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Abstract: Background Acute hepatic porphyrias (AHPs) are a group of rare diseases caused by
dysfunctions in the pathway of heme biosynthesis. Although acute neurovisceral attacks are the
most dramatic manifestations, patients are at risk of developing long-term complications, several of
which are of a vascular nature. The accumulation of non-porphyrin heme precursors is deemed to
cause most clinical symptoms. Aim We measured the serum levels of endothelin-1 (ET-1) and nitric
oxide (NO) to assess the presence of endothelial dysfunction (ED) in patients with AHPs. Forty-six
patients were classified, according to their clinical phenotype, as symptomatic (AP-SP), asymptomatic
with biochemical alterations (AP-BA), and asymptomatic without biochemical alterations (AP-AC).
Results Even excluding those under hemin treatment, AP-SP patients had the lowest NO and highest
ET-1 levels, whereas no significant differences were found between AP-BA and AP-AC patients.
AP-SP patients had significantly more often abnormal levels of ED markers. Patients with the highest
heme precursor urinary levels had the greatest alterations in ED markers, although no significant
correlation was detected. Conclusions ED is more closely related to the clinical phenotype of AHPs
than to their classical biochemical alterations. Some still undefined disease modifiers may possibly
determine the clinical picture of AHPs through an effect on endothelial functions.

Keywords: porphyria; acute hepatic porphyrias; endothelial dysfunction; nitric oxide; endothelin;
hypertension; chronic kidney disease; rare diseases; heme; δ-aminolevulinic acid

1. Introduction

In the last few decades, a growing interest has been devoted to the key functions of the
endothelium in health and disease [1]. In response to different physical and biochemical
stimuli, endothelial cells release various factors which are crucially involved, among others,
in the regulation of vasomotor tone and vascular homeostasis, differential organ blood
supply, selective permeability to solutes, coagulation processes, inflammation, and immune
activation [1–3]. Endothelial dysfunction (ED), which is mostly a consequence of chronic
exposition to noxious exogenous or endogenous agents, is biochemically characterized by a
maladaptive disbalance between the different, complementary endothelium-derived media-
tors (i.e., vasoconstrictors vs. vasodilators, growth promoters vs. inhibitors, pro-thrombotic
vs. anti-thrombotic) [3–5]. ED is considered an early, key event in the pathogenesis of
many diseases of the vascular system, such as hypertension, atherosclerosis, and diabetic
microangiopathy [3,5–8].

Acute hepatic porphyrias (AHPs) are a group of rare genetic diseases caused by a
selective enzyme deficiency in the pathway of heme biosynthesis [9,10]. The patients who
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are carriers of pathogenic mutations are at risk of presenting recurrent acute, potentially
life-threatening neurovisceral crises known as acute porphyric attacks (APAs). Patients
with AHPs also suffer from long-term complications of the disease, such as arterial hy-
pertension, chronic kidney disease, chronic neuropathy, and non-cirrhotic hepatocellular
carcinoma [11–14]. In AHPs, the accumulation of toxic non-porphyrin heme precursors
(δ-aminolevulinic acid—ALA and porphobilinogen—PBG) is deemed to cause most clinical
manifestations, including those with possible vascular involvement (arterial hypertension,
headache, neurological symptoms, kidney impairment) [9,10,15–18]. Symptomatic patients
with AHPs often undergo an off-label maintenance therapy with heme arginate, which
aims to reduce the frequency of APAs [19]. Alternatively, monthly infusions of intravenous
(IV) hypertonic (10–20%) glucose can be attempted as an off-label maintenance therapy in
symptomatic patients with mild-to-moderate manifestations of AHPs. Other than avoiding
fasting, glucose is supposed to act through inhibition of PGC-1α, which should reduce
ALAS1 expression [20].

Several pieces of evidence have shown that the availability and metabolism of heme
are variably involved in the healthy functioning of the endothelium, as well as in en-
dothelial dysfunction [21–26]. Furthermore, it has been postulated that non-porphyrin
heme precursors may possibly cause endothelial damage, e.g., through the known oxidant
properties of ALA [17,18,27,28].

