding region and 6 SNPs within the 3′UTR that may alter the protein structure. Interestingly, these SNPs are worth to be
analyzed in functional studies to further elucidate their effect on metabolic phenotype occurrence.

1. Introduction

Genomic variation understanding is one of the major chal-
lenges of current genomics research field, due to the enor-
mous number of genetic variations in the human genome.
Single nucleotide polymorphisms (SNPs) represent the most
abundant genetic variations throughout the human genome
ranging between 3 and 5 million in each individual [1].

Mostly, SNPs are neutral, but some of them contribute to dis-
ease predisposition by modifying protein function or as
genetic markers in order to find nearby disease-causing
mutations through genetic association studies and family-
based studies [2]. Scientists believe that these variants may
also influence the response to some drugs [3].

SNPs that change the encoded amino acids are called
nonsynonymous single nucleotide polymorphisms (nsSNPs).
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Nonsynonymous SNPs, forming about half of all genetic
changes related to human diseases, can influence resulting
protein structure and/or function with either neutral or dele-
terious effects [4, 5].

Moreover, the study of noncoding DNA is also important
because it contains the majority of reported SNPs in human
genome. Polymorphisms in 5′ and 3′ untranslated regions
(UTRs) are of major interest because they can affect gene
expression and posttranscriptional and posttranslational
activities and thus be of functional relevance [6, 7].

Resistin is a proinflammatory adipokine which belongs
to the cysteine-rich C-terminal domain proteins called
resistin-like molecules (RELMs) and mainly secreted by
adipocytes in rodents and macrophages in humans [8, 9].
The gene encoding resistin (RETN) is located on chromo-
some 19p13.2. It was shown that resistin is linked to several
inflammatory disorders including obesity, type 2 diabetes,
cardiovascular disease, and asthma [10–13]. This protein
has effects which antagonize insulin action. Some studies
have shown that resistin affects glucose transport and causes
insulin-stimulated insulin receptor substrate-1 (IRS-1) deg-
radation leading to insulin resistance induction [14–16]. Cir-
culating resistin levels were reported to be significantly
increased in both genetically and diet-induced obese mice
and decreased with the administration of the antidiabetic
drug Rosiglitazone [8].

Moreover, a case-control study on type 1 diabetes melli-
tus patients showed that the combination of insulin and Rosi-
glitazone decreased resistin and leptin levels significantly
[17]. Genetic variants in RETN showed a significant associa-
tion with circulating resistin levels. Beckers et al. identified
the first missense mutation C78S in resistin in a morbidly
obese proband and his obese mother. This finding encour-
ages the study of variants in the RETN gene coding region
to elucidate their involvement in pathogenesis [18]. It was
estimated that genetic factors can explain up to 70% of the
variation in circulating resistin levels [19]. However, analyses
of the association between SNPs of the RETN gene and
anthropometric variables and alterations related to obesity
revealed inconsistent results [10, 20–23].

Basing on the importance of RETN gene in multiple
inflammatory diseases, particularly metabolic abnormalities,
we conducted a computational analysis using nsSNP effect
predictors like SIFT, PolyPhen, PANTHER, PhD-SNP and
PredictSNP. Most deleterious nsSNPs were further analyzed
by conservation and stability tools. Finally, a structural anal-
ysis was conducted in order to identify the most functionally
deleterious SNPs in coding and untranslated regions.

2. Material and Methods

2.1. Dataset Collection. The SNP information of RETN gene
was collected from dbSNP (http://www.ncbi.nlm.nih.gov/
snp/). The amino acid sequence of the protein (NCBI acces-
sion: NP_001180303) was retrieved from the NCBI protein
database (http://www.ncbi.nlm.nih.gov/protein). The theo-
retical structure of resistin (PDB ID: 1LV6) was abandoned
since it was not in agreement with the crystal structure avail-
able for mouse resistin now.

2.2. Prediction of Deleterious nsSNPs. PredictSNP1.0 (http://
loschmidt.chemi.muni.cz/predictsnp1/) [24] was used as the
predictor of the SNP effect on protein function. This resource
is a consensus classifier that enables access to the nine best
performing prediction tools: SIFT, PolyPhen-1, PolyPhen-2,
MAPP, PhD-SNP, SNAP, PANTHER, PredictSNP, and
nsSNPAnalyzer.

