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Glioblastoma (GBM), the most common malignant brain tumor in adults, contains a subpopulation of cells with a stem-like
phenotype (GS-cells). GS-cells can be maintained in vitro using serum-free medium supplemented with epidermal growth factor,
basic fibroblast growth factor-2, and heparin. However, this method does not conserve amplification of the Epidermal Growth
Factor Receptor (EGFR) gene, which is present in over 50% of all newly diagnosed GBM cases. GS-cells with retained EGFR
amplification could overcome the limitations of current in vitromodel systems and contribute significantly to preclinical research
on EGFR-targeted therapy. This review recapitulates recent methodological approaches to expand stem-like cells from GBM with
different EGFR status in order to maintain EGFR-dependent intratumoral heterogeneity in vitro. Further, it will summarize the
current knowledge about the impact of EGFR amplification and overexpression on the stem-like phenotype of GBM-derived GS-
cells and different approaches to target the EGFR-dependent GS-cell compartment of GBM.

1. Introduction

Glioblastoma (GBM) is the most common malignant brain
tumor in adults. Despite advances in surgical procedures and
therapeutic options, the live expectancy of GBM patients
has remained poor with a median survival of only 12–15
months [1]. Although GBMs are characterized by extensive
intra- and intertumoral heterogeneity at the histological and
molecular level, they can be divided into four major subtypes
based on their global expression profiles associated with
distinct prognosis [2, 3]. According toVerhaak et al., these are
the mesenchymal, neural, proneural, and classical subtypes,
each defined by specific genetic aberrations or expression
of marker genes (mesenchymal: NF1; neural: SYT1; proneu-
ronal: PDGFR𝛼/IDH1, classical: EGFR).

Pediatric and adultGBMs contain a subpopulation of cells
with a stem-like phenotype (GBM stem-like cells; GS-cells),
identified by the cell surface marker CD133 (also termed
Prominin-1) [4–8]. Similar to adult neural stem cells (NSCs),
GS-cells contain the ability to self-renew and to differentiate
along neural lineages, that is, astrocytes, neurons, and oligo-
dendrocytes, when cultured in differentiation medium (fetal

calf serum, retinoic acid, and cyclic adenosine monophos-
phate) [5, 9]. For GS-cells, the ability to initiate tumors that
recapitulate the heterogeneous phenotype of their parent
tumor when implanted into the brain of immunodeficient
mice is considered the central criterion to distinguish GS-
cells from nonstem-like tumor cells.

At the molecular level, GS-cells in neurosphere cell
culture have been described to closely mirror the genotype
and the transcriptional phenotype of primary GBM tissue as
opposed to conventional adherent monolayers which were
established in the presence of serum [10–15]. This is also
reflected in the conservation of the molecular subtypes of
GBM inGS-cells, while these are lost in conventional cell lines
[2, 14, 16, 17].

GS-cells were found to be highly resistant to radio- and
chemotherapy in vitro and in vivo [4, 8, 18] and to adapt
rapidly to changes in the tumor microenvironment, that is,
acidic stress [19] or hypoxia [20, 21]. Data from our lab
could further demonstrate that GS-cells undergo a metabolic
switch from glycolysis to the pentose phosphate pathway
in response to hypoxia, resulting in decreased proliferation
and increased migration [22]. This indicates an inherent

Hindawi Publishing Corporation
Stem Cells International
Volume 2015, Article ID 427518, 11 pages
http://dx.doi.org/10.1155/2015/427518

http://dx.doi.org/10.1155/2015/427518


2 Stem Cells International

metabolic plasticity, translated into phenotypic properties
such as migration or proliferation, in order to adapt to
microenvironmental oxygen changes. Finally, these mecha-
nisms might also contribute to treatment resistance.

Clinically, a stem-cell related gene expression signature
in patient-derived tumors (self-renewal signature [23]) was
found to be associated with resistance to radio/chemotherapy
in GBM patients [24]. Additionally, a high proportion of cells
positive for putative GS-cell markers such as CD133, nestin,
or PDPN was a negative prognostic factor for progression-
free survival (PFS) and overall survival (OS) in GBMpatients
[11, 25–28].This has led to an investigation of GS-cell targeted
therapies (reviewed in [29–31]), including differentiation
therapies [9, 32], oncolytic therapies with CD133-targeted
measles virus [33], or indirect targeting of the perivascular
GS-cell niche [20, 34, 35].