Among the several non-invasive methods for detecting ED in vivo, the measurement
of serum nitric oxide (NO) and endothelin-1 (ET-1) levels is widely used and acknowl-
edged [29]. NO, with its vasodilating effects, is a key mediator of vascular homeostasis [30];
it is produced by nitric oxide synthases (NOSs) and acts through binding to soluble guany-
late cyclases (sGCs). Both NOSs and sGC are hemoproteins. ET-1, on the other hand, is a
vasoconstrictor that is synthesized predominantly in vascular endothelial cells and secon-
darily in vascular smooth muscle cells and extravascular tissues (i.e., spleen, pancreas, lung,
kidney glomerular and epithelial cells, and central and peripheral nervous systems) [29].
A disbalance between the measured levels of NO (lower than normal) and ET-1 (higher
than normal) is associated with an impairment of physiologic endothelial functions [29]. In
particular, the current evidence has led to the hypothesis that NO exerts a tonic inhibition
on ET-1, so that in conditions of decreased NO availability, the unmitigated activity of
endothelin-1 may result in harmful vasoconstriction [29].

Given the potential role of specific endothelial damage in the vascular manifestations
of AHPs, this study aimed at assessing the presence of ED in patients with AHPs (acute
intermittent porphyria—AIP and variegate porphyria—VP), with respect to their clinical
status and treatment.

2. Materials and Methods
2.1. Patients

We studied 46 Caucasian patients (24 female, mean age 46 ± 17 years, range 8–72)
with AHP (31 with AIP and 15 with VP) referring to the Expert Centre for Porphyrias
of the Internal Medicine Unit at the Policlinico Hospital of Modena (Italy). All studied
patients were carriers of documented mutations in hydroxymethylbilane synthase (HBMS )
or protoporphyrinogen oxidase (PPOX) genes consistent with the diagnosis of AIP and
VP, respectively.

In all patients, we assessed the clinical features of disease. We considered as: symp-
tomatic (AP-SP) the patients with a defined history of hospital admissions and treatment
for APAs, or those under periodic prophylactic infusions of heme arginate (Normosang®;
Orphan Europe); asymptomatic with biochemical alterations (AP-BA) those with no clinical
history of APAs, but showing biochemical alterations suggestive of AHP (high urinary lev-
els of ALA, PBG, and/or total porphyrins); asymptomatic carriers (AP-AC) those carriers
of genetic mutations consistent with AIP or VP but with neither clinical history of APAs
nor biochemical alterations suggestive of AHP.
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All patients were assessed regarding their clinical history (specifically, history of
arterial hypertension or vascular diseases). Monthly measurements were taken, for at least
six consecutive months, for urinary ALA, PBG, and total porphyrins, serum markers of
endothelial dysfunction (NO and ET-1), and parameters of renal and liver function.

2.2. Biochemical Assessment

In all patients, urine and blood samples were collected after overnight fasting. Urinary
levels of δ-aminolevulinic acid (ALA) and porphobilinogen (PBG) were measured by ion-
exchange chromatography (with BioRad® and Recipe® kit), followed by spectrophotometric
analysis. Urinary total and fractioned (uro- or copro-) porphyrins were assessed with High
Performance Liquid Chromatography (HPLC) using fluorimetric detection [31,32]. In
all patients, each measurement was performed at least one week from heme arginate
infusions and/or any clinical conditions related to an ongoing APA. Blood samples were
also specifically taken after infusion of heme arginate in two patients and after infusion of
10% glucose solution in the other two. Plasma NO was measured with a non-enzymatic
MED.DIA-modified method, through the nitrite assessment and using the Griess’ reaction,
considering values between 15 µmol/L and 40 µmol/L as reference [33]. Plasma ET-1 was
evaluated with a radioimmunoassay (RIA) method considering values between 1 pg/mL
and 3.5 pg/mL as reference [34]. Parameters of renal and liver function were assessed with
standard methods. For each patient, urine and blood samples were collected monthly for
six consecutive months.

2.3. Statistical Analysis

Chi-square test or Fisher’s exact test were used to compare categorical variables, as
appropriate. Student’s t test or Mann-Whitney’s U test (for two groups) or ANOVA with
LSD post hoc (for more than two groups) were used to compare continuous variables
between groups, as appropriate. Pearson’s r test was used to assess the correlation between
the levels of various biochemical metabolites. Continuous variables are presented as
mean ± standard deviation. For each single continuous variable, we considered the mean
value of at least six consecutive determinations. In all analyses, a p value < .05 was
considered statistically significant. Descriptive and statistical analysis and the graphical
representation of the results were performed using the softwares SPSS® (v.21.0, Chicago,
IL, USA) and STATA® (v.13.0, College Station, StataCorp, College Station, TX, USA).