SIFT (Sorting Intolerant from Tolerant) predicts whether
an amino acid substitution affects the protein function based
on sequence homology and the physical properties of amino
acids [25]. SIFT takes a query sequence and uses multiple
alignment information to predict tolerated and deleterious
substitutions in every position of the query sequence.
PolyPhen-1 uses expert set of empirical rules to predict pos-
sible impact of amino acid substitutions, while PolyPhen-2
(Polymorphism Phenotyping v2) predicts the potential effect
of an amino acid substitution on the structure and function
of a human protein using multiple sequence alignment and
structural information. MAPP (Multivariate Analysis of Pro-
tein Polymorphism) analyzes the physicochemical variation
present in each column of a protein sequence alignment
and predicts the impact of amino acid substitutions on the
protein function [26]. PhD-SNP (Predictor of human Delete-
rious Single Nucleotide Polymorphisms) is a support vector
machine- (SVM-) based predictor used to classify nsSNPs
into human genetic disease-causing or benign mutations
[27]. SNAP (screening for nonacceptable polymorphisms)
is a neural network-based method used to predict functional
effects of nonsynonymous SNPs using in silico derived pro-
tein information [28]. PANTHER (Protein Analysis Through
Evolutionary Relationships) estimates the likelihood of a par-
ticular nsSNP to cause a functional effect on the protein using
position-specific evolutionary preservation [29]. nsSNPAna-
lyzer uses a machine learning method called random forest to
predict whether the nsSNP has a phenotypic effect [30] based
on multiple sequence alignment and 3D structure informa-
tion. Finally, PredictSNP1.0 displays the confidence scores
generated by each tool and a consensus prediction as per-
centages by using their observed accuracy values to simplify
comparisons [24].

2.3. Sequence Conservation. A ConSurf web server (http://
consurf.tau.ac.il/) was used to analyze amino acid sequence
conservation. This web-based algorithm predicts the crucial
functional regions of a protein by estimating the degree of
amino acid conservation based on multiple sequence align-
ment. The grade range from 1 to 9 estimates the extent of
conservation of the amino acid throughout evolution. There-
fore, grade 9 represents the most highly conserved residue,
and the numbers descend to 1 representing the least con-
served region. This tool analyzes the conservation at the
nucleotide and amino acid levels.

2.4. Prediction of Posttranslational Modification Sites. A
ModPred web server (http://www.modpred.org/) was used
to predict posttranslational modification (PTM) sites; the
server consists of a set of bootstrapped logistic regression
models for each type of PTM, retrieved from 126,036
nonredundant PTM sites verified experimentally, the

2 Journal of Diabetes Research

http://www.ncbi.nlm.nih.gov/snp/
http://www.ncbi.nlm.nih.gov/snp/
http://www.ncbi.nlm.nih.gov/protein
http://loschmidt.chemi.muni.cz/predictsnp1/
http://loschmidt.chemi.muni.cz/predictsnp1/
http://consurf.tau.ac.il/
http://consurf.tau.ac.il/
http://www.modpred.org/


literature, and from the databases [31]. Results are given as
residue, modification, score, confidence, and remarks. In this
study, only medium and high confidence PTMs were taken
into consideration.

2.5. Prediction of Change in Protein Stability. The change
in protein stability due to nsSNPs was predicted using I-
Mutant2.0 (http://folding.biofold.org/cgi-bin/i-mutant2.0),
which is a support vector machine (SVM) web-based tool
used for the automatic prediction of changes in protein
stability due to SNP. It provides the predicted free energy
change value (DDG) and the sign of the prediction as
increase or decrease. DDG value is calculated from the
unfolding Gibbs free energy value of the mutated protein
minus the unfolding Gibbs free energy value of the wild
type in kcal/mol. DDG > 0 means that the protein stability
increased, and DDG < 0 means that the protein stability
decreased [32].

The stability was also checked by a MUpro tool (http://
mupro.proteomics.ics.uci.edu/). This server is based on two
machine learning methods: support vector machines and
neural networks. Both of them were trained on a large muta-
tion dataset and showed accuracy above 84%.

This protein calculates a score between -1 and 1 as the
confidence of prediction. The confidence score < 0 indicates
that the mutation decreases the protein stability, while a con-
fidence score > 0 means that the mutation increases the pro-
tein stability [33].

