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Abstract: Chlamydia pneumoniae, an obligate intracellular pathogen, is known as a 

leading cause of respiratory tract infections and, in the last two decades, has been widely 

associated with atherosclerosis by seroepidemiological studies, and direct detection of the 

microorganism within atheroma. C. pneumoniae is presumed to play a role in 

atherosclerosis for its ability to disseminate via peripheral blood mononuclear cells, to 

replicate and persist within vascular cells, and for its pro-inflammatory and angiogenic 

effects. Once inside the vascular tissue, C. pneumoniae infection has been shown to  

induce the production of reactive oxygen species in all the cells involved in atherosclerotic 

process such as macrophages, platelets, endothelial cells, and vascular smooth muscle 

cells, leading to oxidative stress. The aim of this review is to summarize the data linking  

C. pneumoniae-induced oxidative stress to atherosclerotic lesion development. 
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1. Introduction 

Atherosclerosis, a major public health problem in developed countries, is a chronic inflammatory 

disease of multifactor etiology, characterized by endothelial injury, accumulation of monocytic cells, 

and increased secretion of mediators of inflammation, such as interleukin (IL)-1, IL-6, and tumor 

necrosis factor (TNF)-α [1].  
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In addition to the traditional cardiovascular risk factors, in the last two decades, several infectious 

agents, such as cytomegalovirus, Helicobacter pylori, periodontal pathogens, and Chlamydia pneumoniae, 

have been implicated in the pathogenesis of atherosclerosis [2]. C. pneumoniae has been considered as 

the most plausible additional risk factor for atherosclerosis since it is the sole viable pathogen detected 

in the atherosclerotic plaque [3–6]. Moreover, C. pneumoniae is able to multiply and persist within 

vascular cells and to induce the chronic inflammatory state underlying atherosclerosis [7].  

Mainly, two C. pneumoniae virulence factors may be involved in atherogenesis: chlamydial 

lipopolysaccharide (LPS) and chlamydial heat shock protein-60 (cHSP60). LPS, a major chlamydial 

antigen able to activate an acute inflammatory response, may accelerate foam cell formation and 

induce platelet activation. Chlamydial HSP60, classically produced during chronic chlamydial 

infection and capable of activating innate immune and inflammatory responses, is responsible for 

endothelial dysfunction and proliferation of vascular smooth muscle cells (VSMCs) [8–10].  

Over the last few years, a growing body of evidence has shown that oxidative stress, resulting from 

the imbalance between the production of reactive oxygen species (ROS), such as superoxide anion, 

hydroxyl radical, and nitric oxide, and the activity of antioxidant systems, is implicated in 

atherogenesis. However, the cellular events of oxidative stress on vascular wall are very complex and 

involve several regulatory proteins and enzymes [11,12].  

C. pneumoniae infection has been shown to induce ROS production in all the cells involved in the 

atherosclerotic process such as macrophages, platelets, endothelial cells, and VSMCs leading to 

oxidative stress [13–16]. 

The aim of this review is to summarize the data linking C. pneumoniae-induced oxidative stress to 

the atherosclerotic lesion development. 

2. C. pneumoniae Infection and Atherosclerosis 

C. pneumoniae is a widespread respiratory pathogen that causes sinusitis, pharyngitis, and 

pneumonia. The majority of infections are often asymptomatic and the exposure to C. pneumoniae is 

extremely common; epidemiological studies indicate that anti-C. pneumoniae antibody prevalence is 

50% by the age of 20 and increases with increasing age [17]. 

C. pneumoniae is presumed to play a role in the pathogenesis of atherosclerosis for its ability to 

systematically disseminate from the lungs through peripheral blood mononuclear cells (PBMC) and to 

localize in several tissues, including arteries [18–21]. 

C. pneumoniae, an intracellular obligate bacterium, has a unique developmental cycle involving two 

distinct functional and morphological forms: the elementary body (EB) and the reticulate body (RB) 

(Figure 1). The EB is the metabolically inert and infectious form of the microorganism, capable of 

transient extracellular survival, whereas the RB is the intracellular replicative but not infectious form. 