3. Results

The majority of patients with AIP were symptomatic, whereas the opposite was true
for patients with VP (Table 1). The median ages of the groups considered were 43 years
(AP-AC), 38 years (AP-BA), and 50 years (AP-SP), respectively. Symptomatic patients
displayed significantly higher ALA, PBG, and total porphyrin levels in urines (Table 1)
compared to patients with biochemical alterations alone (Table 1). Creatinine clearance was
significantly reduced in symptomatic patients compared to asymptomatic carriers with no
biochemical alterations (Table 1). Overall, symptomatic patients suffered more frequently
from arterial hypertension, kidney impairment, and thrombotic events (Table 2). A total
of 14 patients (13 with AIP) out of 18 in the AP-SP group were undergoing prophylactic
therapy, including: 10 with heme arginate (6 patients with 1–2 monthly infusions, 4 patients
with >3 monthly infusions); and 4 with hypertonic glucose solutions (3–4 infusions per
month) (Table 3).

Eight out of thirty-eight patients (21%) had arterial hypertension (systolic >140 mmHg
and/or diastolic >90 mmHg), all of whom were undergoing anti-hypertensive therapy with
β-blockers. They had significantly higher levels of serum ET-1 (6.05 ± 1.91 vs. 4.13 ± 1.89,
p = 0.013) and lower levels of serum NO (20.97 ± 4.54 vs. 27.6 ± 10.14, p = 0.008) than
patients without hypertension. Nitric oxide levels were significantly lower in symptomatic
patients compared to asymptomatic carriers and asymptomatic patients with biochemical
alterations (Figure 1a). Conversely, symptomatic patients had the highest ET-1 levels of
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all three groups (Figure 1b). Symptomatic patients presented more frequently abnormal
levels of both ET-1 and NO (Figure 2). For each group, no significant difference was found
in ET-1 or NO levels between AIP vs. VP patients (Figure 3).

As expected [29,35,36], NO and ET-1 were negatively correlated in a linear regression
(Figure 4). ALA, PBG, and total porphyrin levels in urines did not show a significant
correlation with NO or ET-1 levels (Table 4), albeit patients with the highest levels of urinary
ALA and PBG (3× upper level of normal, ULN) had significantly higher ET-1 and lower NO
levels (Figure 5). Patients on maintenance therapy (with either hypertonic glucose or hemin
infusions) had significantly higher ET-1 and lower NO levels (Figure 6), with patients on
hemin infusions having the most abnormal values (Figure 7). Notably, ET-1 and NO levels
were significantly altered in symptomatic patients, compared to the asymptomatic, even
when AP-SP under hemin maintenance therapy were excluded (Figure 7). In the AP-SP
group, two couples of patients had lower NO and higher ET-1 after two consecutive days
of either 10% glucose of hemin infusions (Figure 8).

Table 1. Demographic, clinical and biochemical data of the study population.

AP-AC group
(n = 18)

AP-BA group
(n = 10)

AP-SP group
(n = 18) p

Age (years) 45 ± 13 42 ± 11 48 ± 25 .455
Sex (M/F) 9/9 5/5 8/10 .934
AHP diagnosis (AIP/VP) 8/10 7/3 16/2 .017
Active smoking status (yes/no) 2/16 1/9 1/17 .090
Urinary ALA◦ (µmol/mmol creatinine) 2.95 ± 1.66 8.39 ± 3.22 13.9 ± 5.09 .000 *; .000 **; .001 ***

Urinary PBG◦ (µmol/mmol creatinine) 1.14 ± 0.53 19.2 ± 13.1 33.7 ± 12.7 .001 *; .000 **; .002 ***

Urinary total porphyrins◦ (µg/g creatinine) 96.2 ± 24.1 329 ± 156 797 ± 414 .085 *; .000 **; .001 ***

Creatinine clearance (mL/min) 79.1 ± 9.51 71.2 ± 5.66 69.8 ± 8.44 .052 *; .005 **; .923 ***

SGPT (IU/L) 25.6 ± 8.61 30.5 ± 5.69 32.5 ± 9.71 .059
SGOT (IU/L) 28.7 ± 7.43 29.2 ± 6.74 31.5 ± 10.4 .559
Serum albumin (g/L) 3.82 ± 0.25 3.85 ± 0.31 3.75 ± 0.38 .687

ET-1 (pg/mL) 3.21 ± 1.51 3.56 ± 1.24 6.16 ± 1.81 .564 *; .000 **; .022 ***

NO (µmol/L) 31.9 ± 8.48 28.6 ± 9.68 19.7 ± 6.81 .842 *; .000 **; .000 ***

* AP-AC group vs. AP-BA group; ** AP-AC group vs. AP-SP group; *** AP-BA group vs. AP-SP group. ◦ Mean of at
least six seriate measurements. Normal ranges: ALA < 5 µmol/ mmol creatinine; PBG < 1.5 µmol/mmol creatinine;
total urinary porphyrins < 110 µg/g creatinine; creatinine clearance > 60 mL/min (CKD-EPI estimate [37]); SGPT
[1–40] IU/L; SGOT [1–37] IU/L; serum albumin [3.5–5] g/dL. IU, International Units.RESULTS	(II)	–	ED	MARKERS	IN	CLINICAL	AP	GROUPS	–	ET-1
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Figure 1. Serum levels of nitric oxide (a) and endothelin-1 (b) according to AHP phenotype.
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Table 2. Long-term complications and maintenance treatment according to AHP phenotype.