2.6. Scanning of UTR SNPs in the UTR Site. The 5′ and 3′
untranslated regions (UTRs) have crucial roles in degrada-
tion, translation, and localization of mRNAs as well as the
regulation of protein-protein interaction. We used the UTRs-
can web server http://itbtools.ba.itb.cnr.it/utrscan to predict
the functional SNPs in the 5′ and 3′UTRs. The UTRscan tool
allows the enquirer to search user-submitted sequences for
any of the motifs present in UTRsite. UTRsite derives data
from UTRdb, a curated database that updates UTR datasets
through primary data mining and experimental validation
[7, 34]. To perform this analysis, the primary FASTA format
data was submitted and the results were showed in the form
of signal names and their positions in the transcript.

2.7. Structural Analysis

2.7.1. Modeling of Native and Mutant Structure. The tran-
script with the reference sequence NP_001180303.1 was used
for the homology modeling. We selected the X-ray crystal
structure of Mus musculus resistin from the Protein Data
Bank (PDB) with PDB code 1RGX [9] as a template to gener-
ate a human resistin by homology modeling using the Swiss
model platform (https://swissmodel.expasy.org). The model
has a QMEAN of -1.83 and a sequence identity of 55.56%
(Figure 1).

UCSF Chimera was used to confirm the corresponding
positions of the SNPs and to construct the 15 mutant
models [35]. It is a highly extensible program developed by
the Resource for Biocomputing, Visualization, and Infor-
matics at the University of California, San Francisco, for

interactive visualization and analysis of molecular structures
and related data.

The energy minimization of the wild type and mutant
structures was performed by NOMAD-Ref server Gromacs-
based as a default force field; we used conjugate gradient
method for the 3D structure optimization [36].

2.7.2. RMSD and Total Hydrogen Bond Prediction. UCSF
Chimera served again to check RMS deviation by superim-
posing both native and mutant structures. In addition, this
tool served to calculate total h-bond values for each structure.

2.7.3. Interaction Analysis. COCOMAPS (bioCOmplexes
COntact MAPS) is a web application to effectively analyze
and visualize the interface in biological protein-protein
complexes by making use of intermolecular contact maps.
The input file was the resistin homology model in PDB
format. In our study, we used COCOMAPS to analyze the
interaction between the three monomers of resistin protein
[37]. To achieve this, we uploaded the PDB file of resistin tri-
mer (A, B, and C as chain IDs for each monomer) and we
then compared the interaction interfaces between the two
chains A and B considered as Molecule 1 interacting with
the third chain C considered as Molecule 2 (interactions
include residues from chain A and from chain B together
interacting with chain C).

2.7.4. Prediction of Protein-Protein Interactions. STRING
(Search Tool for the Retrieval of Interacting Genes/Proteins,
available at http://string-db.org) is a database of known and
predicted protein interactions, which currently covers
9,643,763 proteins from 2031 organisms. This database pro-
vides a critical assessment and integration of protein-protein
interactions including direct (physical) and indirect (func-
tional) associations [38].

3. Results

3.1. SNP Datasets. The RETN SNP data investigated in
this work was retrieved in early October 2018 from dbSNP
database (http://www.ncbi.nlm.nih.gov/snp/?term=RETN).
It contained a total of 1075 SNPs. Out of which, 78 were
nsSNPs, 35 were coding synonymous SNPs, 339 were
located in the noncoding region, which comprises 18 SNPs
in the 5′UTR, 35 SNPs were in the 3′UTR, and 287 were in
the intronic region.

Figure 1: The tridimensional model of human resistin generated
using homology modeling by a Swiss model web server. The
model is a trimer with three chains A (red), B (green), and C (blue).

3Journal of Diabetes Research

http://folding.biofold.org/cgi-bin/i-mutant2.0
http://mupro.proteomics.ics.uci.edu/
http://mupro.proteomics.ics.uci.edu/
http://itbtools.ba.itb.cnr.it/utrscan
https://swissmodel.expasy.org
http://string-db.org
http://www.ncbi.nlm.nih.gov/snp/?term=RETN


3.2. Prediction of Deleterious nsSNPs. A total of 78 nsSNPs
were selected for our investigation. This SNP collection
was analyzed with various in silico prediction tools to mea-
sure their effects on pathogenicity and to find out disease-
associated SNPs. All nsSNPs which were obtained from
SNP database were loaded to PredictSNP1.0, and all available
integrated tools were selected for prediction. Fifteen nsSNPs
were predicted as deleterious by all integrated tools, except
for nsSNPAnalyzer and PANTHER that did not give any pre-
diction for any mutation. According to SNAP, a total of 38
nsSNPs out of 54 were predicted to be deleterious (70.37%),
followed by MAPP with 37 deleterious nsSNPs (68.51%),
PolyPhen-2 with 31 nsSNPs (57.40%), PolyPhen-1 with 25
nsSNPs (46.29%), SIFT with 26 nsSNPs (48.15%), and
PhD-SNP with 18 nsSNPs (33.33%). The nsSNPs predicted
as deleterious are listed in Table 1 with the expected accuracy
and are selected for further analysis (Table 1).

