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The Bacillus cereus emetic pathotype is responsible for important food-borne intoxications. Here, we describe the complete ge-
nome sequence of bacteriophage Deep-Blue, which is able to infect emetic strains of B. cereus. Deep-Blue is a 159-kb myophage
of the Bastille-like group within the Spounavirinae.
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Bacillus cereus has been implicated in more than 1,000 food-
borne intoxications each year in Europe (1), causing either

diarrheal or emetic syndromes (2). Bacteriophages represent a
promising approach to detect and control pathotypes of B. cereus,
and consequently improve food safety (3). Here, we report the
complete genome of bacteriophage Deep-Blue, a newly isolated
myovirus infecting emetic strains of B. cereus.

Myovirus Deep-Blue was isolated from an agricultural soil col-
lected in Gembloux (Belgium) through sample enrichment using
a mixture of emetic B. cereus strains, followed by three single-
plaque purification steps using the emetic Bacillus weihenstepha-
nensis strain BtB2-4 (4) as host. Morphology was determined
using transmission electron microscopy (Mica Technology
Platform, UCL). Whole-genome sequencing of Deep-Blue was
carried out at Macrogen Inc. (South Korea) using 454 pyro-
sequencing. Trimmed GS-FLX Titanium reads were assembled in
a single contig using the GS De Novo Assembler v2.9 software (454
Life Sciences). The potential coding sequences (CDSs) were pre-
dicted using Glimmer v3.02 (5), RAST 2.0 (6), GenMarkS 2.5p
(7), and FgenesV (http://www.softberry.com/). All predicted
CDSs were functionally annotated using BLASTp searches against
the nonredundant NCBI database. tRNAs were predicted using
tRNAscan-SE v1.21 (8). EasyFig 2.2.2 (9) and CoreGenes 3.0 (10)
were employed to compare the genome of Deep-Blue with other
Bastille-like phages at the nucleotide and protein level, respec-
tively.

The Deep-Blue genome spans 158,501 bp with a G�C content
of 39.95% and a coding density of 90%. It contains 226 putative
CDSs, of which 148 have no predicted functions. The majority of
CDSs (192) are transcribed in one orientation. The Deep-Blue
genome also contains 19 tRNAs. Predicted CDSs were categorized
into seven functional groups: packaging proteins, structural com-
ponents, proteins implicated in host interaction, phage nucleotide
metabolism, DNA synthesis, putative regulatory proteins, and
host lysis. Because Deep-Blue also contains type-1 thymidylate
synthase (TS1) and dihydrofolate reductase (DHFR) coding
genes, it belongs to the recently proposed Bastille-like phage
group within the subfamily Spounavirinae of the Myoviridae (11,

12). Among the 148 hypothetical proteins with no predicted func-
tions, six are unique to Deep-Blue, whereas the others are found in
at least one other Bastille-like phage. When the nucleotide se-
quence of Deep-Blue is compared with the genome of Myoviridae
phages, a higher synteny is shared with Bastille (13) than with the
SPO1 (14) and Twort (15) phages (GenBank accession numbers
NC_018856, NC_011421, and NC_007021, respectively). Addi-
tionally, a proteome comparison with CoreGenes 3.0 using a
BLASTp threshold score of 75 showed that Deep-Blue shares 15%
of its proteome with that of Bastille phage, 77% with JBP901 (16),
79% with Bcp1 (17), and 88% with vB_BceM_Bc431v3 (18)
(GenBank accession numbers KJ676859, KJ451625, and JX094431,
respectively), whereas it shares only 1% with SPO1 and 4% with
Twort. Based on these relationships with other Bastille-like
phages, the existence of terminal redundancy regions at the
genomic ends of Deep-Blue can be expected.

Nucleotide sequence accession number. The genome se-
quence of bacteriophage Deep-Blue was deposited in GenBank
under the accession no. KU577463.
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