n Treatment

Hypertension
AP-AC 1 (5.5%)
AP-BA 1 (10%)
AP-SP 6 (33.3%) 5 hemin/1 glucose

Kidney Impairment
AP-AC 0 (0%)
AP-BA 1 (10%)
AP-SP 4 (22%) 3 hemin/1 glucose

Thrombosis
AP-AC 0 (0%)
AP-BA 0 (0%)
AP-SP 3 (16.7%) 3 hemin

Table 3. Maintenance treatment according to AHP type and clinical features.

Treated Untreated

Diagnosis (AIP/VP) 13/1 18/14
Clinical Status

AP-AC 0 18
AP-BA 0 10
AP-SP 14 4
Treatment (hemin/glucose) 10/4

Hemin treatment frequency
(times per week)

1 6
>1 4

Table 4. Correlation for serum NO and ET-1 levels. No significant correlation (Pearson’s r) was
found between ED markers and urinary ALA, PBG or porphyrins levels (measured as means of six
seriate assessments).

Correlation with NO Levels Correlation with ET-1 Levels

Parameter r p r p

ALA −0.237 .117 0.284 .056
PBG −0.277 .061 0.255 .086
Total porphyrins −0.313 .071 0.239 .108
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Figure 2. Number of patients with altered markers of endothelial function according to AHP
phenotype. Having an alteration of NO or ET-1 was significantly more frequent in the AP-SP
group (symptomatic patients).
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4. Discussion

Even though acute neurovisceral attacks are the most dramatic, and potentially life-
threatening, clinical manifestations of acute porphyrias, patients affected by this group
of diseases do suffer from chronic complications, which may be debilitating and have
a considerable impact on their quality of life. In particular, patients with symptomatic
AHPs are prone to develop long-term complications of vascular nature, such as arterial
hypertension, chronic kidney disease (often termed porphyria-associated kidney disease
-PAKD) [11,13,17,38,39], and thrombotic events [40,41]. Therefore, it could be reasonably
conjectured a direct involvement of the endothelium, which could be a primary site of
organ damage, in the pathogenesis of AHPs.

In this study, we show that the levels of NO and ET-1 are altered in patients with
AHPs, reflecting the phenotypical severity of the disease. In fact, the alteration of these
markers of endothelial dysfunction was more pronounced in symptomatic patients with
the most severe clinical pictures (i.e., those on maintenance therapy with IV glucose or
hemin) regardless of the type of porphyria (i.e., AIP vs. VP). Consistent with these findings,
symptomatic patients under maintenance treatment were also more frequently affected by
long-term vascular manifestations of AHPs.

Since patients under maintenance therapy are usually those with a high burden of
disease in terms of acute attacks, these findings may also suggest an association between
endothelial damage and more frequent or more severe APAs. It should be remarked that
some manifestations of APAs bear a resemblance to posterior reversible encephalopathy
syndrome (PRES) [42], a condition deemed to be caused by endothelial dysfunction [42,43].
In general, it has been long acknowledged that neuronal NO (nNOS) synthases play a deter-
minant role in the physiology of central and peripheral nervous systems [44]. Interestingly,
the neuronal populations of the myenteric plexus express NOSs [44]: an impairment of NO
metabolism in these tissues has been proposed as a cause of gastrointestinal dysautonomias
in conditions such as sickle-cell disease [45] or paroxysmal nocturnal hemoglobinuria [46].
Intriguingly, several peripheral neuropathies are caused by vasculitis of the blood vessels
supplying the peripheral nervous system (vasa nervorum ) -including non-systemic vas-
culitic neuropathy, a purely neuropathic condition in which the vasa nervorum are the only
target of inflammation [47].

It is of interest that no significant difference in NO or ET-1 levels was found between the
two groups of asymptomatic patients -notwithstanding their differences in non-porphyrin
heme precursor levels. This may be a reason why no correlation between ALA/PBG and
NO/ET-1 levels could be demonstrated. Still, patients with the highest levels or ALA and
PBG in urines also had the most marked alterations of NO and ET-1. Overall, these findings
would corroborate the hypothesis that ED is more closely related to the clinical phenotype
of the disease, rather than to its classical biochemical alterations. It may even be conjectured
that some disease modifiers in AHPs may act through an effect on endothelial function,
among others.