The most frequent genetic alteration in GBMs is an
amplification of the Epidermal Growth Factor Receptor
(EGFR) gene and/or its overexpression at the protein level,
which is present in 40–60% of all GBM cases [36, 37].
Half of the amplified cases additionally express a constitu-
tively active, oncogenic EGFR deletion variant lacking the
ligand-binding domain (exons 2–7) termed EGFRvIII [38,
39]. EGFR/EGFRvIII expression is associated with increased
proliferation and migration of GBMs, contributing to the
malignant phenotype of these tumors in an angiogenesis-
independent manner [40–42]. Additionally, expression of
EGFRvIII has been found to promote and accelerate angio-
genesis in preclinical GBMmodels in vivo [43, 44]. However,
therapeutic targeting of the EGFR by inhibiting tyrosine
kinase activity or by interfering with ligand-induced acti-
vation has not improved overall life expectancy for GBM
patients when compared to standard treatment [45–48].

One of the major drawbacks for the analysis of the
impact of EGFR amplification on targeted therapy is that it is
rapidly lost when cells from EGFR-amplified GBM are taken
into culture [49]. As a result of this limitation, preclinical
models for studying EGFR biology in GBM largely relied
on ectopic overexpression of EGFR and/or EGFRvIII in
nonamplified GBM cell lines and a subsequent blockade of
the overexpressed proteins [50–52]. Over the years, different
methods have been developed to overcome these limitations
and to maintain EGFR amplification in addition to a stem-
like phenotype in vitro, which allowed for the investigation
of the contribution of the EGF/EGFR axis to a glioma stem
cell phenotype in an EGFR-amplified background.

2. Glioblastoma Cells with a Stem-Like
Phenotype In Vitro

Different approaches have been described to isolate and to
expand GS-cells from GBM tissue in vitro based on pheno-
typic criteria or marker expression. Using cell culture condi-
tions originally developed to promote in vitro growth of neu-
ral precursor cells from the neurogenic subependymal zone
(serum-free medium supplemented with epidermal growth
factor (EGF) and basic fibroblast growth factor (bFGF)),
Ignatova et al. described cells with stem-like features isolated

from cortical glial tumors (anaplastic astrocytoma, WHO
grade III and GBM, andWHO grade IV) [7]. Phenotypically,
cells selected under these conditions grew as neurospheres
with a heterogeneous cellular morphology, were clonogenic,
and expressed neural lineage markers such as nestin and glial
fibrillary acidic protein (GFAP).

Using a similar approach, Galli et al. isolated stem-like
cells from glioblastoma tissue which, in addition to their
phenotypic analogy to neural precursor cells, established
tumors upon orthotopic xenotransplantation in nude mice
[4].

Pollard et al. described glioma stem cells propagated as
adherent cultures on a laminin matrix using growth factor-
supplemented neurosphere medium in the absence of serum,
thereby preventing differentiation [53]. These cells exhibited
stem-like features in vitro and also initiated tumors that
recapitulated the cellular heterogeneity of primary GBM.

An alternative approach to isolate tumor stem-like cells is
based on biological properties of these cells and enriches the
“side population” of dissociated tumor tissue or established
tumor cell lines, including glioblastoma [54, 55]. Here, GS-
cells are identified by their high efflux capacity for chemical
dyes like Hoechst 33342 due to the high expression of drug
resistance-related ABC-transporters like ABCG2 [56–58].
The side population of GBM cell lines has been shown to
contain cells with stem-like properties [54, 59, 60]. However,
this approach is presently challenged since a side population
could not be detected in neurospheres derived from primary
GBM tissue [61]. Furthermore, Golebiewska et al. could
demonstrate that the side population derived directly from
primary GBM tissue mostly contains brain endothelial cells
and is nontumorigenic in vivoupon xenotransplantation [62].