3.3. Analysis of Conservation. The results of ConSurf analysis
showed that 13 deleterious missense SNPs are located in
highly conserved regions, with conservation values ranging
between 7 and 9, which suggests that these positions are
important for the resistin integrity. Among these, three resi-
dues were predicted to be exposed and functional, five others
were predicted to be buried and structural, two buried resi-
dues and one exposed residue." while we should mention at
the beginning of the paragraph that "11 deleterious missence
SNPs are located in highly conserved regions", because we
mentionned just after this that conservation values are rang-
ing between 7 and 9 so we excluded G71 ( score: 4) and R84
(score: 6). The position 84 was predicted as moderately con-
served, and the position 71 was predicted as variable residue;
therefore, they were not selected for structural analysis.

3.4. Prediction of Posttranslational Modification Sites.
ModPred was used to predict posttranslational modifica-
tion sites present within the human resistin protein. Only

PTMs with high or medium confidence were discussed. In
the native protein, position R84 was predicted as a site of
ADP-ribosylation, W98 as a site of C-linked glycosylation
or proteolytic cleavage, and C103 and C104 as disulfide
linkage sites. After mutagenesis, C51 appeared as a site
of amidation with the change of Cys to Tyr, while the
position W98 changed to a disulfide linkage site with the
change of Trp to Cys. Regarding the position C104, it
was predicted that the change of Cys to Tyr conferred
an amidation site with a high confidence. The results of
ModPred are shown in Table 2.

3.5. The Impact of Predicted Deleterious Mutations on
Resistin Protein Stability. We analyzed the 13 missense sub-
stitutions predicted as deleterious from the previous steps
with the I-Mutant2.0. and MUpro web server. nsSNPs pre-
dicted to decrease stability with both tools were selected
for further structural analysis. The results are showed in
Table 3.

3.6. Structural Analysis

3.6.1. Modeling of Human Resistin Structure.Using the X-ray
crystal structure (1rgx) as a template, we modeled the 3D
structure of native human resistin using the Swiss model
web server. Figure 2 showed the generated model as a trimer
with three monomers (A, B, and C). This trimer was used to
construct the 9 mutant models of human resistin.

3.6.2. RMSD Difference and Total Hydrogen Bonds. The
RMSD values associated with the 9 mutants are given in
Table 4. As the RMSD value increases, the deviation
between native- and mutant-type structures will be higher
and thus may induce a change in protein activity. Altered
C51Y and C104Y mutants showed the highest RMSD;
results are shown in Figures 2(a) and 2(b). In addition,
total h-bonds were calculated to assess their contribution
in the stability and the folding of the native protein. All

Table 1: The expected accuracy results of the SNPs of RETN predicted as deleterious in PredictSNP and integrated tools.

nsSNPs ID variants PredictSNP PolyPhen-1 PolyPhen-2 SIFT MAPP PhD-SNP SNAP

I32S rs894321927 (0.86) (0.74) (0.60) (0.79) (0.77) (0.85) (0.72)

C51Y rs759129635 (0.86) (0.74) (0.81) (0.79) (0.77) (0.81) (0.86)

G58R rs760260537 (0.86) (0.74) (0.81) (0.79) (0.87) (0.73) (0.88)

G58E rs763916942 (0.86) (0.74) (0.81) (0.79) (0.91) (0.58) (0.88)

G66R rs566843624 (0.86) (0.74) (0.56) (0.42) (0.62) (0.81) (0.86)

G71R rs772946179 (0.86) (0.74) (0.59) (0.79) (0.87) (0.57) (0.86)

C74W rs532089804 (0.86) (0.74) (0.81) (0.79) (0.91) (0.77) (0.75)

C78S rs199834487 (0.86) (0.74) (0.81) (0.79) (0.75) (0.67) (0.86)