The developmental cycle is initiated by attachment and entry of the infectious EB into the host-cell 

followed by the transformation of EB to RB, RB division by binary fission, and finally differentiation 

of RB back to EB, which is released from the host-cell by lysis [22]. C. pneumoniae fails to complete 

its developmental cycle when starved for nutrients, such as iron, or when exposed to certain 

antibiotics, such as penicillin, or cytokines, such as Interferon (IFN)-γ [23–25]. Under these 

conditions, C. pneumoniae generates enlarged and morphologically aberrant RBs called persistent 
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forms which can remain viable but non-infectious inside the host-cell for a long time; they are 

inherently more suited to evade the host immune response and completely refractory to antibiotic 

treatment, which makes chlamydial eradication difficult [7,26]. This may explain the complete failure 

of large randomized clinical trials (the Azithromycin in Coronary Artery Disease: Elimination of 

Myocardial Infection with Chlamydia, ACADEMIC, the Weekly Intervention with Zithromax Against 

Atherosclerotic-Related Disorders, WIZARD, the Azithromycin and Coronary Events Study, ACES, 

the CLARIthromycin for patients with stable CORonary heart disease, CLARICOR, and the 

PRavastatin Or atorVastatin Evaluation and Infection Therapy-Thrombolysis In Myocardial Infarction, 

PROVE IT-TIMI) in showing any benefit of anti-chlamydial treatment [27]. In addition, other factors, 

such as the lack of markers of persistent chlamydial infection and the enrolment of patients with 

advanced coronary artery disease, should also be considered [2]. As a result, persistent chlamydial 

forms may act as a chronic stimulus in the perpetuation of vascular inflammation, thus exacerbating 

the atherosclerotic process [2,27]. 

Figure 1. Schematic representation of C. pneumoniae developmental cycle. Infectious but 

metabolically inactive EB enters the host-cell membrane via endocytosis; EB transforms in 

the replicative and metabolically active RB; RB redifferentiates into EB, which is released 

by the host-cell via lysis. In the presence of IFN-γ, penicillin G, or other stressful 

conditions, intracellular C. pneumoniae generates a non-infectious persistent form.  

 

The first suggestion that C. pneumoniae may be associated with atherosclerotic cardiovascular 

diseases was proposed in 1988 by Saikku et al. [28]. They showed that patients with acute myocardial 

infarction and chronic heart disease had more frequently (68%) anti-C. pneumoniae antibodies than 

controls (17%). Since then, several studies (cross-sectional, case-control, or retrospective) have 

confirmed the association between serological evidence of C. pneumoniae infection and atherosclerotic 

cardiovascular disease (CVD) although others (prospective studies) have failed to demonstrate such 
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association [29–34]. The main limitation of these studies is the difficulty to identify differences in 

seropositivity between patients and controls, since a large part of the population has pre-existing IgG 

antibodies from previous exposure [35].  

Further evidence that C. pneumoniae might play a role in atherosclerosis came from studies in 

which the microorganism has been detected in atherosclerotic lesions of coronary and carotid arteries 

and aneurysm of abdominal aorta but not in healthy arteries. By polymerase chain reaction,  

C. pneumoniae DNA has been detected in atherosclerotic plaques; by immunohistochemistry,  

C. pneumoniae has been found in macrophages, endothelial cells, and smooth muscle cells within 

atherosclerotic lesions; by electron microscopy, C. pneumoniae has been shown in atheroma-associated 

foam cells [36–42]. However, wide variability in C. pneumoniae detection exists as a result of a lack of 

standardized methods [35]. 

Even more important are in vivo and in vitro studies showing the atherogenic role of  

C. pneumoniae. In vivo studies have demonstrated that C. pneumoniae infection may accelerate the 

progression of atherosclerotic lesion in hyperlipidemic animal models suggesting that this 

microorganism is a co-risk factor with hyperlipidaemia and that the atherogenic effects of  

C. pneumoniae are contingent on the vascular response to hyperlipidaemia [43–47]. In particular, 

recent studies have shown that, in hypercholesterolemic rabbit models, GroEL1 (also known as 

cHSP60) administration enhanced fatty streak formation and macrophage infiltration in atherosclerotic 

plaques, which may be mediated by elevated lectin-like oxidized low-density lipoprotein receptor 

(LOX)-1 expression [48,49]. 