Singh et al. isolated stem-like cells from GBM by enrich-
ment of CD133-positive cells from primary tumor material.
They could show that as little as 100 CD133-positive cells
initiated a tumor upon orthotopic injection, while 100.000
CD133-negative cells did not, delivering key evidence that
CD133+ cells are glioma stem-like cells. Based on these
findings, CD133 has since been the most widely used marker
for identifying GS-cells and is so far the most reliable
molecule for isolation and/or identification of GS-cells. How-
ever, the idea of a restrictive model where CD133 expression
defines GS-cells is currently under debate [63]. For example,
expression of CD133 is subject to changes in the tumor
microenvironment such as hypoxia, indicating that CD133
might be a marker for bioenergetic stress [14, 22, 64]. Addi-
tionally, different reports suggest that CD133-negative cells
can also exhibit stem-like characteristics, most importantly
the capacities for self-renewal and tumor initiation in vivo
[53, 65]. A comprehensive overviewof the complex regulation
of CD133 in GBM is provided by Campos and Herold-Mende
in [66].

At present, the most reliable method to propagate GS-
cell lines from primary GBM is the selection for cells that
grow as neurospheres in the absence of serum and in the
presence of EGF and bFGF [67]. These cells then have to
be extensively characterized for their capacities for serial
self-renewal, differentiation, and in vivo tumorigenicity [68].
Although CD133 expression identifies a possible stem-like
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lineage within GBM, it is not the single universal marker
identifyingGS-cells [65]. In order to fully recapitulate the cel-
lular heterogeneity of the stem-like compartment of GBM in
vitro, different isolation approaches and cell culture protocols
have to be combined and refined, for example, the modeling
of the hypoxic stem-cell niche in vitro, which might increase
the frequency of isolated GS-cells [20, 22].

3. EGFR-Amplified Glioblastoma Cells with
a Stem-Like Phenotype In Vitro

One major shortcoming of the above-mentioned methods is
that although GS-cells resemble the genetic and transcrip-
tional phenotype of the original tumor closely [13, 14], EGFR
amplification as the most frequent molecular alteration is
usually not preserved in vitro [49]. EGFR amplification can
only be maintained for a limited number of passages in vitro
(𝑛 < 5) either using conventional or GS cell culture condi-
tions at normoxia (21% O

2
) or at hypoxia (1% O

2
) [14, 69].

Experimental systems to retain EGFR amplification present
in the original tumor have thus largely relied on immediate
orthotopic implantation of freshly resected tissue from GBM
with EGFR amplification into nude mice [49, 70, 71] and
by subsequent serial passaging in vivo of these xenograft
tumors [42, 72, 73]. Apparently, the in vivo conditions provide
a favorable microenvironment for EGFR-amplified cells,
whereas standard in vitro conditions exert a negative selection
pressure for those cells [38, 49]. However, after several pas-
sages in vivo (4-5), the serially transplanted tumors also lose
their EGFR overexpression and histologically change from
an invasive to a solid, vascularized morphology (“angiogenic
switch”). These xenotransplantation approaches, although
delivering valuable information, are laborious, time consum-
ing (the time to development of symptoms ranges from 70
to 150 days), difficult to standardize, and limited to analyses
in vivo. To study EGFR amplification in vitro, permanent cell
lines with endogenous EGFR amplification and with stem-
like features, such as self-renewal, clonogenicity, and the
potential for in vivo tumorigenicity, would be the ideal model
system.

In this regard, short-term culturing of GBM-derived
primary cells as three-dimensional tumor spheres under
stem cell conditions rather than as adherent monolayers
has indicated that EGFR amplification can be maintained in
vitro [74–76]. When propagated in the absence of serum,
tumor spheroids retained EGFR amplification and an asso-
ciated polysomy of chromosome 7 as determined by FISH
analysis. Additionally, heterogeneous EGFRvIII-expression,
when present in the original tumor, was preserved in vitro
as well [77]. Furthermore, tumor-derived spheroids from
short-term cultures have been shown to initiate xenograft
tumors that phenocopy the EGFR status of the original tumor
in vivo, even when cultured in the presence of serum on
agar-coated cell culture plates in order to avoid attachment
[70, 78]. Culturing cells derived from EGFR-amplified GBMs
as spheroids can conserve EGFR aberrations for a limited
number of passages, thereby allowing for analyses of EGFR-
related processes in a naturally EGFR-amplified background

in vitro and in vivo, for example, response to EGFR-targeted
therapy with tyrosine kinase inhibitors (TKIs) ormonoclonal
antibodies (mAbs) [70, 74, 76, 77].