G79C rs111331676 (0.86) (0.74) (0.81) (0.79) (0.85) (0.73) (0.86)

R84C rs779335092 (0.86) (0.74) (0.81) (0.79) (0.85) (0.73) (0.84)

D97E rs768223197 (0.86) (0.59) (0.81) (0.79) (0.77) (0.58) (0.84)

W98C rs776285077 (0.86) (0.74) (0.81) (0.79) (0.85) (0.81) (0.86)

W98L rs1035187378 (0.86) (0.74) (0.81) (0.52) (0.91) (0.58) (0.88)

C103G rs991039386 (0.86) (0.74) (0.81) (0.79) (0.76) (0.58) (0.88)

C104Y rs891939673 (0.86) (0.74) (0.81) (0.79) (0.77) (0.81) (0.88)
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mutated structures revealed a change in total h-bonds
compared to the native resistin, but the C104Y mutant
showed a remarkable decrease forming 254 h-bonds while
the native structure formed 291. Moreover, the visualization
of native structure showed that C51 and C104 residues form
a disulfide bond with each other (Figure 2(d)); the change of
cysteine carried on the alpha helix in these positions induces
the breakage of the disulfide bridge (Figures 2(c) and 2(e))
which may disturb the protein structure.

3.6.3. Interaction Analysis. The interface contacts between
the amino acids present within the resistin trimer were stud-
ied using COCOMAPS. Variation in the number of different
types of interactions was observed between the native and 9
resistin mutants; the results are given in Table 5.

Regarding the number of hydrophilic-hydrophilic interac-
tions, the native complex participated with 262 hydrophilic-
hydrophilic interactions. The mutant complexes I32S, C51Y,
G79C, and C104Y, showed a significant increase in the

Table 3: Prediction of change in protein stability using I-Mutant2.0 and MUpro.

Position
I-Mutant2.0 MUpro

DDG value (kcal/mol) DDG value SVM NN (kcal/mol)

I32S -2.45 (decrease) -1.490 (decrease) -0.80 (decrease) -0.96 (decrease)

C51Y -0.89 (decrease) -0.234 (decrease) -0.20 (decrease) -0.69 (decrease)

G58R -0.15 (decrease) -0.95 (decrease) -0.22 (decrease) -0.73 (decrease)

G58E -1.43 (decrease) -0.913 (decrease) 0.23 (increase) -0.67 (decrease)

G66R -1.74 (decrease) -0.84 (decrease) 0.48 (increase) 0.51 (increase)

C74W -0.76 (decrease) -0.69 (decrease) 0.54 (increase) 0.85 (increase)

C78S -0.63 (decrease) -1.513 (decrease) -0.09 (decrease) 0.87 (increase)

G79C -0.89 (decrease) -0.842 (decrease) -0.84 (decrease) -0.38 (decrease)

D97E 0.52 (increase) -0.77 (decrease) 0.025 (increase) -0.65 (decrease)

W98C -1.14 (decrease) -0.442 (decrease) -0.77 (decrease) -0.92 (decrease)

W98L -0.59 (decrease) 0.16 (increase) -0.10 (decrease) 0.691 (increase)

C103G -1.05 (decrease) -1.63 (decrease) -0.80 (decrease) 0.547 (increase)

C104Y 0.32 (increase) -1.03 (decrease) -0.36 (decrease) -0.80 (decrease)

DDG: delta delta G; SVM: support vector machine; NN: neural network.

Table 2: Details of nsSNPs selected as deleterious among the reported SNPs, their conservation analysis by ConSurf, and posttranslational
modification site prediction by ModPred.

Position Conservation score B/E F/S PTM sites (wild type) Variants PTM sites (mutants)

I32 7 B — — I32S —

C51 9 B S — C51Y
Amidation

Phosphorylation

G58 9 E F Proteolytic cleavage
G58R Proteolytic cleavage

G58E Proteolytic cleavage

G66 7 E — Proteolytic cleavage G66R Proteolytic cleavage

G71 4 B — — G71R
Proteolytic cleavage
ADP-ribosylation

C74 9 B S Disulfide linkage C74W —

C78 9 B S Disulfide linkage C78S O-linked glycosylation

G79 9 E F — G79C Disulfide linkage

R84 6 E —
ADP-ribosylation
Proteolytic cleavage

R84C Disulfide linkage

D97 9 E F — D97E Disulfide linkage

W98 8 B —
C-linked glycosylation
Proteolytic cleavage

Amidation

W98C Disulfide linkage

W98L —

C103 9 B S Disulfide linkage C103 Proteolytic cleavage

C104 9 B S Disulfide linkage C104
Amidation

Proteolytic cleavage

PTM: posttranslational modification; B: buried; E: exposed; F: functional; S: structural.
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number of hydrophilic-hydrophilic interactions with 286,
266, 277, and 266 interactions, respectively, which indicate
a reduction in the hydrophobicity of these mutant trimers.
In addition, the mutant complex C103G showed a significant
increase in the number of hydrophobic-hydrophobic interac-
tions indicating the increase of its hydrophobicity.