Importantly, mouse models have provided the evidence that C. pneumoniae is able to disseminate 

via bloodstream to the vasculature and to multiple organs. In particular, it has been showed that 

intranasal inoculation of C. pneumoniae was followed initially by recovery of the microorganism 

within lungs, PBMCs, heart, and later into the brain [50–53], demonstrating also the presence of 

persistent chlamydial forms. 

Chlamydial DNA in PBMCs has also been demonstrated in patients with CVD by several  

studies [54–56]. Circulating infected mononuclear cells have been considered as a means by which  

C. pneumoniae can induce a chronic systemic inflammation contributing to the development and 

progression of CVD. 

In vitro studies have shown the ability of C. pneumoniae to infect and multiply within  

atheroma-associated cell-types, resulting in various pro-atherosclerotic effects [57–59]. Infection of 

monocytes with C. pneumoniae increases adherence of infected monocytes to endothelial cells and 

accelerates foam cell formation [60–64]. Furthermore, the multiplication of C. pneumoniae inside 

monocytes or macrophages triggers the production of pro-inflammatory cytokines such as IL-1α, IL-6, 

monocytes chemoattract protein-1 (MCP-1), macrophage inflammatory protein 1α, and IL-12, 

promoting lesion progression [65,66]. Moreover, C. pneumoniae has been observed to activate 

macrophages stimulating TNF-α and matrix metalloproteinase (MMP) expression, which may 

contribute to plaque weakening and subsequent rupture [67]. Recently, our study has shown the 

possible involvement of IL-17A in C. pneumoniae induced foam cell formation [68]. 

Infection of endothelial cells by C. pneumoniae results in enhanced adherence and migration of 

leukocytes into the vascular wall contributing to the inflammatory state. This occurs through increased 

nuclear factor kappa-B (NF-κB)-mediated secretion of IL-1, IL-8, and MCP-1 paralleled by expression 
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of adhesion molecules (endothelial-leukocyte adhesion molecule-1, ELAM-1, intercellular adhesion 

molecule-1, ICAM-1, and vascular cell adhesion molecule-1, VCAM-1) [49,69–72]. C. pneumoniae 

infection of endothelial cells can also trigger VSMCs proliferation through the induction of human 

heat shock protein 60 (hHSP60) and stimulation of the mitogenic activity of platelet-derived growth 

factor (PDGF). There is also evidence that C. pneumoniae infection in endothelial cells promotes the 

secretion of plasminogen activator inhibitor-1 (PAI-1) inducing platelet activation, which would 

further contribute to advanced plaque progression [73–76]. 

Lastly, infection of VSMCs by C. pneumoniae induces the production of IL-6, basic fibroblast 

growth factor (bFGF), and MMP, via NF-κB activation, contributing to plaque destabilization, and  

MCP-1 release through toll-like receptor 2 (TLR-2), promoting monocyte migration into intima [77,78]. 

3. C. pneumoniae Induces Oxidative Stress in Vascular Cells 

Emerging evidence have suggested that C. pneumoniae infection increases ROS production in all 

the cells involved in atherosclerosis, such as macrophages, endothelial cells, platelets, and VSMCs, 

leading to oxidative stress (Figure 2). 

Classically, ROS in macrophages play an important role in host defense by killing the invading 

microorganisms [79]. Nevertheless, by modulating cellular redox balance C. pneumoniae is able to 

survive within macrophages [13,80], generating persistent chlamydial forms. Consequently, 

macrophages may act as a reservoir of C. pneumoniae sustaining chronic infection [81–84]. 