One possible reason for the loss of EGFR amplification
in vitro in addition to the growth pattern in vitro (adherent
versus spheroid) is the propagation of tumor-derived cells in
the presence of exogenousmitogens, especially EGF. EGF has
been shown to inhibit the growth of EGFR-amplified MDA-
468 breast cancer and A431 epidermoid carcinoma cells,
which both strongly overexpress EGFR at the protein level
[79–81]. In addition, EGF can induce apoptosis by activating
the EGFR in A431 cells, which can be abrogated by tyrosine
kinase inhibition [82]. Abundance of EGFR signaling due
to increased receptor expression and subsequent ligand-
induced overstimulation of the EGFR pathway therefore
seems to be a major negative selector for EGFR-amplified
GBM cells in vitro.

Following this line of evidence, we recently demon-
strated that themodulation of exogenous EGF concentrations
and otherwise unaltered neurosphere conditions preserves
genetic EGFR aberrations in an EGF-dependent manner.
Omitting EGF from the cell culture medium when primary
GBM cells are taken into culture preserved EGFR ampli-
fication and EGFRvIII expression with high success rates
(approximately 40% of all tumors with EGFR amplification
taken into culture) [69]. By applying different EGF concen-
trations (0 to 20 ng/mL), we were able to generate isogenic
permanent cell lines from the same tumor with stable EGFR
amplification and EGFRvIII expression (>15 passages) in
the absence of EGF and nonamplified, EGFRvIII-negative
cell lines in the presence of 20 ng/mL EGF. This method
therefore allows for the conservation of EGFR-dependent
intratumoral heterogeneity in vitro. The cell lines exhib-
ited a stem-like phenotype; that is, they expressed CD133,
showed the capacity for self-renewal, could be differentiated
along astrocytic, oligodendrocytic, and neuronal lineages,
and recapitulated the heterogeneous EGFR expression of the
original tumor when implanted into immunocompromised
mice. Importantly, tumorigenicity was enhanced for EGFR-
amplified cells (median survival 102 versus 117 days, 𝑝 =
0.0018, log-rank test), emphasizing the relevance of EGFR
expression for the progression of GBM in vivo.

Spontaneous conservation of EGFR amplification in per-
manent cell lines with a stem-like phenotype was however
reported occasionally even in the presence of EGF.Mazzoleni
et al. described two neurosphere cell lines with stem-like
features and heterogeneous EGFR amplification maintained
under standard neurosphere conditions, termed L0306 and
L0627 with low and high EGFR amplification, respectively
[83]. Importantly, the authors could show that reduction
of exogenous EGF led to a reexpression of EGFR protein
in cells formerly negative for EGFR. Furthermore, our own
data recently indicated that the highly EGFR-amplified L0627
could be propagated permanently in the absence of EGF
without any changes in proliferation, EGFR amplification,
or stem-like features, while EGF withdrawal from L0306 led
to significantly reduced proliferation [84, 85]. This finding
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indicates that high level EGFR amplification might be a
prerequisite for the generation of permanent cell lines from
EGFR-amplified GBM in the absence of EGF.