Moreover, we found that the C51Y mutant trimer
interacts with only 75 residues of chain C forming the trimer
complex while in the native complex, chain C interacts
with 78 residues. This small deviation may disrupt resistin
trimer formation.

3.6.4. Prediction of the Effect of SNPs Located in the UTR by a
UTRscan Server. The UTRscan server was used to predict the
effect of UTR SNPs on transcriptional motif. Six SNPs in the
3′UTR, namely, rs920569876, rs74176247, rs1447199134,

rs943234785, rs76346269, and rs78048640, were predicted
to be in polyadenylation sites and thus may be responsible
for pathological phenotypes. Results are given in Table 6.

Protein-Protein Interactions Using STRING. Prediction of
protein-protein interactions indicated that resistin interacts
with 10 proteins including insulin (INS), insulin receptor
(INSR), leptin (LEP), adiponectin (ADIPOQ), peroxisome
proliferator-activated receptor gamma (PPARG), tumor
necrosis factor (TNF), interleukin 6 (TNF), nicotinamide
phosphoribosyltransferase (NAMPT), nuclear receptor sub-
family 3 group C member 1 (NR3C1), and ghrelin/obestatin
prepropeptide (GHRL) (Figure 3).

4. Discussion

With the growth of SNP number in databases, it becomes
difficult to determine SNPs contributing in disease develop-
ment. Thus, computational analysis can help to select a lim-
ited number of prioritizing deleterious SNPs for genetic
disease screening [39]. Among the mutations affecting the
protein function, nsSNPs are very frequently occurring in
many inherited diseases [40]. Nonsynonymous SNPs were
essentially described to inhibit protein activity, DNA-pro-
tein, or DNA-miRNA binding. There were many metabolic
abnormalities related genes studied with computational
approaches in order to predict functional SNPs such as hepa-
tocyte nuclear factor 1 alpha (HNF1A), apolipoprotein AI
(APOAI), apolipoprotein E3 (APOE3), and high-density
lipoprotein (HDL) [39, 41–44]. To date, more than 70 mis-
sense mutations have been reported in human RETN gene.
However, population-based association studies on RETN
remain insufficient. Therefore, the current study is aimed at
investigating the structural and functional impact of the
SNPs present in the RETN gene using a thorough

Table 4: RMSD value and total hydrogen bonds after minimization
of each model.

RMSD (Å) Total h-bonds

Native 0 291

I32S 0.023 297

C51Y 1.137 272

G58E 0.30 297

C78S 0.37 299

G58R 0.182 292

G79C 0.265 296

W98C 0.158 296

C103G 0.486 250

C104Y 1.308 254

RMSD: root-mean-square deviation.

(a) (b)

Tyr51

Cys104

(c)

Cys104 Cys51

(d)

Tyr104 Cys51

(e)

Figure 2: (a) Superimposed of native structure of human resistin (cyan color) onto mutant C51Y structure (white color) showing a deviation
RMSD of 1.137 Å. (b) Superimposed of native structure of human resistin (cyan color) onto mutant C104Y structure (white color) showing a
deviation RMSD of 1.308 Å. (c) Disulfide bond breakage in C51Y resistin mutant. (d) Disulfide bond between both cysteine residues 51 and
104 in wild-type resistin. (e) Disulfide bond breakage in C104Y resistin mutant.
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computational analysis. A total of 78 nsSNPs in RETN gene
were retrieved from dbSNP database.

The methods used in this study revealed the importance
of using various algorithms with different prediction capaci-
ties to estimate the effect of variations on structural and func-
tional levels. Using a single bioinformatic tool to predict
potentially pathogenic nsSNPs may not be significant [45].
Hence, the present study was based on multiple computa-
tional tools including SIFT, Poly-Phen1/2, MAAP, PhD-

SNP, PredictSNP, SNAP, ConSurf, ModPred, I-Mutant2.0,
and MUpro in order to identify the most deleterious nsSNPs
in RETN gene.