Moreover, C. pneumoniae infection in macrophages, considered as a hallmark of atherosclerosis, 

may induce oxidative stress. Specifically, C. pneumoniae has been shown to induce monocytes to 

oxidize LDL through the NADPH oxidase-mediated release of superoxide anion (O2−) [13]. 

Furthermore, C. pneumoniae infection may also promote the accumulation of LDL into macrophages, 

partly by increasing the expression of lipoprotein lipase via LPS and by dysregulating receptors 

involved in cholesterol efflux via nuclear receptor Peroxisome Proliferator-Activated Receptor 

(PPAR)-γ [85,86]. In accordance with these findings, we have recently observed that resveratrol, a 

powerful antioxidant, may prevent C. pneumoniae induced foam cell formation by decreasing 

superoxide anion-mediated LDL oxidation and regulating cholesterol efflux into macrophages [68]. 

Some lines of evidence have also suggested that C. pneumoniae-induced oxidative stress in 

macrophages may contribute indirectly to the progression and destabilization of atherosclerotic plaque. 

Specifically, C. pneumoniae infection augments cell death induced by the accumulation of oxLDL  

in macrophages, accelerating the formation of atherosclerotic lipid-rich core [87] and worsening  

vascular inflammation. 

Interestingly, C. pneumoniae-induced ROS overproduction has also been demonstrated in platelets: 

C. pneumoniae LPS induces the production of ROS through Nitric Oxide synthase (NOS) and 

lipoxygenase (LOX) pathways, and the activation of protein kinase C [14,88], contributing to LDL 

oxidation, platelet activation and, consequently, thrombotic vascular occlusion during acute coronary 

events [89]. 
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Figure 2. Schematic representation of the cellular events linking C. pneumoniae-induced 

oxidative stress to atherosclerotic lesion development. In platelets, C. pneumoniae 

contributes to platelet activation and aggregation; in endothelial cells, C. pneumoniae leads 

to endothelial dysfunction and induces an increased surface expression of hHSP60;  

in macrophages, C. pneumoniae induces the oxidation of LDL and the uptake of oxLDL, 

leading to foam cell formation and cHSP60 stimulates macrophages to synthetize MMP;  

in VSMCs, C. pneumoniae enhances cell proliferation and migration. 

 

C. pneumoniae-induced oxidative stress in platelets may also contribute to adhesion of 

monocytes/macrophages and proliferation and migration of VSMCs. In fact, further studies on  

C. pneumoniae interaction with platelets showed the ability, of this microorganism, to stimulate  

the secretion of mediators of inflammation such as IL-1, tumor growth factor (TGF)-β, and TNF-α [90,91].  

Noticeably, C. pneumoniae infection induces also oxidative stress in endothelial cells and VSMCs, 

promoting endothelial dysfunction and cell migration and proliferation respectively. 

It is well known that endothelial dysfunction, characterized by altered endothelium-mediated 

vasodilation, increased vascular reactivity and platelet activation, is an early event in  
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atherosclerosis and it is due in large part to oxidative stress and reduced endothelial cell nitric oxide 

bioavailability [92]. 

C. pneumoniae-mediated oxidative stress may induce endothelial dysfunction through three 

mechanisms. Firstly, cHSP60 significantly increases superoxide anion production and decreases nitric 

oxide levels [93]. A further finding supporting the C. pneumoniae-mediated dysregulation of  

ROS-related enzymes comes from a recent study that has demonstrated the increased ROS production 

in infected endothelial cells through the up-regulation of NADPH oxidase (NOX-2 and NOX-4) and 

down-regulation of superoxide dismutase-1 (SOD-1) and thioredoxin-1 (TRX-1) [16]. 

Secondly, C. pneumoniae-mediated oxidative stress in endothelial cells induces an increased 

surface expression of hHSP60. In fact, antioxidant treatment significantly reduced hHSP60 expression 

in response to C. pneumoniae infection [16]. In this regard, Wick et al. [94] first suggested that the 

autoimmune reactions against hHSP60 may play a critical role in atherogenesis since both chlamydial 

and human HSP60 might mimic the ability of C. pneumoniae to stimulate the activation of vascular 

cells, leading to vascular endothelial injury.  