When choosing a maintenance therapy for symptomatic patients, heme arginate is
deemed more effective than glucose in preventing new APAs. Given its poorer tolerability
compared to IV glucose, therapy with hemin is usually reserved to patients with the most
debilitating symptoms: consistent with this, the patients in our study which were on hemin
infusions had the most altered levels of NO and ET-1. It may be argued that an effect of
heme arginate on inducing endothelial dysfunction cannot be ruled out a priori. Heme
arginate infusions can injure blood vessels, so that patients under long-term therapy are
usually implanted with indwelling venous lines, a condition which may actually predispose
to thrombotic events. Anecdotally, we report that 2 couples of patients had lower NO and
higher ET-1 after either hemin or glucose infusion. Although further studies may help to
shed light on a possible independent role of heme arginate in causing endothelial damage,
it is intriguing that the values of NO and ET-1 are significantly different even between
asymptomatic and symptomatic patients who are not under hemin maintenance therapy.
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Thus, an association between NO/ET-1 levels and the clinical phenotype of AHPs can be
observed, independent of the effect of hemin therapy.

Heme is a complex molecule, carefully engineered by evolution to coordinate an iron
ion at the centre of a tetrapyrrolic (protoporphyrin IX) ring, and to exploit the redox prop-
erties of iron to handle very reactive compounds, such as oxygen, which are fundamental
to life in mammals. Other than its role as an oxygen carrier in hemoglobin, heme is an
essential cofactor in several processes of the intermediate metabolism. Since patients with
AHPs are affected by an inherited enzyme dysfunction in the heme biosynthetic pathway,
some putative effects on the secondary routes of heme utilization have been proposed
to explain several metabolic alterations observed in AHPs, namely related to tryptophan
metabolism [48,49], tricarboxylic acid cycle [49,50], hyperhomocysteinemia and vitamin
B6 status [40,51], and others. Concerning vascular physiology, the prosthetic heme of NO
synthases (NOSs) is essential for dimerization of the enzyme subunits [52,53]. Additionally,
it has been very recently shown that NO triggers intracellular heme redistribution to pro-
mote the assembly of its own receptors, the soluble guanylate cyclases (sGCs) which are
heterodimeric hemoproteins themselves [54,55]. In the last few decades NO metabolism
has been the subject of several investigations aimed at understanding the mechanisms
of pathogenesis in AHPs [18,56–60]. Our findings directly confirm a dysfunctional NO
decrease in patients with clinical manifestations of AHPs, since their NO levels are signifi-
cantly lower than in AHP patients without symptoms. Furthermore, they suggest that also
endothelin-1 may play a role as a mediator of vascular damage in AHPs. Further studies
may help to clarify whether ET-1 increases as a reflection of impaired NO metabolism, or
independent mechanisms contribute to its disregulation. Figure 9 shows some metabolic
pathways which could be involved in the pathogenesis of endothelial damage in AHPs.

Finally, it would be of interest to understand whether the targeted inhibition of ALA
synthase 1 (ALAS1) translation achieved by givosiran—an effective, recently approved
siRNA-based treatment for AHPs [61,62]—may have some effect on endothelial phys-
iology, as it has already been demonstrated, with quite unexpected results, for homo-
cysteine [63–67]. In this regard, recent contributions have observed that a few patients
under givosiran treatment presented a decline in kidney function which was somewhat
worse than expected from PAKD [68,69], leading the authors to hypothesise, among other
mechanisms of kidney damage, some givosiran-induced, NO-mediated effect on renal
microcirculation [69].
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5. Conclusions

Patients with AHPs are at risk of long-term debilitating complications of vascular
nature, whereas some of the clinical manifestations of acute attacks may be directly or indi-
rectly caused by endothelial dysfunction. In this study, we demonstrated that endothelial
dysfunction is significantly more common and severe in symptomatic patients with AHPs
(regardless of whether AIP or VP), than in asymptomatic carriers of mutations associated
with AHPs or even in asymptomatic patients with biochemical alterations in heme precur-
sors alone. The alterations in the markers of endothelial dysfunction reflected the clinical
severity of the symptomatic patients, since the most altered values were detected in patients
on maintenance therapy with IV glucose or heme arginate. Intriguingly, the values of NO
and ET-1 were significantly different between asymptomatic and symptomatic patients,
even when those on hemin maintenance therapy were excluded from the comparisons.
This findings help to shed light on the pathogenesis of the protean manifestations of AHPs,
while suggesting the presence of modifier factors which may act through an effect on
endothelial functions to determine the clinical picture of this group of diseases.
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