Fifteen nsSNPs were predicted to be the most deleterious
SNPs by these tools. In addition, using the ConSurf web
server, 13 of them were predicted to be highly conserved with
conservation scores ranging between 7 and 9. Moreover,
PTM site prediction showed that W98 is a site for ADP-
ribosylation and proteolytic cleavage in the wild type, while
after mutation (W98C), it became a site for disulfide linkage
with the gain of Cys residue; this may induce conformational
restrictions on the protein, altering strongly its folding, func-
tion, and stability. Inversely, C103 and C104 residues were
predicted as a PTM sites that lost disulfide linkages. Although
disulfide bond 3D structure and interactions are highly con-
served in nature, their loss may affect the protein folding.
Nine nsSNPs were significantly predicted to affect stability.
These results suggested that I32S, C51Y, G58E, G58R,
C78S, G79C,W98C, C103G, and C104Ymay be the structur-
ally and functionally most significant SNPs in human resis-
tin. The variant C104Y possessed the highest RMSD value,
i.e., 1.308 Å followed by C51Y with an RMSD of 1.137 Å.
Moreover, these variants had a significant loss of hydro-
gen bonds compared to the wild type. Interestingly,
C51, C78, C103, and C104 residues are located in the
highly conserved cysteine-rich C-terminus of resistin as
all proteins of the resistin-like family share a common
C-terminus domain with invariant spacing between cyste-
ine positions (1C-X11-2C-X8-3C-X-4C-X3-5C-X10-6C-X-
7C-X-8C-X9-9C-10C) [8, 46, 47]. Figures 2(c) and 2(e)
showed C51Y and C104Y mutants that lost the disulfide
bridge after a change of cysteine to tyrosine residues. This
could be expected to destabilize the helix carrying residues
that may be involved in binding sites with other proteins.
Using STRING, the functional network of resistin interac-
tions with ten different proteins implicated unanimously in
inflammatory and metabolic pathways suggests the strong
implication of resistin in metabolic abnormalities.

5. Conclusion

RETN gene was investigated in this work by assessing the
impact of deleterious SNPs in coding and untranslated
regions through a computational approach. In a total of
78 missense SNPs, 15 were predicted as the most deleterious
using PredictSNP. From which, 9 nsSNPs were predicted as
highly conserved and affect protein stability. The structural
analysis revealed high RMSD scores for both C104Y and

Table 5: Interactions observed between the three monomeric of resistin protein in native and 9 mutant complexes.

Native I32S C51Y G58E G58R C78S G79C W98C C103G C104Y

Number of interacting residues Molecule 1
(chain A and chain B)

129 129 130 127 129 129 128 130 130 129

Number of interacting residues Molecule 2 (chain C) 78 78 75 77 78 78 78 78 78 75

Number of hydrophilic-hydrophobic interaction 343 357 329 342 338 334 323 343 357 320

Number of hydrophilic-hydrophilic interaction 262 286 266 257 258 261 277 251 259 266

Number of hydrophobic-hydrophobic interaction 193 175 188 194 196 190 179 194 201 189

Table 6: SNPs (UTR mRNA) that were predicted to be functionally
significant by UTRscan.

SNP ID
Nucleotide
change

UTR
position

Functional element
change

rs920569876 A/G 3′UTR Polyadenylation signal

rs74176247 A/G 3′UTR Polyadenylation signal

rs1447199134 A/T 3′UTR Polyadenylation signal

rs943234785 A/G 3′UTR Polyadenylation signal

rs76346269 A/T 3′UTR Polyadenylation signal

rs78048640 A/G 3′UTR Polyadenylation signal

NR3C1

LEP

GHRL

Figure 3: Protein-protein interaction network of resistin using a
STRING server.
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C51Y variants, respectively, with a loss of the total hydro-
gen bonds. Six UTR SNPs were predicted to be in polya-
denylation sites. Hence, we concluded that 9 nsSNPs I32S,
C51Y, G58E, G58R, C78S, G79C, W98C, C103G, and C104Y
and 6 substitutions in the 3′UTR, namely, rs920569876,
rs74176247, rs1447199134, rs943234785, rs76346269, and
rs78048640, could be important candidates in the pathological
process of resistin particularly in metabolic pathways.
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