4. EGFR and a Stem-Like Phenotype in GBM

The apex cell of the cellular hierarchy of GBM still remains
elusive [1, 86, 87]. However, experimental evidence from a
genetically engineered mouse brain tumor model that allows
for lineage tracking of neural stem/progenitor cells indicates
that NSCs have to be considered the prime suspects for the
cell of origin in GBM [88]. Furthermore, adult NSCs share
key characteristics with GS-cells, such as the capacity for
self-renewal and differentiation as well as spherical growth
in vitro under the same cell culture conditions and a highly
migratory phenotype, albeit with different dynamics [1, 86,
89]. Additionally, the reliance on stimulation with specific
exogenous growth factors in order to maintain a stem-like
phenotype is striking. For NSCs, EGF-induced activation
of EGFR increases proliferation, survival, and migration,
while inhibiting differentiation, whereas withdrawal of EGF
from NSC cultures leads to differentiation and cell death
(Figure 1(a)) [90]. For GS-cells, however, we and others
could show that proliferation and maintenance of a stem-
like phenotype were solely dependent on bFGF and not on
EGF, even though GS-cells were still sensitive to stimulation
with exogenous EGF and responded with enhanced prolif-
eration and neurosphere size (Figure 1(b)) [69, 74, 91–93].
Furthermore, withdrawal of EGF led to preservation or even
a regain ofmolecular EGFR aberrations and/or EGFR protein
overexpression, which is usually lost in the presence of EGF
[69, 83, 84]. One possible explanation is that strong over-
expression of EGFR renders cells autonomous of exogenous
ligand stimulation through ligand-independent mechanisms
or spontaneous receptor activation [94–97]. Moreover, GS-
cells with conserved EGFR amplification and protein over-
expression secrete EGF in amounts that are sufficient to
stimulate EGFR phosphorylation in an autocrine activation
loop [69]. Even relatively small amounts of secreted EGF can
activate EGFR signal transduction, since only a single EGF
molecule is necessary to activate one EGFR dimer [98].

Within the stem-like compartment of EGFR-amplified
GBM, EGFR seems to define a distinct cellular hierarchy
[83, 99]. By dividing EGFR-amplified GS-cells into EGFRhigh

and EGFRlow cells by fluorescence activated cell sorting,
Mazzoleni et al. could determine an EGFR-dependent cel-
lular hierarchy with distinct molecular and functional phe-
notypes. The authors described high EGFR expression to
confer the highestmalignancy toGS-cells. Similarly, we could
demonstrate that GS-cells with retained EGFR amplification
proliferated much faster in vivo than GS-cells from the same
primary tumor without EGFR amplification. These results
indicate a higher degree of “stemness” associated with EGFR
amplification and EGFR overexpression [69, 83].

EGFR amplification and the EGFR gene rearrangement
events leading to the loss of exons 2–7 resulting in EGFRvIII
expression are considered to be early events in GBM devel-
opment [99]. In analogy to the unaltered full-length EGFR,

Neural stem/progenitor cells

Differentiated cell

+EGF

+EGF

−EGF

(a)

Glioblastoma stem-like cells

EGFR

EGF

+EGF −EGF

EGFRhigh

EGFRlow

(b)

Figure 1: EGF/EGFR-dependent plasticity of neural stem/progen-
itor cells (NSC) and glioma stem-like cells (GS-cells). (a) In NSCs,
EGF promotes self-renewal and proliferation, while withdrawal of
EGF leads to terminal differentiation along astrocytic, neuronal,
and oligodendrocytic lineages. (b) In GS-cells, EGF modulates the
expression of EGFR at the protein level and EGFR amplification
present in the original tumor. Withdrawing EGF from cell culture
can in some cases lead to an upregulation of EGFR expression, while
repeated stimulation with exogenous EGF reduces the amount of
EGFR in the cells.

EGFRvIII is associated with a cellular hierarchy in EGFRvIII-
positive GBM (Figure 2). Interestingly, EGFRvIII-positive
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EGFRvIII

GS-cell

Figure 2: EGFRvIII-dependent hierarchy of glioma stem-like cells
(GS-cells). An EGFRvIII-expressing GS-cell at the apex of the
cellular hierarchy in GBM can divide into EGFRvIII-positive and
negative cells, thereby maintaining the EGFRvIII-positive GS-cell
reservoir. Within a limited time frame, EGFRvIII-negative cells
can regain EGFRvIII expression, an ability which is lost further
downstream in the EGFRvIII-dependent hierarchy [69, 83, 98].

cells can give rise to both EGFRvIII-positive and -negative
cells. However, reexpression of EGFRvIII can only occur
in a cell that has just recently lost EGFRvIII and has not
persisted in an EGFRvIII-negative state for increased time
duration [83, 99]. It has also been demonstrated that GBM
contain a CD133+/EGFRvIIIhigh subpopulation of stem-like
cells [100]. Additionally, EGFRvIII can keep glioma cells in
an undifferentiated, stem-like state whereas differentiation
of EGFRhigh/EGFRvIII+ GS-cells leads to downregulation
of both receptors and a loss of stem-like potential [101,
102]. Vice versa, upregulation of EGFR in a telomerase
reverse transcriptase- (TERT-) dependentmanner allows dif-
ferentiated glioma cells to acquire stem-like features [103].
Furthermore, EGFRvIII has been shown to enhance in vivo
tumorigenicity of GBM cells in cooperation with EGFR,
indicating an enhanced stem-like potential in the presence of
EGFRvIII [50, 69, 102].