Thirdly, C. pneumoniae-mediated oxidative stress contributes to endothelial dysfunction through 

vascular inflammation. Specifically, C. pneumoniae has been shown to promote endothelial cell 

necrosis and, as a result, to enhance the inflammatory effect of oxLDL [95]. A recent study has also 

shown that oxLDL-induced inflammation may be related to elevated levels of LOX-1, mediated by the 

phosphoinositide 3-kinase-Akt signaling pathway, endothelial NO synthase activation, NOX-mediated 

ROS production and mitogen activated protein kinase (MAPK) activation in GroEL1-stimulated 

human coronary artery endothelial cells [48]. 

Finally, in VSMCs, C. pneumoniae induces the production of ROS that restricts its replication. 

Under these conditions, C. pneumoniae may generate persistent forms that, in turn, aggravate chronic 

vascular inflammation. Limited growth of C. pneumoniae in VSMCs may be due to the fact that ROS 

production appears to occur independently of NADPH-oxidase activity and myeloperoxidase [96]. 

In addition, several studies have demonstrated that C. pneumoniae infection in VSMCs promotes 

the uptake of oxLDL, increasing cell proliferation, migration, and adhesion from media to intima 

through the induction of hHSP60 expression and the activation of MAPK and toll-like receptor 4 

(TLR4) pathways [97,98]. Specifically, C. pneumoniae HSP60 activated p44/42 MAPK and increased 

TLR4 mRNA expression [15,99]. 

4. Antioxidant Strategies in C. pneumoniae-Mediated Atherosclerosis 

C. pneumoniae-induced oxidative stress and inflammation are thought to contribute to the initiation, 

progression and rupture of lipid-rich vascular lesion, and, hence, several treatment strategies have been 

examined to reduce or prevent them. 

Curcumin and resveratrol have been shown to reduce ROS production in C. pneumoniae infected 

THP-1 cells by inhibiting protein kinase C, a trigger of NOX activity, and the assembly of NOX 

subunits [100]. A further example includes the reduced ROS production in Chlamydia-primed human 

monocytes by cyclooxygenase (COX)-2 inhibitors [101]. 
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Some studies have suggested that statins, such as simvastatin, cerivastatin, and fluvastatin, may 

reduce vascular inflammation induced by C. pneumoniae in macrophages, endothelial cells and 

VSMCs [71,102,103]. 

Interestingly, statins are also well known to reduce oxidative stress [104], since they inhibit 

oxidants formation by reducing NOX-dependent ROS production, increasing NO availability and 

stimulating antioxidant defense mechanisms [104]. In fact, PROVE IT-TIMI and a number of 

subsequent studies [105,106] highlighted the benefit of statin therapy in reducing cardiovascular  

events [107]. Therefore, more research is helpful to evaluate if statins, as well as other compounds 

such as ACE inhibitors, may act as antioxidants in C. pneumoniae-mediated CVD, even though a 

better understanding of the interaction between C. pneumoniae and the host would be needed to 

identify specific proteins of persistent chlamydial forms for therapeutic purposes. 

5. Conclusions  

Based on the evidence above described, C. pneumoniae interaction with vascular cells results in an 

imbalance in cell redox state and, consequently, induces oxidative stress responsible partly for the 

typical pathological changes of atherosclerotic plaques. In particular, C. pneumoniae-induced oxidative 

stress may be involved in both the early stages of atherosclerosis, by promoting macrophage-derived 

foam cell formation and endothelial dysfunction, and the late stages, by stimulating platelet activation 

and VSMCs migration and proliferation. In addition, C pneumoniae, generating persistent forms and 

stimulating cytokine production, is able to exacerbate vascular inflammation. Hence, C. pneumoniae 

infection in vascular cells may have a critical role in the vicious cycle between oxidative stress and 

inflammation in relation to atherosclerosis. As a result, oxidative stress and inflammation induced by 

C. pneumoniae synergize to accelerate atheroma formation and progression, thus increasing risk for 

vascular disease. 
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