5. Targeting Glioma Stem-Like Cells via
EGFR/EGFRvIII

EGFR amplification and protein overexpression are con-
sidered potential therapeutic targets in neurooncology. In
particular, the expression of EGFRvIII, which comprises
a unique tumor-specific target in approximately 30% of
all newly diagnosed GBM, offers many possibilities [38].
However, clinical trials targeting EGFR function have been
so far disappointing since the heterogeneous distribution of
EGFR throughout the tumor might render cells differentially

sensitive towards EGFR inhibition, ultimately leading to ther-
apy failure [51, 69, 70, 83]. Strikingly, EGFRvIII seems to be
closely associatedwith an acquired resistance against targeted
therapy with TKIs [104, 105]. Nathanson et al. described
an EGFRvIII-positive subpopulation of tumor cells which
they isolated from EGFRvIII-expressing GBM patients who
developed resistance to TKI-therapy after an initial response
[75].This subpopulation persisted during TKI-treatment and
expanded again after drug withdrawal.The authors described
this subpopulation of cells to grow as neurospheres in vitro
and to give rise to highly heterogeneous xenograft tumors,
indicating that they possessed stem-like features.

The difficulties with TKI or mAbs targeting EGFR have
sparked the development of alternative treatment strategies
to exploit EGFR or EGFRvIII as a molecular target in
GBM. Current approaches are utilizing EGFR/EGFRvIII as
a unique tumor antigen to specifically identify GBM cells
rather than targeting the EGFR’s biological function and
have emphasized the significance of EGFR/EGFRvIII as a
target for GBM therapy [106]. Arming the patients’ immune
system against GBM with EGFR amplification and EGFRvIII
expression appears to be especially promising. Currently,
the most exciting systemic approach to exploit the exclusive
expression of EGFRvIII by the tumor is a vaccination strategy
with a peptide termed rindopepimut covering the neoepitope
of EGFRvIII (i.e., a novel glycine at the exon 1-exon 8
junction) [107]. In a recent Phase II study, this approach could
prolong the OS of patients with newly diagnosed EGFRvIII-
positive GBM to 21.8 months with a 36-month OS of 26%
[108]. Strikingly, nearly all patients had lost expression of
EGFRvIII at recurrence [109]. In line with this data, it was
found that treatment-naı̈ve GBM patients already exhibit
a strong endogenous immune response against EGFR as
indicated by a high level of anti-EGFR serum autoantibodies,
pointing towards a high immunogenic potential of EGFR
[110].

In a different immunotherapeutic approach, T-cells are
equipped with chimeric antigen receptors (CARs) recog-
nizing EGFRvIII, which then effectively target EGFRvIII
expressing GS-cells in vitro and exhibit significant cytotoxic-
ity. CAR-expressing T-cells also infiltrate and kill established
EGFRvIII-positive xenograft tumors in mice [111–114]. In a
similar approach, Muller et al. recently demonstrated that
engineering NK-cells modified with an EGFRvIII-specific
CAR to overexpress CXCR4 improves immunotherapy of
CXCL12/SDF-1𝛼-secreting glioblastoma in mice [115]. These
strategies, although not specifically aiming at GS-cells,
might also eradicate the stem-like compartment defined by
EGFRvIII.

Emlet et al. developed a bispecific CD133/EGFRvIII
antibody to specifically target the CD133+/EGFRvIIIhigh sub-
population of GBM [100]. In an in vitro cellular cyto-
toxicity assay, this antibody displayed superior toxicity
for CD133+/EGFRvIIIhigh glioma cells than for CD133+ or
EGFRvIIIhigh cells alone and also decreased stem-like prop-
erties such as self-renewal. Most importantly, the antibody
significantly reduced tumorigenicity in vivo, most likely via
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antibody-dependent cellular cytotoxicity similar to cetux-
imab [70].

As mentioned, high EGFR/EGFRvIII expression desig-
nates an aggressive subtype of GS-cells [69, 100]. There-
fore, downregulation of these molecules could represent a
potential therapeutic strategy for EGFR-positive tumors [99].
Histone deacetylase inhibitors (HDACi) are an exciting class
of anticancer agents. They inhibit the removal of acetyl
residues from histones by histone deacetylases (HDAC),
resulting in an open chromatin structure and increased
transcription, including genetic loci that have been silenced
during oncogenesis [116]. This leads to reexpression of
proapoptotic and differentiation programs, which partially
account for the anticancer effects of HDACi [117, 118]. In
GS-cells, the HDACi valproic acid (VPA) induced differen-
tiation and as a result decreased the expression of stem cell
markers, rendering them more vulnerable to conventional
therapy [119]. Importantly, nonneoplastic cells are relatively
resistant to cell death induced by HDAC inhibition [120,
121]. Conversely, HDACi have been described to selectively
induce transcriptional repression of high copy number
genes such as amplified EGFR through blockade of RNA-
polymerase II-dependent elongation [122]. As a consequence,
the expression of EGFR and of EGFRvIII, which is con-
trolled by epigenetic mechanisms in EGFR-amplified cells,
can be reduced by HDACi such as Trichostatin A (TSA)
or suberoylanilide hydroxamic acid (SAHA) in conventional
and GS-cells [75, 84, 99]. Furthermore, treatment of cancer
cells with either acquired resistance or an inherent tolerance
to EGFR TKIs with HDACi could resensitize these cells
to the action of the inhibitor [123]. The combined effects
of the TKI erlotinib and different HDACi (SAHA, TSA)
were independent of cell culture conditions (neurosphere
or containing serum), EGFR status (EGFR−/EGFRvIII−;
EGFR+/EGFRvIII−; EGFR+/EGFRvIII+) or acquired TKI
resistance [69, 84]. This effect of HDACi might affect also
the EGFR-dependent stem-like compartment of GBM and
sensitize it to conventional, EGFR-targeted therapy.

6. Conclusions and Future Prospects

Endogenous amplification of the EGFR gene and overexpres-
sion of EGFR/EGFRvIII protein have been difficult to study
in vitro in the past. Optimization of cell culture conditions
for stem-like cells from GBM has enabled researchers to
maintain EGFR-amplified GS-cells with high EGFR expres-
sion in combination with or without EGFRvIII expression
at the protein level. These cell culture systems facilitated the
analyses of the contribution of EGFR/EGFRvIII to a stem-like
phenotype, the discovery of an EGFR/EGFRvIII-dependent
cellular hierarchywithin the stem-like compartment of GBM,
and the development of targeted therapy approaches for
EGFR/EGFRvIII-positive GS-cells.

The importance of representative model systems of
EGFR-amplified GBM for research is highlighted by recent
reports which described the occurrence of circulating tumor
cells (CTCs) in the blood of more than 20% of GBM patients
[124–126]. The study by Müller et al. could demonstrate a

significant association between an amplification of the EGFR
gene in the primary tumor and the occurrence of CTCs in
the blood. Importantly, these cells displayed preserved EGFR
amplification. However, the occurrence of CTCs was not
significantly associatedwithOS of the patient cohort. In other
cancers than glioma, the ability of tumor cells to disseminate
from the primary tumor mass, to remain dormant for many
years, and to survive systemic chemotherapy unharmed has
been attributed to cancer stem cell properties. Therefore, in
EGFR-amplified GBM, cells of the EGFRhigh GS-cell pool
might have the ability to extravasate into the blood stream
and to potentially give rise to GBM metastases. Support for
this notion comes from reports in the literature describing
GBM metastases occurring with a relatively high frequency
of 10–20% in transplant patients who received organs from
GBM patients [127]. As GBM therapy continues to improve,
especially for EGFR-amplified, EGFRvIII-positive tumors
[108], the likeliness of extracranial metastases might increase
from sporadic events to a veritable complication for these
patients. Therefore, targeting the EGFRhigh GS-cell compart-
ment could have prospective benefit for GBM patients with
EGFR-amplified GBM.
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